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Preface

The recent studies on fractional differential equations indicate that a variety of
interesting and important results concerning existence and uniqueness of solutions,
stability properties of solutions, and analytic and numerical methods of solutions
for these equations have been obtained, and the surge for investigating more and
more results is underway [36, 37]. The tools of fractional calculus have played
a significant role in improving the modeling techniques for several real-world
problems. Nowadays, fractional-order differential equations appear extensively in
a variety of applications such as diffusion processes, chaos, thermo-elasticity,
biomathematics, fractional dynamics, etc. [87, 118, 142, 183, 187]. One of the
characteristics of operators of fractional order is their nonlocal nature accounting for
the hereditary properties of many phenomena and processes involved. For the recent
development of the topic, we refer the reader to a series of books and papers [1, 6,
8,9,40,41,91,96, 114, 121, 133, 141, 180]. However, it has been noticed that most
of the work on the topic is based on Riemann-Liouville, and Caputo-type fractional
differential equations. Another kind of fractional derivatives that appears side by
side to Riemann-Liouville and Caputo derivatives in the literature is the fractional
derivative due to Hadamard, introduced in 1892 [89], which contains logarithmic
function of arbitrary exponent in the kernel of the integral appearing in its definition.
Hadamard-type integrals arise in the formulation of many problems in mechanics
such as in fracture analysis. For details and applications of Hadamard fractional
derivative and integral, we refer the reader to the works in [51-53, 94, 96-98].

The main idea for writing this book is to focus on the recent development
of fractional differential equations, integrodifferential equations, and inclusions
and inequalities involving Hadamard derivative and integral. In precise terms,
we address the issues related to initial and boundary value problems involving
Hadamard-type differential equations and inclusions as well as their functional
counterparts. Much of the material presented in this book is based on the recent
research of the authors on the topic.
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The book is organized as follows. Chapter 1 contains fundamental concepts
of multivalued analysis, differential inclusions, and Hadamard fractional calcu-
lus. We also describe a number of fixed-point theorems used to establish the
existence results for the proposed problems. Included among the fixed-point
theorems recognized by their names are Amini-Harandi, Boyd and Wong, Covitz
and Nadler, Dhage, Guo-Krasnosel’skii, Krasnosel’skii, Krasnosel’skii-Zebreiko,
Leggett-Williams, Leray-Schauder nonlinear alternative for single and multivalued
maps, O’Regan, Petryshyn, and Sadovski.

Chapter 2 is devoted to the study of existence of solutions for initial and boundary
value problems of fractional-order Hadamard-type functional and neutral functional
differential equations and inclusions with both retarded and advanced arguments.

The objective of Chapter 3 is to investigate fractional integral boundary value
problems involving Hadamard fractional derivative and integral for nonlocal frac-
tional differential equations and inclusions. We establish some existence and
uniqueness results for the given problems by means of classical fixed-point theo-
rems.

In Chapter 4, we introduce a new class of mixed initial value problems involving
Hadamard derivative and Riemann-Liouville fractional integrals. Existence and
uniqueness results for the given problems are obtained with the help of standard
fixed-point theorems. The purpose of Chapter 5 is to study nonlocal boundary value
problems of Riemann-Liouville fractional differential equations and inclusions
equipped with Hadamard fractional integral boundary conditions. In Chapter 6, we
switch onto the study of coupled systems of Hadamard- and Riemann-Liouville-type
fractional differential equations with coupled and uncoupled nonlocal Hadamard
fractional boundary conditions.

Chapter 7 studies nonlinear Langevin equations and inclusions involving Hada-
mard-Caputo-type fractional derivatives with nonlocal fractional integral condi-
tions. Then we extend our study to coupled systems of Langevin equation with
fractional integral conditions. In Chapter 8, we investigate a nonlinear boundary
value problem of impulsive hybrid multi-orders Caputo-Hadamard fractional dif-
ferential equations with nonlinear integral boundary conditions. In Chapter 9, we
study the existence of solutions for initial and boundary value problems of hybrid
fractional differential equations and inclusions of Hadamard type. In Chapter 10, we
develop some fractional integral inequalities using the Hadamard fractional integral.
Several new integral inequalities are obtained by using Young and weighted AM-
GM inequalities. Many special cases are also discussed. Moreover, a Gru§s-type
Hadamard fractional integral inequality is obtained. Chapter 11 is concerned with
the existence criteria of positive solutions for fractional differential equations of
Hadamard type with integral boundary condition on infinite intervals.
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Chapter 1
Preliminaries

1.1 Definitions and Results from Multivalued Analysis

In this section, we introduce notations, definitions and preliminary facts from
multivalued analysis, which are used throughout this book.
For a normed space (X, || - ||), let

LX) ={Y € Z(X) : Yisclosed},

Pp(X) = {Y € Z(X) : Y is bounded},

Pp(X) ={Y € P(X) : Y is compact},
Pep(X) ={Y € P(X) : Y is compact and convex}, and
Peap(X) ={Y € Z(X) : Y is closed and bounded}.

A multivalued map G : X — Z(X) :

(1) is convex (closed) valued if G(x) is convex (closed) for all x € X;

(2) is bounded on bounded sets if G(B) = U,epG(x) is bounded in X for all B €
Py(X) (i.e. sup,cz{supily| : y € G()}} < 00):

(3) is called upper semi-continuous (u.s.c.) on X if for each xy € X, the set G(x)
is a nonempty closed subset of X, and if for each open set N of X containing
G(xo), there exists an open neighborhood A4 of x¢ such that G(-4;) € N;

(4) G is lower semi-continuous (L.s.c.) if the set {y € X : G(y) N B # @} is open for
any open set B in E;

(5) is said to be completely continuous if G(B) is relatively compact for every B €
Zp(X);

© Springer International Publishing AG 2017 1
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2 1 Preliminaries

(6) 1is said to be measurable if for every y € R, the function
t+—d(y,G()) = inf{ly —z| : z € G(1)}

is measurable;
(7) has a fixed point if there is x € X such that x € G(x). The fixed point set of the
multivalued operator G will be denoted by FixG.

Definition 1.1 A multivalued map F : J x R — Z(R) is said to be Carathéodory
if

(i) t+—> F(t,x) is measurable for each x € R;
(i) x —> F(t,x) is upper semicontinuous for almost all 7 € J;

Further a Carathéodory function F is called L'-Carathéodory if

(iii) for each a > 0, there exists ¢, € L'(J,R™) such that

1@, x)[| = supi|v] : v € F(2,0)} < ¢u(?)

for all || x| < « and fora.e. t € J.

For each x € ¥, define the set of selections of F by
Spy:={v e L'(J,R) : v(r) € F(t,x(r)) for a.e. t € J}.

We define the graph of G to be the set Gr(G) = {(x,y) € X x Y,y € G(x)} and
recall two useful results regarding closed graphs and upper-semicontinuity.

Lemma 1.1 ([69, Proposition 1.2]) IfG : X — Z,(Y) is u.s.c., then Gr(G) is a
closed subset of X X Y; i.e., for every sequence {x,},en C X and {y,}nen C Y, if
when n — 00, X, — Xx, Yn — Y« and y, € G(x,), then y« € G(xx). Conversely, if G
is completely continuous and has a closed graph, then it is upper semi-continuous.

Lemma 1.2 ([108]) Let X be a Banach space. Let F : [0,T] x R — £, .(X) be
an L'— Carathéodory multivalued map and let © be a linear continuous mapping
from L'(J, X) to C(J, X). Then the operator

@ OSF,x : C(]s X) - gzsp.c(c(]s X))’ X = (@ OSF.x)(-x) = @(SF,X)

is a closed graph operator in C(J,X) x C(J, X).

Let A be a subset of J X R. A is .Z ® % measurable if A belongs to the ¢-algebra
generated by all sets of the form _# x &, where _¢# is Lebesgue measurable in J
and 2 is Borel measurable in R. A subset .7 of L' (J, R) is decomposable if for all
x,y € o/ and measurable ¢ C J = I, the functionxy s +yy;- € o/, where y 4
stands for the characteristic function of _¢.
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Definition 1.2 Let Y be a separable metric space and let N : ¥ — Z(L!(J,R)) be
a multivalued operator. We say N has a property (BC) if N is lower semicontinuous
(L.s.c.) and has nonempty closed and decomposable values.

Let F: J x R - Z(R) be a multivalued map with nonempty compact values.
Define a multivalued operator .% : PC(J x R) — Z2(L'(J, R)) associated with F as
F(x) = {w e L'(J,R) : w(t) € F(t,x(t)) fora.e. t € J},

which is known as the Nemytskii operator associated with F.

Definition 1.3 Let F : / x R — Z(R) be a multivalued function with nonempty
compact values. We say F is of lower semi-continuous type (l.s.c. type) if its
associated Nemytskii operator .% is lower semi-continuous and has nonempty
closed and decomposable values.

Lemma 1.3 ([S0]) Let Y be a separable metric space and let N : Y —
P(L'(J,R)) be a multivalued operator satisfying the property (BC). Then N has
a continuous selection, that is, there exists a continuous function (single-valued)
g:Y — L'(J,R) such that g(x) € N(x) for everyx € Y.

For more details on multivalued analysis, we refer to the books of Deimling [69],
Gorniewitz [85], Hu and Papageorgiou [93] and Tolstonogov [165].
1.2 Definitions and Results from Fractional Calculus

Definition 1.4 The Riemann-Liouville fractional integral of order ¢ > 0 with the
lower limit zero for a function f : (0, c0) — R is defined by

_ b
w0 = s /0 (t — )" f(s)ds.

provided the right-hand side is point-wise defined on (0, co), where I"(-) denotes
the Euler Gamma function defined by I'(q) = fooo e s\ ds.

Definition 1.5 The Riemann-Liouville fractional derivative of order ¢ > 0 of a
function f : (0, 0c0) — R is defined by

reDIf(1) = ﬁ (%)n/()t(t— S (s)ds, n—1<gq<n,

where the function f(¢) has absolutely continuous derivative up to order (n — 1).
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Lemma 1.4 Let b,q > 0 and x € C(0,b) N L' (0, b). Then the general solution of
fractional differential equation

RLDqX(t) =0
is
x() =it Vet 4 et

wherec; e R,i=1,2,...,n,andn—1< g <n.

Lemma 1.5 Let g > 0 and x € C(0,b) N L' (0, b). Then
RLIqRLqu(I) = X(I) + C1lq_1 + Czlq_z + .t

wherec; e R, i=1,2,...,n,andn—1 < g <n.

Definition 1.6 The Hadamard fractional integral of order ¢ € R™ of a function
felPla,b],0 <a<t<b<o0o,isdefined as

(1) = % / (1og B IIOES

Definition 1.7 Let 0 < a < b < 00, § = t4 and AC}[a.b] = {f : [a.b] — R :
8" '[f(1)] € ACla, b]}. The Hadamard derivative of fractional order ¢ for a function
f € AC§[a, b] is defined as

d " ! n—q—1
0 =500 = s (1) (e ) e

wheren—1 < g < n,n = [q] + 1, [¢] denotes the integer part of the real number g
and log() = log, ().

Recall that the Hadamard fractional derivative is the left-inverse operator to
the Hadamard fractional integral in the space I”[a,b], 1 < p < oo, that is,
uDy19g(t) = g(t) (Theorem 4.8, [97]).

In [94], Caputo-type modification of the Hadamard fractional derivatives was
proposed as follows:

n—1 o
“Pig(r) = HDq[g(S) - Z 5 ifa) (log z)k](t), t € (a,b). (1.1)
=0

Further, it was shown in (Theorem 2.1, [94]) that € 29g(t) = yI"~%8"g(t). For 0 <
g < 1, it follows from (1.1) that
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P15 = D[ 8() — (@ 0.

Furthermore, it was established in Lemmas 2.4 and 2.5 of [94] respectively that

n—1 ok
A0 = 80). w0 =50~ D (g ) a2

!
— K

From the second formula in (1.2), one can easily infer that the solution of Hadamard
differential equation: € 2%u(t) = o (t) can be written as

—1

u(t) = ylio(t) + Z u(a)( £)k,

k=0

for appropriate function u(¢) and o (f) (as required in the above definitions).

Note that the Hadamard integral and derivative defined above are left-sided. One
can define the Hadamard right-sided integral and derivative in the same way, for
instance, see [94].

Lemma 1.6 ([96, p. 113]) Let g > 0 and B > 0. Then the following formulas
ul't? = p~4P  and  yDUP = P

hold.

For Hadamard fractional integrals, the semigroup property holds:
ul®ulPf (1) = uI**Pf(r), >0, B >0,
which leads to the commutative property:
ul®uIPf(t) = yl? yI°f (1).

Lemma 1.7 ([96, Property 2.24]) Ifa,a, B >,0 then

(HD“ (log é)ﬂl) (x) = % (log 2)/3—0(—1 |
(le (10g é)ﬂ )( - % (log )ﬂ+o¢—1.
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Lemma 1.8 ([96]) Let g > 0 and x € C[1,00) N L'[1,00). Then the solution of
Hadamard fractional differential equation yDx(t) = 0 is given by

x(t) =Y ci(logn)”™

i=1

and the following formula holds:

wliyDx(r) = x(r) + Z ci (logn)?™",

i=1
wherec; e R,i=1,2,...,n,andn—1< g <n.

Remark 1.1 1In the subsequent work, we denote by 4¢"[a, b] the space of functions
x(2), which have continuous §-derivative (§ = t%) of order n— 1 on [a, b] and §"x(r)
on [a, b] such that §"x(¢) € Cla, b].

The theoretical development of fractional calculus and fractional differential
equations has deeply been given in excellent monographs, for instance, by Miller
and Ross [121], Podlubny [141], Kilbas et al. [96], Lakshmikantham et al. [107],
Diethelm [75] and Samko et al. [145].

1.3 Fixed Point Theorems

Fixed point theorems play a major role in establishing the existence theory for
initial and boundary value problems. We collect here some well-known fixed point
theorems used in this book.

Theorem 1.1 (Contraction Mapping Principle [70]) Let E be a Banach space,
D C E be closed and F : D — D a strict contraction, i.e. |Fx — Fy| < k|x — y| for
some k € (0,1) and all x,y € D. Then F has a unique fixed point.

Theorem 1.2 (Krasnoselskii’s Fixed Point Theorem [101]) Let M be a closed,
bounded, convex and nonempty subset of a Banach space X. Let A, B be the
operators such that (a) Ax + By € M whenever x,y € M; (b) A is a compact
and continuous, (c) B is a contraction mapping. Then there exists z € M such that
7=Az+Bz.

Theorem 1.3 (Leray-Schauder Alternative [86], p. 4) Let F : E — E be a
completely continuous operator (i.e., a map restricted to any bounded set in E is
compact). Let

E(F) ={x € E: x = AF(x) for some 0 < A < 1}.

Then either the set & (F) is unbounded, or F has at least one fixed point.
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Next, we state the Leray-Schauder’s nonlinear alternative. By U and dU, we
denote the closure and the boundary of U, respectively.

Theorem 1.4 (Nonlinear Alternative for Single-Valued Maps [86]) Let E be a
Banach space, C be a closed, convex subset of E, U be an open subset of C and
0 € U. Suppose that F : U — C is a continuous, compact (that is, F(U) is a
relatively compact subset of C) map. Then either

(i) F has a fixed point in U, or
(ii) thereisau € dU and A € (0,1) withu = AF(u).

Theorem 1.5 ([153]) Suppose that A : 2 — E is a completely continuous
operator. If one of the following conditions is satisfied:

(i) (Altman) |Ax — x||*> > ||Ax||> = ||x||?, for all x € %2,
(ii) (Rothe) ||Ax| < ||lx||, for all x € 352,
(iii) (Petryshyn) ||Ax| < ||Ax — x||, for all x € 352,

then deg(I — A, §2,0) = 1, and hence A has at least one fixed point in 2.
The next fixed point theorem is due to O’Regan.

Theorem 1.6 ([131]) Denote by O an open set in a closed, convex set K of a
Banach space X. Assume that 0 € O. Also assume that F(O) is bounded and that
F:0 — Kis given by F = Fy + F5, in which F; : O — K is continuous and
completely continuous and F» : O — K is nonlinear contraction (that is, there exists
a nonnegative nondecreasing function ¢ : [0, 00) — [0, 00) satisfying ¢(z) < z for
72> 0, such that ||Fox — Foy|| < ¢(|lx — yl||) for all x,y € O). Then, either

(C1) F has a fixed point u € O; or B
(C2) there exist a pointu € 90 and A € (0, 1) with u = AF(u), where O and 00,
respectively, represent the closure and boundary of O.

Following is a hybrid fixed point theorem for two operators in a Banach algebra
due to Dhage.

Theorem 1.7 ([73]) Let S be a nonempty, closed convex and bounded subset of the
Banach algebra E and let A : E — E and B : S — E be two operators satisfying:

(a) A is Lipschitzian with Lipschitz constant §,

(b) B is completely continuous,

(¢) x=AxBy=>xe SforallyeS,

(d) 6M < 1, where M = ||B(S)|| = sup{||B(x)|| : x € S}.

Then the operator equation x = AxBx has a solution in S.

Theorem 1.8 ([73]) Let X be a Banach algebra and let A : X — X be a single
valued operator and B : X — P, (X) be a multivalued operator satisfying:

(a) A is single-valued Lipschitz with a Lipschitz constant k,
(b) B is compact and upper semi-continuous,
(c) 2Mk < 1, where M = |B(X)]||.
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Then either

(i) the operator inclusion x € AxBx has a solution, or
(ii) the set & = {u € X|juu € AuBu, > 1} is unbounded.

Theorem 1.9 ([74]) Let M be a non-empty, closed, convex and bounded subset of
the Banach space X and let A : X — X and B : M — X be two operators such
that

(i) A is a contraction,
(ii) B is completely continuous, and
(iii) x =Ax+ Byforallye M = xe M.
Then the operator equation Ax + Bx = x has a solution.

Theorem 1.10 (Krasnoselskii-Zabreiko’s Fixed Point Theorem [102]) Let
(X, || - I) be a Banach space, and ¢ : X — X be a completely continuous operator.
Assume that £ : X — X is a bounded linear operator such that 1 is not an
eigenvalue of £ and

|4 x— Lx||

lll—>oo [lx]|

0.

Then 2% has a fixed point in X.

Definition 1.8 Let E be a Banach space and let &/ : E — E be a mapping. <7 is
said to be a nonlinear contraction if there exists a continuous nondecreasing function
W :RT — R such that ¥(0) = 0 and ¥(¢) < e for all & > 0 with the property:

% =y < ¥(lx—ylD, Vx,y € E.

Theorem 1.11 (Boyd and Wong [49]) Let E be a Banach space and let
& . E — E be a nonlinear contraction. Then </ has a unique fixed point in E.

Definition 1.9 ([86]) Let @ : D(®) € X — X be a bounded and continuous
operator on a Banach space X. Then @ is called a condensing map if «(P(B)) <
a(B) for all bounded sets B C D(®), where o denotes the Kuratowski measure of
noncompactness.

Theorem 1.12 ([178]) The map K, + K, is a k-set contraction with 0 < k < 1,
and thus also condensing if the following conditions hold:

(i) K1,K; : D € X — X are operators on the Banach space X;
(ii) K, is k-contractive, that is, | Kix — K1y|| < k||x — y|| for all x,y € D and fixed
ke[0,1);

(iii) K, is compact.

Theorem 1.13 (Sadovski Fixed Point Theorem [144]) Let B be a convex
bounded and closed subset of a Banach space X and @ : B — B be a condensing
map. Then @ has a fixed point.
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Theorem 1.14 ([86]) Suppose that A : 2 — E is a completely continuous
operator and that

Ax # Ax, Vx e df2,A > 1.
Then deg(I — A, 2,6) = 1 and A has at least one fixed point in $2.

The next fixed point theorem is concerned with multivalued mappings and is
known as nonlinear alternative of Leray-Schauder for multivalued maps.

Theorem 1.15 (Nonlinear Alternative for Kakutani Maps [86]) Ler E be a
Banach space, C a closed convex subset of E, U an open subset of C and 0 € U.
Suppose that F : U — P, (C) is a upper semicontinuous compact map. Then
either

(i) F has a fixed point in U, or
(ii) thereisau € AU and A € (0,1) withu € AF(u).

Now, we state Krasnoselskii’s multivalued fixed point theorem.

Theorem 1.16 (Krasnoselskii’s Fixed Point Theorem [139]) Let X be a Banach
space, Y € Py (X)and A, B: Y — P, (X) be two multivalued operators. If the
following conditions are satisfied:

(i) Ay+By C Y forallyeY;
(ii) A is contraction;
(iii) B is u.s.c and compact,

then, there exists y € Y such that y € Ay + By.

The next fixed point theorem deals with multivalued mappings and is known as
nonlinear alternative for contractive maps [140, Corollary 3.8].

Theorem 1.17 ([140])  Let X be a Banach space, and D a bounded neighborhood
of 0 e X. LetZ) : X - P X)and Z, : D — P, (X) be two multivalued
operators satisfying

(a) Z; is contraction, and
(b) Z, is u.s.c and compact.

Then, if G = Z; + Z, either

(i) G has a fixed point in D or
(ii) there is a point u € dD and A € (0, 1) with u € AG(u).

Before stating the next fixed point theorem, we recall some preliminaries.

Let (X, d) be a metric space induced from the normed space (X; | - ||). Consider
the Pompeiu-Hausdoff metric H; : &(X) x Z(X) — R U {oo} given by

H,;(A, B) = max{supd(a, B),supd(A, b)},
a€A beB

where d(A, b) = inf,eq d(a; b) and d(a, B) = inf,ep d(a; b). Then (£, (X), Hy) is
a metric space and (Z.(X), H;) is a generalized metric space (see [99]).
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Definition 1.10 A multivalued operator 77 : X — Z,(X) is called:

(a) k-Lipschitz if and only if there exists k > 0 such that
H (5 (x), 7#(y)) < kd(x,y) foreach x,y€X;

(b) a contraction if and only if it is k-Lipschitz with k < 1.

Now, we state a fixed point theorem due to Covitz and Nadler for multivalued
contractions.

Theorem 1.18 (Covitz and Nadler [64]) Let (X,d) be a complete metric space.
IfN : X — Z.,(X) is a contraction, then FixN # 0.

Before stating endpoint fixed point theorem due to Amini-Harandi [33], we
define some related concepts.

An element x € X is called an endpoint of a multifunction F : X — Z(X)
whenever Fx = {x} [33]. Also, we say that F' has an approximate endpoint property
whenever infiex sup, e, d(x,y) = 0[33].

A function f : R — R is called upper semi-continuous whenever
limsup,_, o, f(A,) < f(A) for all sequence {A,},>1 With A, — A.

Theorem 1.19 ([33]) Let ¢ : [0,00) — [0,00) be an upper semi-continuous

function such that

Y(t) <t and litminf(t —Y(t) >0 forall t >0,
—00

(X, d) is a complete metric space and S : X — P p(X) is a multi-function such
that

H;(Sx,Sy) < ¢ (d(x,y)) forall x,y € X.

Then S has a unique endpoint if and only if S has approximate endpoint property.

The following Leggett-Williams fixed point theorem is useful in proving the
existence of at least three positive solutions.

Definition 1.11 A continuous mapping 6 : P — [1, 00) is said to be a nonnegative
continuous concave functional on the cone P of a real Banach space E provided that

00+ (1= A)v) = A0@w) + (1 — 1)0(v)

forall u,v € Pand A € [0, 1].

Let a,b,d > 0 be constants. We define Py = {u € P : ||lu|| < d}, Py = {u € P:
lull < d}and P(6,a,b) ={u e P:6(u) > a,lu| <b}.
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Theorem 1.20 ([109]) Let P be a cone in the real Banach space E and ¢ > 0 be
a constant. Assume that there exists a concave nonnegative continuous functional 6
on P with O(u) < |u|| for allu € P,. Let T : P, — P, be a completely continuous
operator. Suppose that there exist constants 0 < a < b < d < c such that the
following conditions hold:

(i) {u e P(0,b,d):0(u) > b} # @ and 6(Tu) > b foru € P(0,b,d);
(ii) ||Tu|| < a foru < a;
(iii) 6(Tu) > b foru € P(0, b, c) with || Tu| > d.

Then T has at least three fixed points uy, u, and usz in P.. Furthermore, |u;| < a,
b < 0(uy), a < ||usz|| with 6(uz) < b.

The following Guo-Krasnoselskii fixed point theorem is used to prove the
existence of at least one positive solution.

Theorem 1.21 ([88]) Let E be a Banach space, ﬂzd let P C E be a cone. As&me
that §2,, §2, are open subsets of E with 0 € $21, 21 C §2, and let T : PN (£2; \
£21) — P be a completely continuous operator such that:

(i) |Tull > ||ull, u € PN 382y, and ||Tu| < ||ull, u € P N 382,; or
(i) |Tu|l < |ull, u € PN 382y, and ||Tu| > |ul, v € P N 382,.

Then T has a fixed point in P N (2, \ £21).



Chapter 2

Initial and Boundary Value Problems
of Fractional Order Hadamard-Type
Functional Differential Equations
and Inclusions

2.1 Introduction

Functional and neutral functional differential equations arise in a variety of areas
of biological, physical, and engineering applications, see, for example, the books
[90, 100] and the references therein. Fractional functional differential equations
involving Riemann-Liouville and Caputo type fractional derivatives have been
studied by several researchers [1, 3, 4, 45, 46, 68, 78, 106, 175].

In this chapter, we discuss the existence of solutions for initial and boundary
value problems of Hadamard-type functional and neutral functional differential
equations and inclusions involving retarded as well as advanced arguments.

2.2 Functional and Neutral Fractional Differential Equations

This section deals with the existence of solutions for initial value problems (IVP for
short) of fractional order functional and neutral functional differential equations.
In the first problem, we consider fractional order functional differential equations:

D%y(t) = f(t,y,), foreachreJ =[1,b], O<a <1, b>1, (2.1)
YO =@, te[l=r1], wJ'""O)|=1 =0, (2.2)

where D* is the Hadamard fractional derivative, f : J x C([-r,0],R) — Risa
given continuous function and ¢ € C([1 — r, 1], R) with ¢(1) = 0 and zJ® is the

© Springer International Publishing AG 2017 13
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Hadamard fractional integral. For any function y defined on [1 — r, b] and any ¢ € J,
we denote by y, the element of C([—r, 0], R) and define it as

v(0) =y +6), 6€[-r0].

Notice that y,(-) represents the history of the state from time ¢ — r up to the present
time ¢.

The second problem is concerned with fractional neutral functional differential
equations:

D¥[y(t) — g(t.y)] = f(t, ), t € J, (2.3)
YO) = ¢@. re[l=r1],  w' "¥(O]=1 =0, (24)
where f and ¢ are the same as defined in problem (2.1)—(2.2), and g : J X

C([-r,0],R) — R is a given function such that g(1, ¢) = 0.

Theorem 2.1 ([96, p. 213]) Leta > 0, n = —[—a]and 0 < y < 1. Let G be an
open setinR andletf : (a,b] x G — R be a function such that: f(x,y) € Cy,0gla, b]
for any y € G. Then the following problem

Dy(t) = f(t,y(1), a >0, (2.5)
W ya+) = b, breR, (k=1,....n, n=—[-a]), (2.6)

satisfies the Volterra integral equation:

n

bj 1\ 1 ! Al ds
y@© = Z m (log ;) + m/ﬂ (log ;) f(s,y(s))?, t>a>0,

=1
2.7
that is, y(t) € Ch—qg10gla, b satisfies the relations (2.5)—(2.6) if and only if it satisfies
the Volterra integral equation (2.7).
In particular, if 0 < a < 1, the problem (2.5)—(2.6) is equivalent to the following
equation:

1

b a—1 1 a—1 d
v = — (log 2) +m ) (log ﬁ) f(s,y(s))?s, s>a>0. (2.8

I'(a)

Further details can be found in [96].



2.2 Functional and Neutral Fractional Differential Equations 15
2.2.1 Functional Differential Equations

By C(J,R), we denote the Banach space of all continuous functions from J into R
with the norm

[¥lloo := sup{ly(®)| : t € J},

where | - | is a suitable complete norm on R. The space C([—r, 0], R) is endowed
with norm || - ||¢ defined by

[¢llc := sup{lp(0)] : —r < 6 < 0.

Definition 2.1 A function y € €' ([1 — r, 5], R) is said to be a solution of (2.1)-
(2.2) if it satisfies the equation D*y(r) = f (¢, y,) on J, the conditions y(t) = ¢(¢) on
[1—r, 1] and zJ' " *y(1)|;=1 = 0.

Our first existence result for the IVP (2.1)—(2.2) is based on the Banach’s contraction
mapping principle.

Theorem 2.2 Letf : J x C([—r,0],R) — R. Assume that:

(2.2.1) there exists £ > 0 such that
Ifz,u)—f(t,v)| < L||lu—v|c, fort € J and for every u,v € C([—r, 0], R).

£(log b)*
If —F((0g+ )1) < 1, then there exists a unique solution for the IVP (2.1)—(2.2) on the
o

interval [1 — r, D).

Proof To transform the problem (2.1)—(2.2) into a fixed point problem, we consider
an operator N : C([1 — r, b],R) — C([1 — r, b], R) defined by

¢(1), ifre[l—r1],

L e ) 600 @9
m/} (log;) ds, ifre[l,b].

N

Ny)(@) =

Lety,z € C([1 — r,b],R). Then, for ¢t € [1 — r, b], we have

1 ! a—l ds
NGO =N = 1 [ (o) e =620 T

N

{ ! ol ds
- log - e — Zslle —
F(a)/l (ogs) lys — zsllc .

IA
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oy =l [ (og) T8
= Lyt [ (i)
I'(a) =l ), s
L(log 1)
< —="\y—zlln=ran.
=T@+1) Iy = zllp—r.1
Consequently,
L(log b)*
NG) = N@lli—rs) < =———ly = 2llji=rs]:
ING) = N@ p-re) < @il Iy = zllp—r.s)
P . . £(log b)*
which implies that N is a contraction as F(——I-l) < 1, and hence the operator N
o
has a unique fixed point by Banach’s contraction mapping principle. Therefore, the
problem (2.1)—(2.2) has a unique solution on [1 — r, b]. |

We make use of the nonlinear alternative of Leray-Schauder type to obtain our
second existence result for the IVP (2.1)—(2.2).

Theorem 2.3 Assume that the following hypotheses hold:

(2.3.1) f:J x C([-r,0],R) — R is a continuous function;
(2.3.2) there exist a continuous nondecreasing function ¥ : [0, 00) — (0, 00) and
a function p € C([1, b], RT) such that

[f(.w)| < p() Y (llullc) foreach (1,u) € [1.b] x C([=r. 0], R);

(2.3.3) there exists a constant M > 0 such that
M
Y M) plloo~—+

(log b)*
'ao+1)
Then the IVP (2.1)—(2.2) has at least one solution on [1 — r, b].

Proof We consider the operator N : C([1 — r,b],R) — C([1 — r,b],R) defined
by (2.9) and show that it is both continuous and completely continuous.

Step 1: N is continuous.

Let {y,} be a sequence such that y, — y in C([1 — r, b], R). Let > 0 such that
[¥nlloo < 1. Then

/\

INO@ = NGO < F(a) o [ (o) T o — sl

| /\

rir [ e )™ sup ) 601

S SE[1,b]
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FC3n) =FCeloe 7 (0 1y d
< e o) S

_ (ogb)*|IfCyn) =f (¥ ) lloo
- I'ae+1) '

Since f is a continuous function, we have

_ (og D [[f Cyn) =fC 3 oo

INGZ) = NO)loo =< ICE) — 0 asn — oo.

Step 2: N maps bounded sets into bounded sets in C([1 — r, b], R).

_ Indeed, it is enough to show that for any n* > 0 there exists a positive constant
£ such that for each y € B» = {y € C([1 —r,b],R) : ||yllc < n*}, we have
INOD)|loo < £. By (2.3.2), for each t € [1, b], we obtain

W01 = s [ (o) T 0
S w(||y||ur_$)||p||oo 1’ ()" 2
TSIy
Thus
INGY oo < LIMPles 100 e — 7

I'a+1)

Step 3: N maps bounded sets into equicontinuous sets of C([1 — r, b], R).

Lett,t, € (0,b], t| <1y, By~ be abounded set of C([1 —r, b], R) as in Step 2,
and lety € By+. Then

NI =N = s [ [(10e2) T = (10g %) Jrtsn®

1 f ¥ ds
[ (o2)" feZ
i ) (oe) 76007

< LU (ol tog /1) + [dog ) — (ogr¥]).

As tj — 1, the right-hand side of the above inequality tends to zero, independent
of y € Byx. The equicontinuity for the cases 1; < # < 0and# < 0 < 1, is obvious.
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In consequence of Steps 1-3, it follows by the Arzela-Ascoli theorem that N :
C([1 = r,b],R) — C([1 — r, b],R) is continuous and completely continuous.

Step4:  We show that there exists an open set U C C([1—r, b], R) withy # AN(y)
for A € (0,1)and y € 0U.

Lety € C([1 —r,b],R) and y = AN(y) for some 0 < A < 1. Thus, for each

tel,b],
1 ! G ds
y) =21 (m /1 (log ;) f(s,y5) ?) :

By the assumption (2.3.2), for each t € J, we get
ol ds
< log - o) —
y(o)] = F( ) (ogs) POV (Isllo)

- ||p||oo¢(||y||[1—r.b])
- I'o+1)

(log b)“,

which can be expressed as

”y”[l—r.b]
W(”y”[l rb])”p”oo

(logb)® = "

I'oe+1)

In view of (2.3.3), there exists M such that ||y||[i—-, 7 M. Let us set
={y e C(1 = r.b.R) : [Iyllp-rs < M}.

Note that the operator N : U — C([1 — r,b],R) is continuous and completely
continuous. From the choice of U, there is no y € dU such that y = ANy for
some A € (0, 1). Consequently, by the nonlinear alternative of Leray-Schauder type
(Theorem 1.15), we deduce that N has a fixed point y € U which is a solution of the
problem (2.1)—(2.2). This completes the proof. O

2.2.2 Neutral Functional Differential Equations

In this subsection, we establish the existence results for the IVP (2.3)—(2.4).

Definition 2.2 A function y € €' ([1 — r, b], R) is said to be a solution of (2.3)-
(2.4) if it satisfies the equation D*[y(r) — g(¢,y;)] = f(¢,y,) on J, the conditions
y(1) = ¢(t) on [1 —r, 1] and xJ'~*y(1)];=1 = 0.
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Theorem 2.4 (Uniqueness Result) Assume that (2.2.1) and the following condi-
tion hold:

(2.4.1) there exists a nonnegative constant ¢y such that
lg(t,u) — g(t,v)| < cil|lu—vl|lc, forevery u,v € C([—r,0],R).

If

L(log b)* <1

I'ae+1) (2.10)

then there exists a unique solution for the IVP (2.3)—(2.4) on the interval [1 — r, b].

Proof Associated with the problem (2.3)—(2.4), we introduce an operator N,
C([1 =r,b],R) = C([1 — r, b], R) defined by

¢ (), ifre[l—r1],
M) = (rog ) L),
t [
gt y) + 1_,( ) ( 0g - )
(2.11)
To show that the operator N is a contraction, let y,z € C([1 — r, b], R). Then, we
have

,ifre[l,b].

INIG) (@) = Ni(@) ()] = [g(t.y:) — g(t. 20)]

a—1 dS
s s 1 -
s [ s sl (1oe )
<l —alle + s [ (108 ) -zl
(& - e - s — <s -
= Cl|Yr — Zllc F(a) gs Y ch
Iy -zl Iy -l (ogh) T
<ci||y—zlp=rp + =—=—=Ily—2 l—r,b/ (og )
(e F() =i | ;
L(logt)*
<cilly —zllp=rs + mﬂy — Zllf—ra)-

Consequently, we obtain

log b)*
IN0) =M@l = 1+ i = el

which, in view of (2.10), implies that N; is a contraction. Hence N; has a unique
fixed point by Banach’s contraction mapping principle. This, in turn, shows that the
problem (2.3)—(2.4) has a unique solution on [1 — r, b]. |
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Theorem 2.5 Assume that (2.3.1) and (2.3.2) hold. Further, we suppose that:

(2.5.1) the function g is continuous and completely continuous, and for any
bounded set B in C([1 — r,b],R), the set {t — g(t,y;) : vy € B} is
equicontinuous in C([1, b], R), and there exist constants 0 < dy < 1, d > 0
such that

lg(t, )| < dillullc +da, t€[1,b], ue C([-r,0],R);

(2.5.2) there exists a constant M > 0 such that
(1—d)M

IPlloo ¥ (M)

d ———— ~(logh)*
2+ Fla+ 1) (log b)

> 1.

Then the IVP (2.3)—(2.4) has at least one solution on [1 — r, b].

Proof Let us show that the operator Ny : C([1 —r, b], R) — C([1 —r, b], R) defined
by (2.11) is continuous and completely continuous.

Using (2.5.1), it suffices to show that the operator N, : C([1 —r, b],R) — C([1 —
r, b], R) defined by

o), tel—r1],
NANIGES “ 1f(s s)
F(a)/ ds, t € [1,b],

is continuous and completely continuous. The proof is similar to that of
Theorem 2.3, so we omit the details.

We now show that there exists an open set U C C([1 —r, b], R) with y # AN (y)
for A € (0,1) and y € oU.

Lety € C([1 —r,b],R) and y = AN;(y) for some 0 < A < 1. Thus, for each
t € [1, b], we have

y(t)—l(g(t yi) + I )/

For each ¢ € J, it follows by (2.3.1) and (2.3.2) that

a 1f(S yv) )

1o @t d
b O1 = dillile + 2+ s [ (108 ) pw oS

IPlloo ¥ Iy llj1—r.51)
Fa+1) ’

<d|lyllc +d2» +
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which yields
Ploo ¥ (I¥ll1—r.61)
1—-d —rp =< d —~ (log b)*.
( DIlli=rp) < d2 + ICES)) (logb)
In consequence, we get
[ (||1 _wdgn)”ﬁ”“_r'? =t
Plloo Yil{1=r.b] o
d log b
A

In view of (2.5.2), there exists M such that ||y||/i—-» 7 M. Let us set
U={yeC(l-rbLR):|ylln—rs <M.

Note that the operator N; : U — C([1 — r,b],R) is continuous and completely

continuous. From the choice of U, there is no y € 90U such that y = ANy

for some A € (0, 1). Thus, by the nonlinear alternative of Leray-Schauder type

(Theorem 1.15), we deduce that N; has a fixed point y € U which is a solution of
the problem (2.3)—(2.4). This completes the proof. O

2.2.3 An Example

Consider the initial value problem for fractional functional differential equations:

1/2 _ [l l o
DV/=y(1) —2(1 D + 3 tedJ :=|[1,¢], 2.12)
Y0y =@, tell=r1l, w/'/?y(D)i=1 = 0. 2.13)
Let
X
f(t,x) = m, (t,x) (S [1,6‘] X [O, OO)

For x,y € [0, 00) and ¢ € J, we have

1| x y =yl :
t,x) —f(t, =35 - - =

¢(log by |
Hence the condition (2.2.1) holds with £ = 1/2. Since —0280" _ 1 _
F'a+1) Nz

therefore, by Theorem 2.2, the problem (2.12)—(2.13) has a unique solution on
[1—r,b].
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2.3 Functional and Neutral Fractional Differential Inclusions

In this section, we study the existence of solutions for initial value problems of
functional and neutral functional Hadamard type fractional differential inclusions
given by

Dy(t) € F(1.y,), foreachr € J:=[1,b], 0<a <1, (2.14)
y0)y =00, tell=r1], uJ' " yO)=1 =0, (2.15)
and
D*[y(t) — g(t.y)] € F(t.y1), t € J, (2.16)
o) =0, te[l=r1], ' y®)|=1 =0, (2.17)

where D* is the Hadamard fractional derivative, F : J x C([-r,0],R) — Z(R)
(Z(R) is the family of all nonempty subsets of R) is a given function and ¥ €
C([1 —r,1],R) with 3(1) = 0 and g : J x C([-r,0],R) — R is a given function
such that g(1,9) = 0.

2.3.1 Functional Differential Inclusions

In this section, we establish the existence criteria for the problem (2.14)—(2.15).

Definition 2.3 A function y € %'([1 — r,b],R) is called a solution of prob-
lem (2.14)—(2.15) if there exists a function v € L'(J,R) with v(f) € F(t,y,), a.e.
on J such that Dy(f) = v(¢) for ae. t € J, y(t) = 0(),t € [1 —r, 1] and
HJ'_"‘y(t)Iz=1 =0.

Theorem 2.6 Assume that:

(2.6.1) F : J xR — ZR) is L'-Carathéodory and has nonempty compact and
convex values;

(2.6.2) there exists a continuous nondecreasing function B : [0, 00) — (0, 00) and
a function ¢ € C(J,R™) such that

IF@ 2 = sup{lv] : v € F(.y)} < E@B(Iyle).

foreach (t,y) € J x C([-r,0],R);
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(2.6.3) there exists a constant ¢ > 0 such that

o

POl s

> 1.

Then the initial value problem (2.14) and (2.15) has at least one solution on [1—r, b].
Proof Define an operator 2p : C([1 — r, b],R) — Z(C([1 — r, b],R)) by

heC(l—rb),R):
3 (1), ifrel—rl],

1 [y el u(s) .
), (ond) e e
(2.18)

for v € Sp,. It will be shown that the operator {25 satisfies the assumptions of
Theorem 1.15. Firstly, we observe that £2f is convex for each y € C([1 — r, b], R)
since S, is convex (F has convex values). Next, we show that £2r maps bounded
sets into bounded sets in C([1 — r, b],R). For a positive number r, let B, = {y €
C([1—=r,b],R) : l¥lli=rp < r}be abounded ball in C([1 —r, b], R). Then, for each
h e 2r(y),y € B,, there exists v € Sg, such that

h(t) = % /ll <log g)a_l @ds.

Then, for t € J, we have

ol = s [ (oe ) ol

S
- BUyln—rs)l¢lloe [ el ds
= I'() /1 (logs) s
BUyIi=rs) ¢ oo a
S T T+ legh)
Thus
B¢ loo o .7
”h” = m(logb) = L.

Now, we show that $2p maps bounded sets into equicontinuous sets of
C([1 — r,b],R). Let #;,1, € J with#; < t, and y € B,. For each h € £2(y),
we obtain
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() = (i) = %' [ [(log B (10g )" }f(s,ys)?

1 12 H\e! ds
i@ ), (23) f(s’ys)?'

Clearly the right hand side of the above inequality tends to zero independent of
y € Bras tp —t; — 0. As §2p satisfies the above three assumptions, it follows by
the Arzeld-Ascoli Theorem that 27 : C([1 — r,b],R) — Z(C([1 — r,b],R)) is
completely continuous.

In our next step, we show that 27 is upper semicontinuous. It is known [69,
Proposition 1.2] that £2 will be upper semicontinuous if we establish that it has
a closed graph, since §2f is already shown to be completely continuous. Thus, we
will prove that 25 has a closed graph. Let y, — y«, h, € 2p(y,) and h, — hs.
Then, we need to show that i, € £2r(y«). Associated with &, € £2r(y,), there exists
Up € Sp,y, such that for each 7 € J,

hat) = %a) /1 (o) i 2.

Thus it suffices to show that there exists v« € Sg,, such that for each t € J,

a—1 ds

he(t) = ﬁ /;t (log 2) U« (5) <

Let us consider the linear operator ® : L'(J,R) — C(J, R) given by

t a—1 d
v OW)() = %/1 (log E) v(s) ?s

N

Notice that

v = d
17, (2) — hse () || = m/l (log ﬁ) (V,(s) — V4 (5)) FS" — 0, as n — oo.

Thus, it follows by Lemma 1.2 that & o S, is a closed graph operator. Further, we
have that 4, () € ©(Sr,,). Since y, — y«, we have

for some v« € Sk, .
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Finally, we show that there exists an open set U € C(J,R) with y ¢ £2¢(y) for
any A € (0,1)and all y € dU. Let A € (0,1) and y € A£2p(y). Then there exists
veL(J,R)withv € Sry such that, for t € J, we have

y(@) = A (% /lt (log g) - v(s) ?) .

By the assumption (2.6.2), for each ¢ € J, we get

1 ! TG ds
b1 = 7 [ (o2 t) ™ c0parD T

€ oo B lli1—r61)
I'e+1)

IA

(log b)*,

which can be expressed as

”y”[l—r.h]

<.
logh)* —
ﬁ(||y||u_r,b]>||z||oo—F((‘;g +)1)

In view of (2.6.3), there exists o such that ||y||i—.5 7 0. Let us set
U= {y € C([l —-r b]’R) : ”y”[l—r,b] < O}'

Note that the operator 2r : U — Z(C([1 — r,b],R)) is upper semicontinuous
and completely continuous. From the choice of U, there is no y € dU such that
y € A82p(y) for some A € (0,1). Consequently, by the nonlinear alternative of
Leray-Schauder type (Theorem 1.15), we deduce that £25 has a fixed point y € U
which is a solution of the problem (2.14)—(2.15). This completes the proof. O

Next, we prove the existence of solutions for the problem (2.14)—(2.15) with a
nonconvex valued right hand side (Lipschitz case) by applying a fixed point theorem
for multivalued maps due to Covitz and Nadler (Theorem 1.18).

Theorem 2.7 Assume that:

(2.7.1) F:J xR — Z,,(R) is such that F(-,y) : J] = P, (R) is measurable for
eachy € R;

(2.7.2) Hy(F(t,y),F(t,y) < L@y — Yllc for almost all t € J and y,y €
C([-r,0l,R) with £ € C(J,RT) and d(0,F(t,0)) < L(t) for almost all
tel.

., (logb)*
Then, if —22_
i ra 1

one solution on [1 — r, b].

I€lloc < 1, the initial value problem (2.14)—(2.15) has at least
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Proof Observe that the set Sp, is nonempty for each y € C([1 — r,b],R) by
the assumption (2.7.1), so F has a measurable selection (see Theorem II1.6 [S7]).
Now, we show that the operator §2, defined by (2.18), satisfies the hypothesis of
Theorem 1.18. To show that 2r(y) € L (C([1 — r,b],R)) for each y € C([1 —
r,b],R), let {u,}n>0 € 2r(y) be such that u, — u (n — o0) in C([1 — r, D], R).
Then u € C([1 — r, b], R) and there exists v, € Sr,, such that, foreach 7 € J,

() = %/}t (1o g)a_l 2 (5) ?.

As F has compact values, we pass onto a subsequence (if necessary) to obtain
that v, converges to v in L'(J,R). Thus, v € Sr.y and for each t € J, we have

a—1 ds

w0, (F) — u(t) = ﬁ/j (1o é) v(s) .

Hence, u € 2(y).
(log b)

— ¢ h that
Tt [€]loc) such tha

Next, we show that there exists § < 1 (§ :=

Hd(QF(y)’QF@)) =< 5”)7_)_7”6‘ for each y’)_} € C([l =7 b]’R)

Lety,y € C([1 — r,b],R) and h; € 2r(y). Then there exists v((t) € F(t,y,) such
that, for each r € J,

h(f) = ﬁ /;t (log é)aq v1(8) %

By (2.7.2), we have

Hq(F(1, ), F(1,5) < @]y = llc.
So, there exists w € F(t,y,) such that
lvi(®) =wl =L@y =Ylc, teJ.
Define U : J — Z(R) by
U ={weR:|vi@)—wl=LOly—Jlic}
Since the multivalued operator U(t) N F(t,y,) is measurable (Proposition II1.4

[57]), there exists a function v,(f) which is a measurable selection for U. So
vy(t) € F(t,y,) and for each t € J, we have |v{(f) — v2(¢)| < L) ||y — Yllc.
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For each t € J, let us define

ha(t) = ﬁ /] o) i 2.

Thus,
0 = he(0] = s [ o !) i) — a2
< [ (ogf) T €0l 51
< ﬁ 11’ (102 1) ey 5l &
< e ol = Sl
Hence,
TNE F“(Zg—i)j)|w||w||y—y||u_r,m.

Analogously, interchanging the roles of y and y, we obtain

(log b)*

Hy(2£(y), 2r () < FatD)

[€lloolly = ¥ll1—ra1-

Since §2p is a contraction by the given condition, it follows by Theorem 1.18
that £2r has a fixed point y which is a solution of (2.14)—(2.15). This completes the
proof. O

2.3.2 Neutral Functional Differential Inclusions

This subsection is concerned with the existence of solutions for the problem
(2.16)—(2.17).

Definition 2.4 A function y € €' ([1 — r, b],R) is said to be a solution of (2.16)—
(2.17) if there exists a function v € L!([1,b],R) with v(r) € F(t,y,), a.e. on
[1, b] such that D¥[y(¢) — g(t,y,)] = v(t) on J, y(t) = ¥() on [l —r,1] and
al "y (0)|i=1 = 0.
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Theorem 2.8 Suppose that (2.5.1), (2.6.1) and (2.6.2) hold. Further it is assumed
that:

(2.8.1) there exists a constant M > 0 such that
(1—d)M

1€l 00 B(M) «
Fat1) 1080

> 1.

d) +

Then the IVP (2.16)—(2.17) has at least one solution on [1 — r, b].
Proof Define an operator Q : C([1 — r,b],R) - Z(C([1 — r,b],R) by

heC(l—-rb]R):
9(1), ifrell—r1],
o) =

h(t) = 1\ v(s)

1 ! .
gt x) + Ta)/l <log E) Tds, ift e [1,0],

forv € Sp,.
Using (2.8.1), it suffices to show that the operator Q; : C([1 —r, b],R) — C([1 —
r, b], R) defined by

he C(1 —r,b,R):

3, ifre[l—rl,
01(x) =
MO=4 0 g pete
F(a)/l (log;) —ds,ifre (L8],

for v € Sg,, is continuous and completely continuous. The proof is similar to that
of Theorem 2.6, so, we omit the details.

Next, we show that there exists an open set U C C([1 —r,b],R) withy # AQ(y)
for A € (0,1)and y € 0U.

Lety € C([1 — r, b],R) be such that y = AQ(y) for some 0 < A < 1. Thus, for
each t € [1, b], we have

N\ v(s)

y@) = A (g(t, ) + ﬁ /lt <log ;) Tds) .

For each t € J, it follows by (2.6.2) and (2.5.1) that

t

a—1
(o) c@pavlor ™

N

1
Nl <d )+ ——
YOI = dillyle +ds + s |

I lloo B lIp—re)

T+ 1) (log b)*,

<dllyllc +d> +
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which yields
1S ooBUYN1=r51)
1—d oy <d 2V (log b)°.
( DIllji=rp) < d2 + ICE)) (log b)
In consequence, we get
||§(|1| _ﬁd(ln) ||”y||[1_,;,] =1
Yil[1=r.p] o
d o log b
2t et leeh)

In view of (2.8.1), there exists M such that ||y||/i—-, 7 M. Let us set
U={yeC([1-rbLR):|lyllp-re <M}

Note that the operator Q : U — C([l1 — r,b],R) is continuous and completely
continuous. From the choice of U, there is no y € dU such that y = AQy
for some A € (0,1). Thus, by the nonlinear alternative of Leray-Schauder type
(Theorem 1.15), we deduce that Q has a fixed point y € U which is a solution of the
problem (2.16)—(2.17). This completes the proof. O

Theorem 2.9 Assume that (2.7.1) and (2.7.2) hold. In addition, we suppose that:

(2.9.1) there exists a constant L > 0 such that

lg(t,x) — g(t,y)| < L|x—yllc, forallt € [1,b] and x,y € C([-r, 0], R).

log b)*
Then, if L + MHZHOo < 1, the IVP (2.16)—(2.17) has at least one solution
I'ae+1)
on [l —r,b].
Proof Since the proof is similar to that of Theorem 2.7, it is omitted. |

2.3.3 Examples

Example 1 For any function ¢ € C([1 — r,1],R) with #(1) = 0, consider the
problem

D%y(t) € F(t,y,), foreacht e J:=[l,e], O0<a <1, (2.19)

yO =0@), te[l—rl], uJ'" " (O)]=1 =0, (2.20)
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where

|yl =
F.y) = [4+e—t<2(1 Jyr o %)’11_6(] e )]'

Clearly

1/3
130l = supllul s w € ey < 4(3). v € e

With £(¢) = 1/4, B(|ly/|l) = 3/4, by the condition (2.3.3), we find that

3

M>—— O<a<l.
161N (x + 1)

Hence, by Theorem 2.6, the problem (2.19)—(2.20) has a solution on [1 — r, ¢].
Example 2 Let us consider the problem (2.19)—(2.20) with

) [1 L ) + 1] 2.21)
V) = |—, ———tan — . :
Yt 16" 7 ’_t+3 Yt 2
Observe that

HA(F (7). F(t.5)) < ——ly— 5]

d »Vt)s » Vi _nmy Yilc-

Letting £(1) !
ettin = —
g Tt +3
(log b)*

1
d ————||¢ = —
and Tl = e
conditions of Theorem 2.7 are satisfied. Hence, by the conclusion of Theorem 2.7,
the problem (2.19)—(2.20) with (2.21) has a solution on [1 — r, ¢].

, we find that d(0, F(¢,0)) < £(¢) for almost all ¢t € J

< 1, for 0 < a < 1. Thus all the

2.4 Boundary Value Problems of Fractional Order
Hadamard-Type Functional Differential Equations
and Inclusions with Retarded and Advanced Arguments

In this section, we study Hadamard-type fractional functional differential equations
and inclusions involving both retarded and advanced arguments with boundary
conditions.



2.4 BVP for Fractional Order Hadamard-type Functional Differential. .. 31

2.4.1 Fractional Order Hadamard-Type Functional
Differential Equations

Here, we investigate a boundary value problem of Hadamard-type fractional
functional differential equations involving both retarded and advanced arguments
given by

Dx(t) = f(t,x), 1 <t<e, 1 <a <2, (2.22)
x(t) = (), 1 —=r<t=<1, (2.23)
x(t) =y¢(@), e<t=e+h, (2.24)

where D is the Hadamard fractional derivative, f : [1,¢e] x C([—r,h],R) — Risa
given continuous function, y € C([1 — r, 1],R) with y(1) = 0 and ¢ € C([e,e +
h], R) with i (¢) = 0. For any function x defined on [l —r,e+h] andany 1 <7 <e,
we denote by x' the element of C([—r, k], R) defined by x'(8) = x(¢ + 0) for —r <
6 < h, where r, h > 0 are constants.

By C := C([-r, h], R), we denote the Banach space of all continuous functions
from [—r, k] into R equipped with the norm

I xlj=rs = sup{lx(@)| : —r < 0 < h}

and C([1, e], R) is the Banach space endowed with norm ||x|[¢ = sup{|x(r)| : 1 <
t < e}. Also,let E = C([1 —r,e + h],R), E; = C(J1 — r,1],R), and E, =
C([e, e + n], R) be respectively endowed with the norms ||x||[i—rc4+4 = sup{|x(?)] :
l—r<t=<e+h} [|xln=ry = sup{|x(®)| : 1 —r <t < 1}, and ||x||je.e4n] =
sup{|x(?)| e <t < e+ h}.

Lemma 2.1 Giveng € C([1,¢],R) and 1 < a < 2, the problem
D%u(t) =g(t), O0<t<l, (2.25)
u(l) = u(e) =0, (2.26)

is equivalent to the integral equation

u(t) = — / G(t, s)@ds, (2.27)
1 A
where
1 (log)*~'(1 —logs)* ™' — (logr —logs)* ', 1 <s<t<e,
G(t,s) =

(@) | (1og )2~ (1 — log 5)*~!, I<t<s<e.
(2.28)
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Proof As argued in [96], the solution of Hadamard differential equation (2.25) can
be written as

u(®) T T )/ a 8 )ds+c1(logr)“ '+ ca(log ). (2.29)

Using the given boundary conditions, we find that ¢, = 0, and

1 € e\e—1 g(s)
= —— log — 2—d
“ ') J, ( °8 s) s

Substituting the values of ¢ and ¢; in (2.29), we obtain

_ 1™ g ) 50,
u(t) = r()/ log ) ds = (log1) r()[ s
1 1

- “ o= a—17808)
_—m 1 [(logt) 1(1—10gs) l—(logt—logS) l:ITds

e 1

/ G(t, )g(—)d
where G(z,s) is given by (2.28). Converse of the theorem follows by direct
computation. This completes the proof. |

By a solution of (2.22)-(2.24), we mean a function x € €>*([1 — r,e + h].R)
that satisfies the equation D*x(f) = f(¢,x") on [1,e] and the conditions x(r) =
x(@®), y(1) =0o0n [l —r, 1] and x(r) = ¥ (), ¥ (e) = O0on [e,e + A].

Theorem 2.10 Letf : [1,e] x C([—r, h],R) — R be a continuous function. Assume
the following conditions hold:

(2.10.1) there exist p € C(J,R) and 2 : [0,00) — (0,00) continuous and
nondecreasing such that

If (. w)| < p()2(lJull-rm)

forallt € Jand all u € C([—r, h], R);
(2.10.2) there exists a number Ky > 0 such that

K
0 > 1.

2{ipllo

— (K —r,1]s e.e
FatD (Ko + max{||lx/li—r.1s 1% /le.eta})

Then the boundary value problem (2.22)—(2.24) has at least one solution on the
interval [1 —r,e + hJ.
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Proof To transform the problem (2.22)—(2.24) into a fixed point problem, we
consider an operator 2 : C([1 — r,e 4+ h],R) — C([1 — r,e + h],R) defined
by

x (), ifre[l—r1],
(2x)(1) = / "6, s)" (S’sxs) ds, if t € 1, €], (2.30)
1
v(1), ift € [e,e+ hl.

Letu : [1 —r,e + h] — R be a function defined by

x(@), ifte[l—r1],
u(r) =40, ifrell,e,
Y(t),ift € [e,e + h).

For each y € C([1, ¢], R) with y(1) = 0, we denote by z the function defined by
0, ifre[l—r1],
() = (¥, ift € [1.¢].
0, iftelee+hl.

Let us set x(£) = y(¢) + u(r) such that X' = y' + u' forevery 1 <t < e, where

x(1) = [ G097 4

o= [ 6. >M

Next, we define B ={y € C([1 —r,e + h],R) : y(1) =0} and let § : B — Bbe an
operator given by

0, l—-r<t<l,

(@) = /G(t )f(sy—Jru) ds,1<t<e, (2.31)
1 S
0, e<t<e+h

Then it is enough to show that the operator § has a fixed point which will guarantee
that the operator .% has a fixed point and in consequence, this fixed point will
correspond to a solution of the problem (2.22)—(2.24). In the following three steps,
it will be shown that the operator § is continuous and completely continuous.
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Step 1:  F is continuous.

Let (y,) be a sequence such that y, — y in B. Then, we have
¢ ns S S S ds
@y (@) = SO = | GE.9)lf (5.7 +u) —fs.y" +u)—
1
nO 0 CRCNTY ds
= WFCY +u?) =fCy7 +u?)o | Glrs) =
1
Since the function f is continuous, we have
: : : : ¢ d
183 = 8 ln—retn = WGy +u) =630 +u)o /1 Glt.s) = = 0asn — .

Step 2:  § maps bounded sets into bounded sets in B.

For any k > 0, it is enough to show that there exists a positive constant i: such
that, for eachy € Uy :={y € B : ||y|[i=re+n =< k}, we have ||Fy|ji—r.e4n < L. For
y € Band s € J, we have

i, = ma 0)] < ma H| =
5l = max, s+ O] < _max O] = Iyl

and
V' + @' | < 1y ll=rm + 1 = < [IY=rmy + max{[x/lp—r.1s 1) e.ctnr}-

Let y € Uy. Since f is continuous, for ¢ € [1, e], we have

“ V(s y' +MS)
@01 = | s [ (1og ) T LI,
—(log 1)~ )" ey +w)
loe"™ 1 )[ ;
- "‘ Lp(s)2(lly* + 'l - rh])
- F(O[) s
a—1 “ Lp()2(Ily° +14‘||[—rh])
+(logt Fa )/ -
2||P||0~Q(k+maX{||x||[1—r,1]7||X||[e,e+h]}) € el ]
< F(a) : (10g;) ;dS
_ 2lpllo$2(k + maxilxllp—r.1, xllie.e+})

T'a+1) ’
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and so

2|Ipllo$2 (k + max{|lx[lji—r.1, Xl . e+h]})
I'a+1)

I8Vl 1=r.e+n < =1L
Consequently, § maps bounded sets into bounded sets in B.

Step 3:  § maps bounded sets into equicontinuous sets of B.

Letf;, , € [1,¢] with #; < t, and Uy be a bounded set of B as in Step 2. Let
y € Uy. Then, we have

|EY)(12) = EY) (1)

= [(1602.9 - 6091 L2
! S

¢ ds
< lpllo$2 (k + max{||x|{1—r1 ||JC||[e,e+h]}')/1 |G(t2,5) — G(11, 9)] =

As t; — 1, the right-hand side of the last inequality tends to zero, independent of
y € Uy. The equicontinuity for the cases t; < t; < 0and #; < 0 < ¢, is obvious.

In view of steps 1 to 3, it follows by the Arzeld-Ascoli Theorem that the operator
§ is continuous and completely continuous.

Step 4: A priori bounds.

We will show that there exists an open set U C B withy # AFyfor0 < A < 1
andy € dU. Lety € Band y = AFy for some 0 < A < 1. Thus, for each ¢ € [1, €],
we have

¢ d
y(H) = A /1 G(t, 5)f (s, + i) ?s

By our assumptions, for each t € J, we get

t a—1 s
PR + ' lirm)
N < —— 1
501 = g [ (10e) -
"‘ Lps)22(]ly’ +MY||[—rh])
1 t a—1
+(log?) I )[ .
2 ) —r —r,1]» e.e ¢ 11
< IplloS2Cllyli; ,h]+maX{||X||[1 A xle.en ) (log f)“ 1
I'(a) 1 s s

2|lpllo

- - —r1]s e.e s
a5 2+ maxt s, I¥liees)
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which implies that

IVl {1=r.e+4] <1

LIy ll=rn + maxg||x[li—r.1s [*]e.c+1})

2|lpllo
IM'a+1)

By (2.10.1), there exists Ky such that ||y||[i—r..+n 7 Ko. Set
U={yeB:|ylli-retn < Ko+ 1}.

By our choice of U, thereisno y € dU such thaty = Ay forsome 0 < A < 1. As
a consequence of the nonlinear alternative of Leray-Schauder type (Theorem 1.4),
we deduce that § has a fixed point y € U which is a solution to problem (2.22)—
(2.24). O

The next result, concerning the existence of a unique solution of problem (2.22)—
(2.24), is based on the Banach’s fixed point theorem.

Theorem 2.11 Let f : [1,¢e] x C([—r, h],R) — R. Assume that there exists L > 0
such that

If (@ u(®) —f (. v@)] =< Lllu = vl

fort € [1, e] and for every u, v € C([—r, h], R).
If
2L
— <1,
I'lae+1)

then the BVP (2.22)—(2.24) has a unique solution on the interval [1 — r, e + h].

Proof As argued in the proof of the preceding theorem, it will be shown that the
operator § : B — B defined by (2.31) is a contraction, where B = {y € C([1 —
r,e + h],R) : y(1) = 0}. For that, let y;, y, € B. Then, for ¢ € [1, e], we obtain

¢ , , d

@00 = @01 = [ G965+ ) =6+ S
¢ ‘ : d
<L [ 69—l S

2L ” ” /e (1 e>ot—l 1
—_ - —r og — —ds
() Y1 = Y2ll[-rh] \ gs

<2
=T@+1) Y1 = 20l[1—r,e+n]-



2.4 BVP for Fractional Order Hadamard-type Functional Differential. .. 37

Consequently, we get

I3y1 — 82 lli—re+n =< Iyt = y2llpi—r.e+ns

2L
I'le+1)
which shows that § is a contraction by the given assumption, and hence § has a
unique fixed point by means of the Banach’s contraction mapping principle. This,

in turn, implies that the problem (2.22)—(2.24) has a unique solution on the interval
[1—r,e+ Al |

2.4.2 Fractional Order Hadamard-Type Functional
Differential Inclusions

In this subsection, we extend our study initiated for functional fractional differential
equations in the last subsection to the multivalued case:

Dx(f) € F(t,x'), 1 <t<e, 1l <a <2, (2.32)
x(0) =@, 1-r<t=1, (2.33)
x(t) =y(@), e<t<e+h, (2.34)

where F : [1,¢e] x C([—r, h], R) — Z(R) is a multivalued map (£ (R) is the family
of all nonempty subsets of R), while the rest of the quantities are the same as defined
in the problem (2.22)—(2.24).

Theorem 2.12 Assume that (2.10.2) and the following conditions hold:

(2.12.1) F: [1,€] x C([-r,h],R) = 2. .,(R) is an L'-Carathéodory multivalued
map;

(2.12.2) there exist p € C([1, €], R) and a continuous and nondecreasing function
£2 : [0, 00) — (0, 00) such that

[F @t wl := sup{[v] : v € F(t, )} < p(0)2([[ull-rn),

for almost allt € [1,e] and all u € C([—r, h], R).
Then the problem (2.32)—(2.34) has at least one solution on the interval [1—r, e+h].

Proof In relation to the problem (2.32)—(2.34), we introduce an operator .4 :
C(1—=r,e+h,R) — Z(C(1 —r,e+ h],R)) as
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he C([1—r,e+h],R):

x(@®), ifte[l—r1],

e/V( ) = e

* h(t) = / G(t,s)v(s)?, ift € [1,e],
1

v (0). ift € le.e+ h,

where
veSpy, ={vel([l,e],R):v(t) € F(t,)") forae. t €J}.

Observe that the existence of a fixed point of the operator .#” implies the existence
of a solution to the problem (2.32)—(2.34).

As in the proof of Theorem 2.10,let B = {y € C([1 —r,e + h],R) : y(1) = 0}
and let ¥ : B — Z(B) be defined by

heC(l —r.E+Hh.R):

0, ifre[l —r1],

i(y) = e
h(t) = /1 G(t,s)v(s)?, ift € [1,e],

0, ift € [e, e + H].
Now, we show that the operator ¥ has a fixed point which is equivalent to proving
that the operator .4 has a fixed point. We do it in several steps.

Claim 1: %(y) is convex foreachy € C([1 —r,e + h], R).
This claim is obvious, since F' has convex values.
Claim 2: ¥ maps bounded sets into bounded sets in C([1 — r, e + h],R).

Lety € Uy = {y € B : |[¥llji=re+n < k}. Then, for each & € E(y), there exists
v € Sf, such that

h(r) = /leG(t,s)v(s)?, rell, e,

and that

|h(1)]

IA

g [ (o)t [ o)

Lt et p) 20 + )
< — log - —d.
= r(a)/l (1oe *

N N




2.4 BVP for Fractional Order Hadamard-type Functional Differential. .. 39

+(log 1) lr( )/ “ U p(s)S2(Jly* S"'”S"[—rh])
2||1?||0~Q(/’<+ max{[|x[|j1—r1, ||x||[e e+il})
I'o+1)
Thus
2|pllos2(k + max{[lxlln—r.y. [1¥lljeetn}) .

All—retn) < =1L
[ r———— T+ 1

This shows that T maps bounded sets into bounded sets in B.
Claim 3: ¥ maps bounded sets in C([1 — r, e + h], R) into equicontinuous sets.

We consider By as in Claim 2 and let 7 € T(y) fory € By, k > 0. Now let
t1,t € [1, e] with t, > ;. Then, we have

¢ d
o) = ha)] = 16029 = Glo G5 + 0] S

¢ ds
< lIpllo$2 (k + max{||x|l1-r1 ||)C||[e.e+h]})/1 |G(t2,5) — G(t1,5) e

Clearly the right-hand side of the last inequality tends to zero as #; — 1y,
independently of y € By. In view of Claims 2, 3 and the Arzel4-Ascoli Theorem, we
conclude that ¥ : B — Z?(B) is completely continuous.

In our next step, we show that ¥ is upper semicontinuous. We are done if we show
that the operator ¥ has a closed graph, since ¥ is already shown to be completely
continuous.

Claim4: ¥ has a closed graph.

Let x, — x4, h, € (x,) and h, — hs. Then, we need to show that /1, € T(xx).
Associated with i, € T(x,), there exists v, € Sp, such that for each 7 € [1, ¢],
01 1 Uy
(s) ds

B (t) = %a)/lt (1og ds — (log 1)*~ 11“( )/ -

Thus it suffices to show that there exists vy« € Sg, such that for each ¢ € [1, ¢],

ha(t) = ﬁ /1 ' <log ﬁ)a—l U*S(S) ds — (log t)a_l%a) /1 (1og §>a_1 v*s(s) “

oz lvn()
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Let us consider the linear operator ® : L'([1, ¢],R) — C([1, ¢], R) given by

0~ u(s)

£ 000 = i [ (10f) 2

N

Clearly

[17(1) — R (D] =

°‘ ! (vn(S)—v*(S))
IN( )/ s

am1_ 1 "‘ L i) — 04 (8)

as n — oo. Thus, it follows by Lemma 1.2 that ® o Sg, is a closed graph operator.
Further, we have £, (f) € ©(Sr,,). Since x, — x«, we get

B = %/; ( B ﬁ/l'e (log E)a—l v*s(s)ds’

for some vy € S, .
Claim 5:  We will show that there exists an open set U C B with y # A%y for
O0<A<landye dU.

— 0,

1 vk(s)
s
s

Lety € B be such that y € A%(y) for some 0 < A < 1. Then there exists v € S¢
such that

() = )L/le G(t, s)v(s)?, tell,e.

By the given assumptions, for each 7 € [1, e], we have

t a—1 s
PE)LAY + wlli=r)
D < —— 1
901 = s [ (og ) -
a Lp@2(Y + i) |
1 e~ 1
e 755 | (e ;
2 2 —r. —r1]s e,e ¢ -1
- Ipllos2(llyll; ,h1+maX{IIXI|[1 s Xl e.e+m}) (logf)“ 1,
I'(x) 1 s s
2(pllo

Tetn™ e ma -1 e.e .
= T 0 2ot + max{ilu—rn. Il
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Then

[yl [1—r.e+h]

<1

2[|pllo -
Qyll—r.et+n + maxgllxllg—r.1, [*le.c+n})

I'a+1)
By (2.12.3), there exists Ky such that ||y||ji—.c+n # Ko. Set
U= {y € C([l —re+ h]7R) : ||y||[l—r.e+h] < KO + 1}

From the choice of U there isno y € dU such thaty € AT (y) for A € (0,1). Asa
consequence of the Leray-Schauder Alternative for Kakutani maps (Theorem 1.15),
we deduce that ¥ has a fixed point. Thus the problem (2.32)—(2.34) has at least one
solution. O

Finally, we present an existence result for the problem (2.32)-(2.34) with
nonconvex valued right hand side.

Theorem 2.13 Suppose that:

(2.13.1) F : [l,e] x C([-r,h],R) — Z,(R) has the property that F(-,y) :
[1,e] — P, (R) is measurable for each'y € C([—r, h], R);
(2.13.2) there exists £ € C(J,R) such that

Hy(F(t,u), F(t,u)) < £(0)||u — ull[—rp for every u,u € C([—r, h].R),
and
d(0,F(0,u)) < £(1), forae t€[l,e].
If

——|€llo <1 (||€]lo = sup [£(5)]),
o<1 (el = sup je)

then there exists at least one solution for the problem (2.32)—(2.34).

Proof Transform the problem (2.32)—(2.34) into a fixed point problem by means
of the multivalued operator ¥ : B — £?(B) introduced in Theorem 2.12. We shall
show that T satisfies the assumptions of Theorem 1.18. The proof will be given in
two steps.

Step1:  T(y) € P(B) for eachy € B.

Indeed, let (y,)n>0 € T(¥) such that y, — y in B. Then y € B and there exists
gn € SF,y such that for each 7 € [1, ¢],

yau(®) :/; G(t,s)g,,(s)?.
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Using (2.13.1) together with the fact that F has compact values, we may pass onto
a subsequence to get that g, converges weakly to g in L'([1, ¢], R). Then, g € Sg.,
and for each t € [1, e], we have

() — () = fl ’ G(t, s)g(s)?.

So§ € T().

Step 2:  There exists y < 1 such that

Hy(2(»), TO)) < ylly = Ylp-re+n foreach y,y € B.

Lety,y € Band h € T(y). Then there exists g(¢) € F(z,y" + u') such that

o = [ 6.0
for each ¢t € J. From (2.13.2), it follows that
Hy(F(t.y' +u)), F.5 +u") <L®Oly —l-rm. 1€l e]
Hence there is w € F(t,y' + u') such that
lg(t) =wl < L@y = Ill—rm. 1€ [1.e].
Consider U : [1,e] - Z(E), given by
U@t) ={weE:[g(t) —w| < LDy = Illi—rm}-
Since the multivalued operator V(f) = U(f) N F(¢, ' + u') is measurable (see
Proposition II1.4 in [57]), there exists a function g(r), which is a measurable

selection for V. So, g(f) € F(t,¥ + u') and

lg() =8| = €Oy = Fll-ra. foreach 1 €[l e].

Let us define for each 7 € [1, ¢],

_ ¢ d
() = /1 G, 97(0)
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Then we have
_ e d
0 ~70] = [ 1696 50
¢ d.
§[|G@QWGWy—Whmr§

Sy e -1
gwm)ww/@gylﬁ
1 N

- I'() s
2
< — | — Ylr=rn1-
= T oy =lir
Thus
I — Al — [€llolly — ¥l
[l—re+h] = Ta+l) ollY = Yll[i—r.e+h]-

Analogously, interchanging the roles of y and y, it follows that

2
Hy(T(y), TO)) < mllfllolly—illn_r,e+h1.

So, ¥ is a contraction and hence, by Theorem 1.18, ¥ has a fixed point y, which
is a solution to the problem (2.32)—(2.34). O

2.5 Notes and Remarks

We have established several existence results for initial and boundary value
problems of Hadamard type fractional order functional and neutral functional
differential equations involving both retarded and advanced arguments. Also, we
have discussed the multivalued analog of Hadamard type fractional functional and
neutral functional equations. Our results rely on the standard tools of the fixed point
theory for single and multivalued maps. Our results are not only new in the given
setting but also correspond to some new interesting situations for an appropriate
choice of r and h. For example, the results for ordinary Hadamard-type fractional
differential equations/inclusions follow by taking r = h = 0. Our results reduce to
the retarded and advanced argument cases for r > 0;h = O and r = 0;h > 0
respectively. The mixed (both retarded and advanced) case follows by choosing
r > 0 and & > 0. The results of this chapter are adapted from the papers [17, 19]
and [13].



Chapter 3
Nonlocal Hadamard Fractional Boundary Value
Problems

3.1 Introduction

Classical initial and boundary conditions cannot describe some peculiarities of
biological, chemical, physical or other processes happening inside the domain.
In order to cope with this situation, conditions involving the contributions at
intermediate positions of the domain together with its boundary contribution were
introduced. Such condition are known as nonlocal conditions and are found to be
of great value in modeling many real world phenomena. For example, there are
certain problems of thermodynamics, elasticity and wave propagation, where the
controllers at the end points of the interval under consideration may dissipate or add
energy according to censors located at interior points or segments of the domain.
The concept of nonlocal conditions led to the birth of nonlocal multi-point boundary
value problems, for instance, see [63, 172, 173].

Integral boundary conditions are found to be of great support in the mathematical
modeling of many problems in applied and technical sciences such as blood flow
problems, chemical engineering, underground water flow, population dynamics,
etc., for example, see [56, 58, 122, 159, 174]. As a matter of fact, integral boundary
conditions provide a more realistic alternative for the assumption of ‘circular cross-
section’ throughout the vessels in the study of fluid flow problems. Also, integral
boundary conditions help to regularize ill-posed parabolic backward problems
in time partial differential equations, see for example, mathematical models for
bacterial self-regularization [61]. Nonlocal integral boundary conditions indeed play
a key role when it is impossible to directly determine the values of the sought
quantity on the boundary and it can be interpreted as the total amount or integral
average on space domain, e.g., total energy, average temperature, total mass of
impurities. Some results on problems with nonlocal integral boundary conditions
for various evolution equations can be found in [38, 48, 120, 143].

The objective of this chapter is to develop the existence theory for a variety
of nonlocal nonlinear boundary value problems of fractional differential equations,

© Springer International Publishing AG 2017 45
B. Ahmad et al., Hadamard-Type Fractional Differential Equations,
Inclusions and Inequalities, DOI 10.1007/978-3-319-52141-1_3



46 3 Nonlocal Hadamard Fractional Boundary Value Problems

integro-differential equations and inclusions involving Hadamard fractional deriva-
tive and integral. We make use of the standard tools of fixed-point theory for single
valued and multivalued maps to establish the existence and uniqueness results for
the given problems.

3.2 A Three-Point Hadamard-Type Fractional Boundary
Value Problem

In this section, we study the following three-point boundary value problem of
Hadamard type fractional differential equations:

Dx(t) =f(t,x(1), 1<t<e, 1<a<2,

x(1) =0, x(e)=Bx(n), 1<n<e,

where D” is the Hadamard fractional derivative of order ¢, f : [1,¢] X R — Ris a
continuous function and f is a real constant.

We aim to establish an existence result for the problem (3.1) via Krasnoselskii-
Zabreiko’s fixed point theorem (Theorem 1.10).

3.1)

Lemma 3.1 (Auxiliary Lemma) For 1 < o < 2 and { € C([1,¢],R), the
boundary value problem

Dx(t) =¢(1), 1 <t<e,

(3.2)
x(1) =0, x(e) = px(n).
is equivalent to the integral equation
_ “ 1) (S)
0= g | (s
(log 1)*~! “ 12(s) (S)
1= Blog [F(a) J| (e (3

1 ¢ e\e1 ¢(s)
~ 7@ ), (log;> Tds:|’ te(l,e],

where B(logn)*~! #£ 1.

Proof As argued in [96], the solution of Hadamard differential equation in (3.2) can
be written as

x(r) = I« )/ a Lo )ds+01(10gt)°‘ '+ cr(logt)* 2. (3.4)
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Using the given boundary conditions, we find that ¢, = 0, and

1
" 1= Bllogn)*!

“ HL©)
F(a) s

a las) }

F(a)

Substituting the values of ¢; and c¢; in (3.4), we obtain (3.3). Conversely, by
direct computation, it can be established that (3.3) satisfies the problem (3.2). This
completes the proof. O

In view of Lemma 3.1, the solution of the problem (3.1) can be written as

_ O‘ lf(s x(s))
= T >/ .
(log1)*~! '7 a 1f(s x(s))
T [r(a) [} (s , (335)

L[ e\alf(s.x(s))
- Ta) 1 (10g E) P ds:|, 1 e [1,6‘].

Notation. We denote by & = C([1,¢],R) the Banach space of all continuous
functions from [1, ¢] — R endowed with a topology of uniform convergence with
the norm defined by ||x|| = sup{|x(¢)| : t € [1, e]}.

Theorem 3.1 Let f be a continuous function, satisfying f(a,0) # 0 for some a €
[1,e], and

1
lim M = A(f), Ama = max [A()| < =,
x>0 X 1€[l.e] 1]
with
. 1 ) 1 + B(logn)*
Fe+1) |1 — Blogm=~!|

Then the boundary value problem (3.1) has at last one nontrivial solution in [1, e].
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Proof Define an operator F : & — & by

“ L £(s, x(s
Fx(t) = - )/ f(s.x(s)) ())
(log)*~"! “ LfGs.x(s)
1= Blogny [r(oe) / s (3.6)
“ Lfs.x()
F(oz) . :| tell,e.

It is clear that the mapping F is well defined. By means of Krasnoselsk’ii-Zabreiko’s
fixed point theorem (Theorem 1.10), we look for fixed points for the operator F in
the Banach space &. We split the proof into three steps.

Step 1.  F is continuous.

Let us consider a sequence {x, } converging to x. For each 7 € [1, ¢], we have
|Fxn () — Fx(1)]
! (1 t)““ If (s, xn () — £ (5, x(5))|
og - ds
s

<
') s
1 a LG xa(s) —f s XD
|1—ﬂ(logn)°‘ N F(a) s
1 [ e\ [f (s, x,(5)) — f(5,x(s))]
7 | (og}) s "S}

< (s, xu(s)) = f (s, x())| 1+

1+m%w§'

I +1) |1 — B(logn)*~!|

Thus

[Foxn — Fx|| < 8[lf (s xa(s)) — f (5, x(s))|.

Since the convergence of a sequence implies its boundedness, therefore, there exists
anumber k > 0 such that ||x,|| <k, ||x|| <k, and hence f is uniformly continuous
on the compact set {(¢,x) : t € [L,¢], x| < k}.

Thus ||Fx, — Fx|| <&, Vn > ny. This shows that F is continuous.

For any R > 0, we consider the closed set C = {x € & : ||x|| < R}.

Step 2. We prove that F(C) is relatively compact in & .
We set fax =  max  |[f(¢, x)|. Then, we have

1€[le] x| <R

(g ) VOO,

N

1
|Fx(1)| < T)
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1 “ Ff (s, x(9)] x(S))I
Il—ﬂ(IOgn)" 3y F(Ot) s

“ G, x(5))| X(S))I
F( )/ s }

1 + B(logn)* § .

= Juex T Blog |

1
IM'oa+1)

Thus ||Fx|| < fmaxd and consequently F(C) is uniformly bounded. For 71, 7, € [1, ¢]
with 7; < 1, we have

|Fx(12) — Fx(t1)]

o 2 a—11 T -11
< f—a / (log 2) —ds—/ (log rl) —ds
1 N N 1 N N

T I'(@)
(log 1)*~ ! — (log 7)* !
- [rm)/ g 1) L

+/fmax

1 — B(logn)*~!

B [ (s 2)™ - e ) [l
fresl [ (10 2) S
( ) —( e " a=
o logfz_ ﬁ(]ogi;;i—rll |:F(oz)/1 <log g) léds

o [ ) gds]

= %[2(]05;(12/1,))“ + |(log 72)* — (log T])a|]
(log )*~" — (log 71)*”! [ﬂ (log )® — 1 ] ‘
[—Blogn L F@+D)

+ fmax

Clearly F(C) is equicontinuous, as the right-hand side tends to O independent of
x as 71 — 1. Thus, by the Arzela-Ascoli Theorem, the mapping F is completely
continuous on &. This completes the proof of Step 2.
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Next consider the following boundary value problem

D*x(t) = A(H)x(r), l1<t<e,

3.7)
x(1) =0, x(e) = Bx(n).
Let us define an operator A : & — & by
. 0‘ 1 A(s)x(s)
Ax(t) = F( ) /
(log £)*~! Of 1 /\(s)x(s)
1= Blog [r(oo / s -8

1 ¢ e\e—1 A(s)x(s)
_ m 1 (]()g E) p ds:|, (&S [1,6].

Obviously A is a bounded linear operator. Furthermore, any fixed point of A is a
solution of the boundary value problem (3.7) and vice versa.

Step 3. We now assert that 1 is not an eigenvalue of A.

Suppose that the boundary value problem (3.7) has a nontrivial solution x. Then

Ixll =A@l = sup |Ax(r)]
t€[l,e]

“ ! |X(S)|
A’Irla.X
= te[l e] |:F(05) /
1 "‘ ! |X(S)|
|1—l3(10g77)“ 1 F(Ol) s

g ﬂ

1 1 + B(logn)*
< Amax ¢ Il
I'@+1) |1 — Bogm*~!|
= Amax 8 || X
< [lx]I.

This contradiction shows that the BVP (3.7) has no nontrivial solution. Thus, 1 is
not an eigenvalue of A.
Finally, we establish that

|Fx — Ax||

Ixl—o0 |lx]I

=0.
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I, .
According to | }1m f(_x) = A(?), for any ¢ > 0, there exists some M > 0 such
x| — X

that
If(t,x) — A()x| < g|x| for |x| > M.

Set M* = maxe[1 ¢/ {max|y<py [f (7, x)|} and select R > 0 such that M* + Ay M <
eR’. We denote

L ={te[l,e]:|x@)| <M}, L={tell,e:|x(t)| > M}.
For any x € & with ||x|| > R/, t € I, we have

[f (£, x) — A(D)x| < |f (£, %)] + Amax ]
< M* 4 AmaxM

<eR <¢e|x|.
For any x € & with ||x|| > R/, t € I,, we have
If (. %) — A(0)x] < &]lx].
Then for any x € & with ||x|| > R’, we have
[f (2.x) = A()x] < &]lx]|.
Then, we obtain

[Fx — Ax|| = sup [(Fx —Ax)(1)]

t€[l,e]
 ap [ [ (ol e =00,
e[l e] I(e) s
(og 1~ / ) o) =Xt
1= Blogny 11| 7@ ;
[ (o =200,
F( ) s
1+ Bogm)*
e iy —ﬁ(IOgn)““I} i

= gkmax(S”x”v
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which, on taking the limit, yields

|Fx—Ax||

il —>oo [lx]]
Consequently, Theorem 1.10 guarantees that the boundary value problem (3.1) has
at last one nontrivial solution. |
Example 3.1 Consider the boundary value problem
D32x(t) = f(t,x(r)), 1 <t<e,

3 (3.9
x(1) =0, x(e) = Ex(Z).

1
Herea = 3/2,  =3/2, n =2and§ ~ 6.3938692.1f f(¢,x) = 2—O(t2+1)x(t),t €

[1,¢], then A8 &~ 0.4194527 < 1 and hence by Theorem 3.1 the boundary value
problem (3.9) has at least one solution.

3.2.1 The Case of Fractional Integral Boundary Conditions

Here we consider a Hadamard type boundary value problem with fractional integral
boundary conditions given by

Dx(t) = g(t,x(2)), 1 <t<e, 1<a<=<2,
(3.10)
x(1) =0, x(e) =1Px(n), 1<n<e,

where D” is the Hadamard fractional derivative of order «, I? is the Hadamard
fractional integral of order B and g : [1, ¢] x R — R is a continuous function.

Lemma 3.2 Forl <a <2and{ € C([1, €], R), the boundary value problem

Dx(t) =¢(1), 1<t<e,
(3.11)
x(1) =0, x(e) = IPx(y),

is equivalent to the integral equation

a—1
x(0) = 1°C() + % (17728 = 12 (0] (3.12)
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where

ﬂ C(logs)™ ' . I (e) atp—1
~——=—“—ds 11— ————(logn)
B / s I'(e + )

(3.13)

I'(@)

I'(e+ B)

Proof As argued in [96], the solution of Hadamard differential equation in (3.11)
can be written as

with (logn)* TP~ £ 1.

x(t) = 1°0(1) + c1(logt)* ™" + ca(log 1) 2. (3.14)
Using the given boundary conditions, we find that ¢, = 0, and

I¢(e) + 1 = 1P (I°¢(s) + Cl(logS)“_l) ()

" A=1 (logs)*~!
= 1Prer(n) + — (1og N s,
r (ﬁ) s
which gives
1
¢ = Precm) —17¢(e)] . 3.15
1 ey T -1 @] 39
<log ) ——ds
A7) s

Substituting the values of ¢; and ¢; in (3.14), we obtain (3.12). The converse follows
dy direct computation. This completes the proof. O

Theorem 3.2 Let g be a continuous function, satisfying g(a,0) # 0 for some a €
[1,e], and

t, 1
fim 8D 20, A = max A(D)] < —.
x>0 X 1€[1.¢] 81

with

s = 1 [ (ogn)fte 1
" T+l 2I\TB+a+1) T@+D)

Then the boundary value problem (3.10) has at last one nontrivial solution in [1, e].
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Proof In view of Lemma 3.2, lets us define an operator 4 : & — & by

_ Lt nemg(s,x(s))
gx(t) = m/l (log ;) Tds
(log)*~ " 7 n\Ate—lg(s,x(s))
Yo /1 (roe7) ;o (3.16)

_/6(10g E)a_Ist}, tell,e.
1

We omit the further details as the rest of the proof runs parallel to that of
Theorem 3.1 with §; in place of §. |

Example 3.2 Consider the problem

D32x(t) = f(t,x(1)), 1 <t<e,
(3.17)
x(1) =0, x(e) = PP?x(2).

Here « = 3/2, B = 3/2, n = 2. With the given values, we have 2 ~ 1.27
1
and 8; ~ 1.39. By taking f(t,x) = E(z2 + Dx(t),t € [1,¢], it is found that

Amax61 & 0.576 < 1 and hence by Theorem 3.2 there exists at least one solution for
problem (3.17).

3.3 Nonlocal Hadamard BVP of Fractional
Integro-Differential Equations

In this section, we study the following boundary value problem

Dx(t) =f(t,x(1), 1 <t<e, 1<a<2,
(3.18)
x(1) =0, AI'x(n) +Bx(e) =c, 1 <p<e,

where D” i1s the Hadamard fractional derivative of order «, IV is the Hadamard
fractional integral of order y, f : [1,¢] x R — R is a given continuous function and
A, B, c are real constants.

It is well known that the conserved quantities play a key role in understanding
important mathematical and physical concepts such as differential equations, laws of
conservation of energy, quantum mechanics. The nonlocal boundary condition given
by (3.18) with B = 0, ¢ = 0 can be conceived as a conserved boundary condition as
the sum (in terms of Hadamard integral) of the values of the continuous unknown
function (quantity) over the given interval of arbitrary length is zero. In other words,
the accumulative effect of the continuous unknown function over the given interval
vanishes.
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Lemma 3.3 Giveny € &, the boundary value problem

D*x(t) =y(t), 1<t<e, l<a<2

(3.19)
x(1) =0, Al’x(n) + Bx(e) = ¢, 1 <n<e,
is equivalent to the integral equation
— A" Ty(n) — BI*
x(t) — [ay(t) + (logt)o‘_l ¢ Y(U) }’(6) , (320)
Al(a) o
B+ ———(logn)" ™™
'y +a)
Al (@) _q
with B+ —————— (logn)”™*~" # 0.
TG+ ) (log ) #

Proof As before the solution of Hadamard differential equation in (3.19) can be
written as

x(1) = I%(t) + ¢ (log 1)* ' + c2(log 1)* 2. (3.21)
The first boundary condition gives ¢, = 0. Note that

ﬁ)y—l (logs)“_lds

C1 n
() = ) + s [ (log s

r'(y) i
I'(a)

log n)? T~ 1,
F(y+a)( 2 7)

=" y0) + ¢

Using the second boundary condition, we get

()

TG +a) o8 T 4 BI%y(e) + Bey = c.

A" y(n) + Acy

which gives

c— A" y(n) — BI®y(e)

Al(a) ta1
ot a) (log n)”

c1 =

B+

Substituting the values of ¢; and ¢; in (3.21), we obtain (3.20). We can prove the
converse of the result by direct computation. This completes the proof. O

In view of Lemma 3.3, the integral solution of the problem (3.18) can be
written as
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_ “ RACGEC)
0= I'(@) / s
(log n)*~"! V+“ 1 f (s, x(5)) X(S))
Tt F(y Ta) / .22
B ¢ e\e1 f(s,x(s))
— m ! (10g E) Tds} N 1 e [l,e],
where
=B+ —Ffszzx ) (log )71, (3.23)
We define an operator Q : & — & by
" Lfs.x(s)
0 = 1 [ (1og :
n (10gSt2)°‘_1 F( e / V+“ LExG) 0 304
Yy +o s
— % 16 (log E)a_lf(s’+(s))ds§ , te]l,e].

Notice that the problem (3.18) is equivalent to the fixed point operator equation
Ox = x and the existence of a fixed point of the operator Q implies the existence of
a solution of the problem (3.18).

In the next, we obtain some existence and uniqueness results by using a variety
of fixed point theorems.

3.3.1 Existence and Uniqueness Result via Banach’s Fixed
Point Theorem

For computation convenience, we set:

_ 1 1 ) |A|(logn)r*e B
ST+l Q) Ty+a+1) e+l

(3.25)

Theorem 3.3 Let f : [l,¢] x R — R be a continuous function satisfying the
following condition:

(3.3.1) there exists a constant Ly > 0 such that |f(t,x) — f(t,y)| < Ly|x —y|, for
eacht € [1,e] and x,y € R.
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If
Lo <1, (3.26)

then the Hadamard fractional boundary value problem (3.18) has a unique solution
on[l,e].

Proof Fixing maxe[1 ¢ |[f(¢,0)] = M < oo, we define B, = {x € & : |x|| < r},
Mo + |c|/$2

1-— Lla)
operator Q, that is, OB, C B,. For x € B,, we have

( ) x| x(s))|
r(a)

(log 1)*~"! |A| T VT s x()]
M ['C'+F(y+a>1(l°gs) P

Bl (., e\ (s xe)
+1"(a) : (log;) EE— d‘s}}

/ ( ) (If (s, x(5)) — £ (5. 0)| + |f(s. 0)|
F(a)

where r > . We show that the set B, is invariant with respect to the

Qx| < ma
tE[l el

< max

T t€lle] N

(log 1)~ || T VT (G x(9) = £(5.0)] + [f(5.0)])
L] ['c'+r(y+a) 1 (l°g?) s ¢

L (logf)w (If (s x(s)) — £(s, 0)| + | Gs. 0)|)ds}}
N

I'(a) s

F(a)/ ( ) o
(logn*~'| 4| AN Bl [<f e\* "1
ATl [mm : (“’g;) 7 ) (‘°g;) &

< (Lir + M) max
t€(1,e]

le|(log )*~!
|£2]
1} ]A|(log n)r e |B| el
= (L‘r+M)[r(a+ D 12Ty +e+l) T+l }4' 12l

= (Lir+ M)w + |c|/|2] <,

which shows that OB, C B,.
Now let x,y € &. Then, forz € [1, ¢], we have

(20 (1) — (@) ()]
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U 0 T s, x(9) — f(s. ()]
riar /| (o) g

N

< max
t€[1,e]

Lot [l (i g)”““ (5. x(5) 636
@l [To+ao i ™ s

Bl e (10 g)“‘l I (5.2(5) = f (5. 5(5))] }}
g ds

I'(w) J s s
< Lillx — yll max

1 ANEE!
—_— log - —-d
€l | I' (@) /1 (og s) s y

(logn*~'[ 4| "( n)”“—l 1 |B| /( e)“—l 1
log - - —_— log - —d.
+ |£2] r'y+ao /i 08 sds+ ') Ji e sdT

= Liofx—yl.

Therefore,
[Qu— Qv < Liw|u—v].

It follows from the assumption (3.26) that Q is a contraction. In consequence, by
Banach’s fixed point theorem, the operator Q has a fixed point which corresponds
to the unique solution of the problem (3.18). This completes the proof. |

Example 3.3 Consider the problem

3 1
il >+\/;+ , I <t<e,
1+ |x? e (3.27)
x(1) =0, 1'2x(2) 4 x(e) = 4.

L
D¥%x(1) = > ( sinx +

L
Herea = 3/2,y = 1/2, n = 2,A = 1,B = 1,¢ = 4 and f(1, %) = 5(sinx+

x? t+1
i )+ Vi
1+ |x? e
1.197596, and

. With the given values, we find that 2 ~ 2.228571, o ~

£ P

Sin
T+ T TP

L
[f(t.x) —f(t.y)] < 3 sinx + ‘ <Llx—yl

1
With L < — = 0.835006, all the assumptions of Theorem 3.3 are satisfied. Hence,

1)
the problem (3.27) has a unique solution on [1, e].
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3.3.2 Existence Result via Krasnoselskii’s Fixed Point Theorem

Theorem 3.4 Letf : [1,e] Xx R — R be a continuous function satisfying (3.3.1). In
addition, we assume that:

(3.4.1) [f(t,x)| < u(@®), Y(t,u) €[l,e] xR, and n € C([1,e], RT).

Then the problem (3.18) has at least one solution on [1, e] if

1 Al(1 vt B
1 { JAlogn) B, 58)
| 'y +a+1) Ta+1)
Proof We define supepy o |4(1)] = |[|p]l and choose a suitable constant 7 >

lelllw] + lel/|$2], where w is defined by (3.25). We define the operators & and
QonBr={xed&:|x|| <7}as

1 t a—1
(#90 = 7 /1 (1og g) f—(s’:(s))ds,

_ (logn*~! A ! n\r+e=t f(s, x(s)
(2x)() = |:c — o+ a) [1 <log ;) ———ds

2 s
‘ =1 (s, x(s))
_F(lot) /] (log ;) 1f—s j 5 ds:|.

For x,y € By, we find that

|2x+ 2yl

1 ! A
—— | (10g - ~d
F(a)[l (Ogs> 5@

(log )°~"! Al ”( n)””‘l 1 1B| /( e)“—l 1
log ! Sds+ - | (0gl) -
+ 2] |C|+F(y+a) 1 0g - st+F(a) 1 og Sds

< llullo + lel/1£2]

g

< llpll

Thus, #x + 2y € By. It follows from the assumption (3.3.1) together with (3.28)
that 2 is a contraction. Continuity of f implies that the operator & is continuous.
Also, £ is uniformly bounded on Br as | Zx|| < ||ull/ I (¢ + 1). Now, we prove
the compactness of the operator .

We define sup, ,ye(1 ojxs, (%) = f < oo, andlet 1, 1, € [1,¢] with 7] < 1.
Then
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(Z)(r) — (Px)(0)] < % [ (1oe ) Sas— [ (o) S
< i [ () () R
_ %[Klog ©)* — (log 1)°| + 2(log(za/m))* .

which is independent of x and tends to zero as 7, — 77 — 0. Thus, & is
equicontinuous. So & is relatively compact on By. Hence, by the Arzeld-Ascoli
Theorem, &7 is compact on By. Thus all the assumptions of Theorem 1.2 are
satisfied. So the conclusion of Theorem 1.2 implies that the problem (3.18) has
at least one solution on [1, e]. The proof is completed. |

3.3.3 Existence Result via Leray-Schauder’s Nonlinear
Alternative

Theorem 3.5 Letf : [1,e] Xx R — R be a continuous function. Assume that:

(3.5.1) there exist a continuous nondecreasing function ¥ : [0, 00) — (0, 00) and
a function p € C([1, ], R") such that

If @z, u)| < p(OY(lu]) foreach (t,u) € [1,e] x R;
(3.5.2) there exists a constant M > 0 such that

M > 1
vM)|pllew + lcl/I12] ~

where §2 and w are defined by (3.23) and (3.25) respectively.

Then the fractional boundary value problem (3.18) has at least one solution on
[1,e].

Proof We complete the proof in several steps. We first show that Q maps bounded
sets (balls) into bounded sets in & . For a positive number r,let B, = {x € & : ||x|| <
r} be a bounded ball in &'. Then, for ¢ € [1, ¢], we have
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3 ) sl
|0x(n)| < max F(a)/ g
(logn)*~! A] ! my\r et [f (s, x(s))
+ 2] |:|c| + T +a) (log ;) — ds

"‘ fGs. x(s)] X(S))l
F( )/ s B

vAxDIpl [yt
V] (log-)  -d
1 <0g ) 5

< max

~ te[l.e] I'(x) K s
(log 1)*"! A| 7 nyr+e-l 1
log * —d
el R e B ) L

- [ ) L]
=y dlxDlplle + [c|/182].
Consequently
lox]l = v (M llpllw + |cl/]82].

Next, we show that Q maps bounded sets into equicontinuous sets of &. Let
71, T2 € [1, ] with 7y < 1, and x € B,. Then, we have

[(QX)(12) — (Qx)(11)]

< %naog ) — (log )" | + 2(log(t2/71))"]
v plllog 12)*! — (log 1)~ Al N
+ 2| [|c| t o rarnoen
LBl
Fa+1) |

Obviously the right hand side of the above inequality tends to zero independently
of x € B, as 1, — 1 — 0. As Q satisfies the above assumptions, therefore it follows
by the Arzela-Ascoli Theorem that Q : & — & is completely continuous.

The result will follow from the Leray-Schauder nonlinear alternative once, we
have shown the boundedness of the set of all solutions to equations x = AQx for
A€ [0, 1].
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Let x be a solution. Then, for ¢ € [1, ¢], as in the first step, we have
Ixll = ¥ ixDllplle + lcl/1$2].
which implies that

[l

<1
YxDlple + lcl/1$2] —

In view of (3.5.2), there exists M such that |x|| # M. Let us set

U=1{xeé&: x| <M.

Note that the operator Q : U — & is continuous and completely continuous. From
the choice of U, there is no x € dU such that x = AQx for some A € (0,1).
Consequently, by the nonlinear alternative of Leray-Schauder type (Theorem 1.15),
we deduce that Q has a fixed point x € U which is a solution of the problem (3.18).
This completes the proof. |

Example 3.4 Consider the problem (3.27) with

—t

1 2
F(t,x) = %(% n x). (3.29)

Clearly [f(t,x)] < 1/@Be)(1 + |x||). By the assumption (3.5.2), we find that

M > 2.275971. Thus, by Theorem 3.5, there exists at least one solution for the
problem (3.27) with f(z, x) given by (3.29).

3.3.4 Existence Result via Leray-Schauder’s Degree

Theorem 3.6 Letf : [1,¢] x R — R be a continuous function. Assume that:
(3.6.1) there exist constants 0 < k < w~' and M| > 0 such that

If(z,x)| < k|x| + M forall (t,x) €[l,e] xR.

Then the fractional boundary value problem (3.18) has at least one solution on

[1,e].

Proof We define an operator Q : & — & as in (3.24) and consider the fixed point
problem

x = Qx. (3.30)
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We will show that there exists a fixed point u € & satisfying (3.30). It is sufficient
to show that Q : B — & satisfies

x # AQx, Vx € 0Bg, Vi e0,1], (3.31)
where B = {x € & : max,e[1 ¢ |x(t)| < R, R > 0}. We define
H(A,x) = AQx, ueé, A e0,1].

As shown in Theorem 3.5, we have that the operator Q is continuous, uniformly
bounded and equicontinuous. Then, by the Arzeld-Ascoli Theorem, a continuous
map h) defined by h;(x) = u — H(A,x) = x — AQx is completely continuous.
If (3.31) is true, then the following Leray-Schauder degrees are well defined and by
the homotopy invariance of topological degree, it follows that

deg(hy, Bg,0) = deg(I — AQ, Bg,0) = deg(hy, Bg,0)
= deg(ho, Bg,0) = deg(l,Bg,0) =1 # 0, 0 € Bg, (3.32)
where I denotes the identity operator. By the nonzero property of Leray-Schauder
degree, h;(x) = x — Ox = 0 for at least one x € Bg. In order to prove (3.31),

we assume that x = AQx for some A € [0, 1] and for all 7 € [1, ¢]. Then, with
||x|| = supte[l,e] |)C(t)|, we have

“ GG
|ox(n)| < max F(a) .
(logn)*~! A ! et [f (s, x(s)]
+ e |:|c| + T +a) (log ;) — ds

|B| o=l [f (s, x(s))] X(S))I
i [ o)
oz 11
F / log ;ds
(logt)"‘ ! V+Of—11 s
2 [ (y+a>/ 5

e [ ()

< (kllx[l + M1) @ + [e[/]£2],

=< (k|lxll + M)

Ll
|£2]
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which, on solving for || x|, yields

Mo + (cl/|2])

Il = =
— KW

Mo + (cl/]52])
1—kw
Example 3.5 Consider the problem (3.27) with

IfR = + 1, inequality (3.31) holds. This completes the proof. O

f(t,x) = sin(ax) + /log(¢) + 3, a > 0. (3.33)

It is obvious that |[f(z,x)| = | sin(ax) + /log(¢) + 3| < alx| + 2. Witha < 1/w ~
0.8350006, the assumptions of Theorem 3.6 are satisfied and in consequence, the
problem (3.27) with f(z, x) given by (3.33) has a solution on [1, e].

3.3.5 A Companion Problem

In this section, we consider a companion boundary value problem of (3.18) by
replacing the nonlocal integral boundary condition in it by AI”x(e) + Bx(n) = c.
Precisely, we consider the following problem:

D*x(t) =f(t,x(2), 1<t<e, 1<a<2,
(3.34)
x(1) =0, AI'x(e) +Bx(n) =c¢, 1 <n<e.

In this case, we obtain an operator .7 : & — & defined by

a 1
Tx(t) = - )/ f(s, :(S))
(log %~ ! y+°’ 1f(s x(s)) 3.35
e F(y + ) / s ds (3:33)
“ 1 f (s, x(s)) X(S))
F(a) . }, tell, e,
where
® = B(log n)a—l + m

The existence results analogue to Theorems 3.3, 3.4, 3.5, 3.6 for problem (3.34)
can be obtained in a similar manner with the aid of the operator (3.35) and the
constant @; given by
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__ |A] | B| (log n)*
Fae+1) |O]|T'y+a+1) T+

] (3.36)

3.4 Nonlocal Hadamard BVP of Fractional
Integro-Differential Inclusions

In this section, we study the following boundary value problem of fractional
differential inclusions with an integral nonlocal boundary condition

Dx(t) e F(t,x(1)), 1 <t<e, 1<a<2,
(3.37)
x(1) =0, AI'x(n) +Bx(e) =c¢, 1 <n<e,

where D“ is the Hadamard fractional derivative of order «, I” is the Hadamard
fractional integral of order y, F : [1,e] x R — Z(R) is a multivalued map, Z(R)
is the family of all nonempty subsets of R and A, B, ¢ are real constants. Further, it
is assumed that B + [AT" (a)(log )" T~ /' (y + «)] # 0.

Definition 3.1 A function x € €([1, ¢],R) is called a solution of problem (3.37)
if there exists a function v € L'([1, ¢], R) with v(¢) € F(¢t,x(t)), a.e. on [1, ¢] such
that D*x(r) = v(r), | <« < 2,ae.on[l,e]andx(1) =0, Al"x(n) + Bx(e) =
c, l<n<e.

3.4.1 The Carathéodory Case

Theorem 3.7 Assume that:

(3.7.1) F : [l,e] x R - Z(R) is Carathéodory and has nonempty compact and
convex values;

(3.7.2) there exists a continuous nondecreasing function ¥ : [0, 00) — (0, co) and
a function p € C([1, ], R") such that

1@, x) || 2= sup{|yl : yeF(t. )} <p@) Y (|x]}) for each (z.x)€[1,e] x R;

(3.7.3) there exists a constant M > 0 such that

M > 1
yM)|ple +el/12] ~

where §2 and w are defined by (3.23) and (3.25) respectively.

Then the boundary value problem (3.37) has at least one solution on [1, e].
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Proof Define an operator 2f : & — P (&) by

heé&: a 1 U(S)
r(a)/ @
X) = 1 ta 1 +a—1
20 =1 o +(ogQ) F(Ha)/ y UES)
B ¢ e\e—1 v(s)
—m 1 (10g;) TdS%,

for v € Sp,. We will show that 25 satisfies the assumptions of the nonlinear
alternative of Leray-Schauder type. The proof consists of several steps. As a first
step, we show that §2p is convex for each x € &. This step is obvious since Sgy is
convex (F has convex values), and therefore, we omit the proof.

In the second step, we show that §2 maps bounded sets (balls) into bounded sets
in &. For a positive number r, let B, = {x € & : ||x|| < r} be a bounded ball in &
Then, for each h € 27(x), x € B,, there exists v € Sg, such that

a 1 U(S)
"= T >/ g5
(log )*~! n\r+e=1 v(s)
T o+ /1 N S

B ¢ ene=1 v(s)
7@ ), (o) Td}

Then, for ¢ € [1, ¢], we have

! a-l |U(S)|
|h(t)| < m (log )
(log 1)*~! |A] 7 nyrte=t [v(s)]
RETo] ['C| HOET, (o) = s

o e,
* 7 ), (s }

v(xDlpl [ AN
< —F(a) l (lOg ;) ;dS

Qg [ AW RDIpl 7/ myr+emt 1
log — —d
o | g e )y (2]) s

+
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B X ¢ ene—1 1
L BV QDIP [ €y 1,
I'() 1 s s

A(log n)rt@ B
'y+aoa+1) TI'(e+1)

1 1
= v dlxiDlpl [m el

L d
|£2]
= v (xDlplle + lcl/$2].
Consequently
21 = ¥ (M pllw + |cl/]$2].

Now, we show that 2y maps bounded sets into equicontinuous sets of &. Let
71, 7o € [1, €] with 71 < 75 and x € B,. For each h € §2r(x), we obtain

|h(T2) — h(t1)]

vl [ T\ ! 1 o T\ 1
= —F(a) /1 (log ?) ;ds - /1 (log :> ;ds
v () |plll(og ©)* " — (log 7;)*~"| IA| n a1 1
" 2 [M "Torol (lg ) e
|B| ¢ e a—1 1
+ TO[) 1 (log E) ;dsj|
= Hr P Gog ) = Gog )|+ 2(lox (e /)
¥ (M)plll(log ©2)*~" — (log 71)* ™| |A] +a
+ 2| |:|C| + o tat 1)(10g77)y
LB
Fa+1) |

Obviously the right hand side of the above inequality tends to zero, independently
of x € B, as 1, — 11 — 0. As £2p satisfies the above three assumptions, therefore
it follows by the Arzeld-Ascoli Theorem that 2F : & — (&) is completely
continuous.

In our next step, we show that £2, is upper semicontinuous. By Lemma 1.1, 2p
will be upper semicontinuous if we establish that it has a closed graph, since 2
is already shown to be completely continuous. Thus, we will prove that 25 has a
closed graph. Let x, — x«, h, € £2p(x,) and h,, — h,. Then, we need to show that
hy € §2p(x«). Associated with h, € $2r(x,), there exists v, € Sr,, such that for
eacht € [1,¢],
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1 ! N, (s)
hy (1) = %/1 ( - ——ds
(logn)*~! " N\ el v,(s)
H e ), (o))
e\o—l U”(S)
T ') Tds}'

Thus it suffices to show that there exists vy € Sg, such that for each z € [1, ¢],

1 t
h*(t)=m/l (

E a—1 U*(S) ds

_I_(logt a=l / oo ya=1 p,(s)
— - s
2 'y +ow) /i & s s
—
_ log f>a v (s) dsg .
I'o) Jy s s

Let us consider the linear operator ® : L' ([1, ¢], R) — & given by

. a 1 U(S)
Fr O0)(0) = s
Jr(log t)“_l 3 / 0! r+a—l v(s)
k94 'y +oa o8 s s
B ¢ Ot 1 y(s)
_1"(05)‘/1‘ (log— . d}
Observe that
_ ot 1 (vn(s) — U*(S))
a0 = a0l = | i [ (1o ) =2
(logr)*~! y+a=1 (v,(s) — v*(s))
+ 2 F(y + ) / s
B ¢ e\oe—1 (v,(s) — v«(5))
_W (log ;) 75 dS} ’ — 0,

asn — oQ.
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Thus, it follows by Lemma 1.2, that ® o Sg, is a closed graph operator. Further,
we have h,(f) € ©(SF.,). Since x, — x4, therefore, we have

1 ! N 04 ()
he(t) = —— log - —=d
() F(a)/; <0g s) s y
(log £)*~! A /” n\Y+e—1 v,(s)
- log — d
+ k94 ¢ I'y+ow) J; (ogs) Pl

B ¢ e\e=1 v, (s)
F(a)/l (log;) vs ds},

for some vy € S, .

Finally, we show there exists an open set U C & with x ¢ §2p(x) for any A €
(0,1) and all x € dU. Let A € (0,1) and x € AL2p(x). Then there exists v €
Ll([l, e],R) with v € Sg, such that, for 7 € [1, ¢], we have

x(t) = ﬁ /lt (log E)a_l @ds

log )1 A n y+a—I1
+ (log?) c— / (log ﬁ) @ds
I'y+ow) /i s s

2

‘ @1 v(s)
[ (o) ‘%ds}.

As in the second step, one can have

Ixll = ¥ (lxIDlplle + fel /1521,

which implies that

B -
y(Dlple + /2] =

In view of (3.7.3), there exists M such that ||x|| # M. Let us set

U={xed&:|x| <M}

Note that the operator 25 : U — (&) is upper semicontinuous and completely
continuous. From the choice of U, there is no x € dU such that x € A2p(x) for
some A € (0, 1). Consequently, by the nonlinear alternative of Leray-Schauder type
(Theorem 1.15), we deduce that £25 has a fixed point x € U, which is a solution of
the problem (3.37). This completes the proof. O
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Example 3.6 Consider the problem

D¥2x(t) € F(t,x(1)), 1 <t<e,
(3.38)
x(1) =0, 1'7%x(2) + x(e) = 4.

Here « = 3/2,y =1/2, n=2,A = 1,B = 1 and ¢ = 4. With the given values,
we find that 2 ~ 2.228571, @ &~ 1.197596. Let F : [l,¢] x R — Z(R) be a
multivalued map given by

|xI° 3,0 x|
x—>F(t,x)=|:|x|5+3+t + 1+ 4, |x|3+l+t+2 .
For f € F, we have
< M phpra L 0) <7 ser
[f|_max W ,m =/, X .

Thus,

IF@ 02 = supily| : y € F(.x)} =7 =p@Oy(lx]). xR,

with p(t) = 1, ¥(||x]]) = 7. In this case by the condition (3.7.3), we find that
M > 10.178044. Hence, by Theorem 3.7, the problem (3.38) has a solution on
[1,e].

3.4.2 The Lower Semicontinuous Case

Theorem 3.8 Assume that (3.7.1), (3.7.2) and the following condition hold:

(3.8.1) F : [l,e] x R - Z(R) is a nonempty compact-valued multivalued map
such that

(a) (t,x) —> F(t,x) is £ @ B measurable,
(b) x —> F(t,x) is lower semicontinuous for each t € [1, e].

Then the boundary value problem (3.37) has at least one solution on [1, e].

Proof 1t follows from (3.7.2) and (3.8.1) that F' is of l.s.c. type [82]. Then, from
Lemma 1.3, there exists a continuous function f : & — L'([1,¢],R) such that
fx) € F(x) forallx € &.

Consider the problem

D*x(t) =f(x(2), 1<t<e, 1<a <2,
(3.39)
x(1) =0, AI'x(n) +Bx(e) =c, 1 <np<e.
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Observe that if x € €%([1, €], R) is a solution of (3.39), then x is a solution to the
problem (3.37). In order_to transform the problem (3.39) into a fixed point problem,
we define the operator £25 as

a 1
o0 = - [ (1),
(logn)*~! A ny\r et fx(s))
+ 22 _F(y+a)/1 log;) s ds
“ lf(x(S))
F(Ot)

It can easily be shown that £ is continuous and completely continuous. The
remaining part of the proof is similar to that of Theorem 3.7. So, we omit it. This
completes the proof. O

3.4.3 The Lipschitz Case

Theorem 3.9 Assume that:

(39.1) F : [l,e] x R - Z,(R) is such that F(-,x) : [l,e] - Z,R) is
measurable for each x € R,;

(3.9.2) Hy(F(t,x), F(t,x)) < m(t)|x — x| for almost all t € [1, e] and x,x € R with
m e L'([1,¢e],R") and d(0, F(t,0)) < m(t) for almost all t € [1, e].

Then the boundary value problem (3.37) has at least one solution on [1, e] if
lmllw + lcl/1$2] < 1.

where §2 and w are defined by (3.23) and (3.25) respectively.

Proof Observe that the set Sp, is nonempty for each x € & by the assump-
tion (3.9.1), so F has a measurable selection (see Theorem II1.6 [57]). Now, we show
that the operator §2r, defined in the beginning of proof of Theorem 3.7, satisfies the
assumptions of Theorem 1.18. To show that 2r(x) € (&) for each x € &, let
{un}n>0 € 2r(x) be such that u, — u (n — o00) in &. Then u € & and there exists
v, € SF., such that, for each 7 € [1, €],

u,(t) = ﬁ /: <log E)a_l v"is)ds

(log1)*~!
0

n\rte=l v,(s)

A n
— log — ds
F()/+Ol)/; gs s
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e\*1 v,(s)
T ') Tds}‘

As F has compact values, we pass onto a subsequence (if necessary) to obtain
that v, converges to v in L' ([1, e], R). Thus, v € Sy, and for each ¢ € [1, e], we have

Ot 1
() > () = £ / ”(S)
(log)*~! n\r+e=1 v(s)
Yo _F(y+oz)/1 log ¢ 5

¢ e\e—1 v(s)
_% 1 (logg) lde}

Hence, u € 2¢(x).
Next, we show that there exists § < 1 (6 := ||m||w + |c|/|$2]) such that

H (2r(x), 2r(X)) < §|lx —X|| foreach x,x € &.

Let x,x € & and h; € §2r(x). Then there exists v((¢) € F(t, x(¢)) such that, for each
tell,e],

h(t) = ﬁ/}q (log E)a_l vlss)ds

(logn)*~! / T om\rtelu(s)
+ - log — —
2 'y +ow)/y s s
e\*—! v(s)
— - dsy .
I'(a) s> s S}

By (3.9.2), we have
Hy(F(1,x), F(t,%)) < m(t)|x(t) — x(1)].
So, there exists w € F(t, (f)) such that
[v1(®) —w| = m@)|x(®) —x(1)], €[l e].
Define U : [1,¢] — 2(R) by

U@ = {weR: o (1) —w| = m@)|x(t) - xX(1)]}.
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Since the multivalued operator U(t) N F(¢,x(¢)) is measurable (Proposition II1.4
[57]), there exists a function v,(#) which is a measurable selection for U. So v, (1) €
F(t,x(¢)) and for each 1 € [1, ¢], we have |v{(¢) — v2(r)] < m(2)|x(r) — Xx(?)].

For each t € [1, ¢], let us define

1 ! A G U2(S)

) = Fos /1 (log ;) s
(log )*~! A 7 n\Y e va(s)

g C_F()/—i—a)/l (k’gE) s B

¢ @=1 vy(s)
_Fl(;a)/l (log E) 1 vzss ds}.

Thus,
Iy (1) — ()] < an) flt (1o é)a_‘ Mds
+(10T37_1 le] + 7F()/|A—l|- ) 1'7 (log g)y—m_l Mds
+% le (1og g)a—l |U1(S);v2(s)|ds}
5 mg l’ CH
(loitz)r_l [|CI + F(;lA-:- ) ln (log Z)yﬂ_l éds
+ % le (10 E)‘H ids:| e — |
< (Imllo + Ic1/1921) I = %I.
Hence,

i = all < (Il + lel/121 ) 1 = 1.
Analogously, interchanging the roles of x and X, we obtain

Ha($2p(x), (@) = (Imleo + lel/121) ¢ — 7.
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Since §2r is a contraction, it follows by Theorem 1.18, that 25 has a fixed point
x, which is a solution of (3.37). This completes the proof. |

3.5 Boundary Value Problems of Hadamard-Type Fractional
Differential Equations and Inclusions with Nonlocal
Conditions

In this section, we study boundary value problems of Hadamard type fractional
differential equations and inclusions with nonlocal boundary conditions. Firstly, we
discuss the existence and uniqueness of solutions for the following boundary value
problem

D*x(t) =f(t,x(2), 1 <t<e, 1<a<2,
(3.40)
x(1) =0, x(n) =gk, 1 <n<e,

where D“ is the Hadamard fractional derivative of order o, f : [1,¢] x R — R and
g :C([0,1],R) — R are given continuous functions.

In passing, we remark that the nonlocal conditions are more plausible than
the standard initial conditions for the formulation of certain physical phenomena
involving interior points of the given domain. In (3.40), g(x) may be regarded as
gx) = Zle a;x(t)) where o, j = 1,...,p, are given constants and 0 < #; < ... <
t, < 1. Further details can be found in the work by Byszewski [54, 55].

The main results for the problem (3.40) rely on Banach’s contraction principle
and a fixed point theorem due to O’Regan (Theorem 1.6).

Secondly, we extend our study to the case of inclusions by considering the
following boundary value problem:

Dx(t) e F(t,x(1)), 1 <t<e, 1<a<2,
(3.41)
x(1) =0, x(n) =gk, l<n<e,

where F : [l,e] x R - Z(R) is a multivalued map, & (R) is the family of all
nonempty subsets of R. We show the existence of solutions for the problem (3.41)
by using the nonlinear alternative for contractive maps, when the multivalued map
F(t,x) is convex valued.

Lemma 3.4 Giveny € &, the boundary value problem

Dx(t) =y(), 1<t<e, 1<a<2,

3.42
x(1) =0, x(n) =y €R, (342)
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is equivalent to the integral equation

“ly(S)
) F()/

(log 1)°~! / ! n aly(s)  (logn)*”!
- log — —ds+ ————yo, t € [1,¢].
Fanttogn ), (85) 774 Gog i €14
(3.43)
Proof We omit the proof as it is similar to that of Lemma 3.3. |
3.6 Existence Results: The Single-Valued Case
In view of Lemma 3.4, we define an operator 2 : & — & by
a 1
20 = [ (g ) 102,
r ( ) s
_ (logn*~ ‘ f” <log Q)‘H f(s,X(S))ds
I (e)(log )= s s (344)
(log)*~"!
+——gx), te[l,e]
(logm=~! -l

Observe that the existence of a fixed point for the operator 2 defined by (3.44)
implies the existence of a solution for the problem (3.40).

Theorem 3.10 Letf : [1,¢] x R — Rand g : C([1,¢],R) — R be continuous
functions. Assume that:

(3.10.1) |f(t,x) —f(t,y)| <Llx—y|,Vte[l,e], L>0, x,y € R;
(3.10.2) |g(u) —g(v)| < L|lu—v|, 0 <€ < (logn)*~!, forallu,v € &;

L
3103) y = ————(1+1 — <
( )y Tt 1)( + logn) + Tog )]

Then the boundary value problem (3.40) has a unique solution on [1, e].

Proof For x,y € & and for each t+ € [l,e], from the definition of 2 and
assumptions (3.10.1) and (3.10.2), we obtain

I(QX)(t) - (o@y)(t)l
/ " G () — fGs YOI
F(oz)

N

Gogn)®™' [T/ mye-t [f(s.x(s)) — f(s. y(s)))|
F(a)(logn)«—lfl (10g ) s ds
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(log )*~"!
+W lg(x) — g

1 ! AL
< _ R _ —_
= Ll y”|:1"(a)/l (logs> 598

(log 1)*~! /’7 nye—1 1 14
%) log —d T k=
oz ), (987) 35|+ Goge el

< Il gy (0 Toen) + o
I'o+1) (log n)*—!
Hence
12x — 2y| < yllx—yl.
As y < 1by (3.10.3), 2 is a contraction map from the Banach space & into itself.

Thus, the conclusion of the theorem follows by the contraction mapping principle
(Banach fixed point theorem). O

Example 3.7 Consider the following fractional boundary value problem

L sin
D*%x(t) = —(x—i— _Isinx +cost), l<t<e,

? 5 1T|Si3HX| 1 1 /5 (345)
=0 x(3) = 35(3) + 5+(2) + 772(3)
where L will be fixed later. Clearly n = ; glx) = %x(%) + éx<2) + %x(g)

With the given values, it is found that £ >~ 0.344877 and the assumption (3.10.3) is
satisfied for L < 0.293351. Thus all the conditions of Theorem 3.10 are satisfied.
Hence the boundary value problem (3.45) has a unique solution on [1, ¢].

In the sequel, we will use Theorem 1.6, by taking C to be E. For more details of
such fixed point theorems, we refer a paper by Petryshyn [140].

Theorem 3.11 Let f : [l,e] x R — R be a continuous function. Suppose
that (3.10.2) holds. In addition, we assume that:

(3.11.1) g(0) = 0;
(3.11.2) there exists a nonnegative function p € C([1, e],R") and a nondecreasing
Sfunction ¥ : [0, 00) — (0, 00) such that

[f@.w| = p()Y(lul) forany (t,u) € [l.e] xR;
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1

(3.11.3) sup > , where
re(0.00) PO (r) 1 —£(logn)t—
po = ﬂ(l + logn). (3.46)
I'oe+1)

Then the boundary value problem (3.40) has at least one solution on [1, e].

Proof Let us decompose the operator 2 : & — & defined by (3.44) into a sum of
two operators as

(2x)(1) = (210) (1) + (220)(1), 1€ [1,e], (3.47)

where

(2:)(t) = % /1’ (1og £>‘des

| X ; 1 (3.48)
t oa— o—
__(ogn™™ / (IOg Q) f—(s,x(s))ds’ tefl,el,
I (o) (logm*= J; s s
and
log 1)*~!
(2ox)(1) = (g—)a_lg(x), relel. (3.49)
(logn)
Let
2, ={xed&:|x| <r}.
From (3.11.3), there exists a number ry > 0 such that
1
0 (3.50)

pov(ro)  1—€(og e

We shall show that the operators 2; and 2, satisfy all the conditions of
Theorem 1.6.

Step 1.  The operator 2, : £2,, — & is contractive. Indeed, we have:

a—1
(2290 — (2] = Vo) — ()
(logn)

14
= WHX—)’H,

and hence by (3.10.2), 2, is contractive.
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Step 2.  The operator 2, is continuous and completely continuous. We first show
that 2, (.Q,O) is bounded. For any x € .Q,O, we have

G
20 = i [ (1oe '

(10gf)"‘_1 7 e~ f (s, x(5))]
(o) (log 7)*~! / (log E) s B

< ||P||W(ro)|:$ /1 o) Las

1 n a—11
+ I'(a)(log n)*—1 fl (log g) Eds:|

< lipllv( o) ( )(1 + logn).

This proves that 2 (£2,,) is uniformly bounded.
In addition, for any 71, 7» € [1, ¢], 71 < 75, we have:

[(21%)(12) — (210)(11)]

vl (77 mhet 1 [, myeet
= T / (log )" Sds— / (log )" Sas
¥ (ro)llpll|(log ©2)* ! — (log 7)*~!| (7 el 1
* I (o) (log 1) / (log $) " Sas
< YR 106 1) — (log 1)) + 2(tog(ra/71))"]
= F(ot—i—l) %) 27T gZ(T2/ T
Iﬂ(ro)llplll(lOg 1)* ! — (log 71)*!|

(log 1),

I'oa+1)

which is independent of x, and tends to zero as 1, — ty — 0. Thus, 2 is
equicontinuous. Hence, by the Arzel-Ascoli Theorem, 2 (£2,,) is a relatively
compact set. Now, let x,,x C £2,, with |x, — x|| — 0. Then the limit |x, () —
x(t)] — 0 as n — oo uniformly on [1, ¢]. From the uniform continuity of f(z, x)
on the compact set [1, ¢] X [—rg, ro] it follows that ||f (¢, x,, (7)) — f (¢, x(¥))]| — O
is uniformly valid on [1, e]. Hence || 2x, — Z1x|| — 0 as n — oo, which proves
the continuity of 2. Hence Step 2 is completely established.
Step 3.  The set F(£2,,) is bounded. By (3.10.2) and (3.11.2), we get

1
220 = W&o,
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for any x € .(_2,0. This, with the boundedness of the set 2, (.(_2,0), implies that the
set 2(£2,,) is bounded.

Step 4.  Finally, it will be shown that the case (C2) in Theorem 1.6 does not occur.
To this end, we suppose that (C2) holds. Then, there exist A € (0, 1) and x € 0£2,,
such that x = A 2x. So, we have ||x|| = ry and

Y I A OREA P ICEIO)
x(t) = A F(a)/; (log ;) . ds
(log r)e! n nye—1 £(s, x(s)) (log )2~
_W/l (1025) ——ds + (logn)a_lg(x) cte(l.e].

With hypotheses (3.11.1)—(3.11.3), we have

1+1 1
(0] = Iy (el s + oyl

Taking supremum over ¢ € [1, e], we get ro < po¥ (ro) + (logn)'~*£ry. Thus,

ro < 1
poy(r) — 1 —4L(lognm)'~’
which contradicts (3.50). Thus it follows that the operators 2, and 2, satisfy all

the C(_)nditions of Theorem 1.6. Hence, the operator 2 has at least one fixed point
X € §2,,, which is the solution of the boundary value problem (3.40). O

Example 3.8 Consider the following fractional boundary value problem

1 .
D3/2x(t) = —21+|Smx‘, l<t<e,
63 + 12 (3.51)
5 1 /3 1 1 /5
x(l) = 0, x(z) = 7)(3(5) + §x<2> + ﬁx(z),
Since I HIsind | < ! we take |p| = 1 and ¥ (Ju]) = 1. By the
63 + 12 A 2

condition (3.11.3), we find that ry > 1.70445. Obviously all the conditions of
Theorem 3.11 are satisfied. Therefore, the conclusion of Theorem 3.11 applies to
the problem (3.51).

3.7 Existence Result: The Multivalued Case

Definition 3.2 A function x € €([1, ¢], R) is called a solution of problem (3.41) if
there exists a function f € L!([1, ¢], R) with f(¢) € F(t,x(t)), a.e. on [1, €] such that
D*x(t) = f(t), a.e. on [1,¢] and x(1) = 0, x(n) = g(x).
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Theorem 3.12 Assume that (3.10.2) holds. In addition, we suppose that:

(3.12.1) F:[l,e] x R > P, (R) is L'—Carathéodory multivalued map;
(3.12.2) there exists a continuous nondecreasing function ¥ : [0,00) — (0, 00)
and a function p € C([1, e], RY) such that

IF(. )|l = sup{lyl : y € F(t. )} < p() ¥ (|Ixl|) for each (1.x) € [1. ] X R;

(3.12.3) there exists a number M > 0 such that

(1 —£Qogn)'~)M

> 1.
(1 +1logn)
||P||W(M)m

(3.52)

Then the boundary value problem (3.41) has at least one solution on [1, e].

Proof To transform the problem (3.41) into a fixed point problem, we define an
operator & : & —> P (&) as

heé&:
! /t (10 E)a_ljﬁds
') , gs s
F(x) = _ (log £)*~! n nye=1 f(s) (3.53)
0 =1 T ), (o25) 0
(logn)*~!
—i—wg(x), 1t e [1,6],

forf € Spy.
Next, we introduce two operators .« : & — & and & : & — P(&) as
follows:

Ax(t) = Mg(x), te(l,e, (3.54)
(logm)*~!
and
heé&:
L e )
— [ (0gl) 4
a0 =1, F(a)/1 (10e) '

(logr)*~! 1 e £(s)
_Wgn)“‘l/l <10g ;) ——ds, r€l.e].
(3.55)
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Observe that # = o/ + 2. We shall show that the operators &/ and % satisfy
all the conditions of Theorem 1.17 on [1, e]. First, we show that the operators </ and
2 define the multivalued operators &7, % : B, — Py (&) where B, = {x € & :
|lx|| < r}is abounded setin &. We prove that 2 is compact-valued on B,. Note that
the operator 4 is equivalent to the composition .Z o Sr, where £ is the continuous
linear operator on L!([1, €], R) into &, defined by

_ 1 ! 1\~ u(s) (log 1)*~! n o=l v(s)
g(v)(t) - m[ (10g E) Tds_ W/; (log }) Tds

Suppose that x € B, is arbitrary and let {v,} be a sequence in Sg,. Then, by
definition of Sr, we have v,(¢) € F(t,x(¢)) for almost all # € [1, ¢]. Since F(z, x(t))
is compact for all ¢ € J, there is a convergent subsequence of {v, ()}, (we denote it
by {v,(f)} again) that converges in measure to some v(t) € Sr for almost all ¢ € J.
On the other hand, .# is continuous, so .Z(v,)(t) — Z(v)(t) point-wise on [1, e].

In order to show that the convergence is uniform, we have to show that {.Z(v,)}
is an equi-continuous sequence. Let 71, 7, € [1, ¢] with 7; < 7. Then, we have

12 () () =2 (W) (@)
_ vl /1 (log%)a—l 1 ds /1 (log%) ‘%ds

I'(a)
V@ pllGog )" — (og)*| [/ pya-t 1
* I'(a)(log 7)1 (e ) S

< L g ) log )| + 2(0g(e2/ )
LY Olplidog )™ — (og z)*|

Ta+1) (log 7).

We see that the right hand of the above inequality tends to zero as t, — t;. Thus,
the sequence {-Z(v,)} is equi-continuous by the Arzeld-Ascoli Theorem, and hence
there exists a uniformly convergent subsequence. So, there is a subsequence of {v,,},
(we denote it again by {v,}) such that Z(v,) — -Z(v). Note that £ (v) € .Z(Sr.).
Hence, #(x) = .Z(Sr.) is compact for all x € B,. So #(x) is compact.

Now, we show that Z(x) is convex for all x € &. Let z1,20 € Z(x). We select
fi1.f> € Sk such that

o logd™ (7, myal £(s)
() = F()/ s ds_r(a)(logn)a—'/l (g ) s
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i=1,2, for almostall t € [1,e]. Let 0 < A < 1. Then, we have

[/\Zl + (- /\)Zz](f)
/ °‘ F[Afi(s) + (1 — X)fz(s)]
T T(@)

N

logn®' 7/ et [Afi(s) + (1 — A)fs(s)]
_r(amogn)a—l/ (10g ) s s

Since F has convex values, so Sg is convex and Afi(s) + (1 — A)f>2(s) € Spx.
Thus

Az 4+ (1= )z € B(x).

Consequently, 4 is convex-valued. Obviously, .o is compact and convex-valued.
For the sake of clarity, we split the rest of the proof into a number of steps and
claims.

Step 1. &7 is a contraction on &. This is a consequence of (3.10.2).
Step 2. % is compact, convex valued and completely continuous. This will be
established in several claims.

CLAIM L. % maps bounded sets into bounded sets in &. For that, let B, =
{x € & : ||x|| < p} be a bounded set in &. Then, for each h € Z(x),x € B,
we have

()| < —— l(log )“ ! lf(S)I

_F()

(log 1)*~! 1 e f(s)]
+F(a)(logn)°‘—1/1 (log ;> Tds
AL

< ||p||w<p>[% / o) Las

+ F(a)(lcl)g e fl n (10 g)a_l éds}

IIPIIW(p)F( n 1)(1 + logn),

and consequently, for each i € Z(B,), we have

Il = b 0) s 1+ o)

CLAIM IL. % maps bounded sets into equicontinuous sets. As before, let B, be
abounded set and let 1 € Z(x) forx € B,. Let 7y, 72 € [1, ¢] with 7y < 7, and
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x € B,. For each h € %(x), as before, we obtain

e~ el = LW t0g ) — 0g 1) + 2008 (e2/2))
@
L YOl og ) — log r)!

1 )
Fa+1) (logm)
which is independent of x and tends to zero as 7, — r; — 0. Therefore, it
follows by the Arzela-Ascoli Theorem, that & : & — Z(&) is completely

continuous.

CLAIM III. A has a closed graph. Let x, — x«, h, € B(x,) and h, — hs.
Then, we need to show that i, € Z(x,). Associated with h, € H(x,), there
exists f,, € Sg, such that for each ¢ € [1, ¢],

R et e 0
n) = r()/ 0 o ), (o2y) e

Then, we have to show that there exists fi € Sr, such that for each ¢ € [1, ¢],

o) log®™™ [T/ mye-1 £u(s)
) = g )/ s ds_r(a)(logn)a—lf (g 3) = e

Let us consider the continuous linear operator @ : L'([1, e], R) — ¥ given by

£ 000
o) (log™ 7, mya-i£(s)
r(a)/ s "S_F(a)(lognw—l/l (g ) s
Observe that
o ) GO,
a0 = a0l = | s [ (1o :

(log )*~! /” (log g)a—' Gas) = 1)) 0

" I'(e)(log n)o! s

as n — oo. Thus, it follows by Lemma 1.2 that ® o Sg, is a closed graph operator.
Further, we have £, (f) € ©(Sr,,). Since x, — X, therefore, we have

o) log™= [T/ mye-1£i(s)
) = g )/ s ds_r(a)(logn)a—lf (log $) =

for some fi € Sr.,. Hence % has a closed graph (and therefore has closed values).
In consequence, the operator % is compact valued.
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Thus, the operators <7 and Z satisfy hypotheses of Theorem 1.17 and therefore,
by its application, it follows either condition (i) or condition (ii) holds. We show that
the conclusion (ii) is not possible. If x € A.o7 (x) + AA(x) for A € (0, 1), then there
exists f € Sg, such that

1 a—1
%05)/1 (logg) @ds

(log 1)*~! 1 e f(s) (log 1)~
“FratogmyT ), (8 3) o e € el

x(f) = A

Consequently, we have

1 1
lx(1)] < ||P||W(||x||)m(1 + logn) + WEHJCH'

If condition (ii) of Theorem 1.17 holds, then there exists A € (0,1) and x € 0By
with x = A.%(x). Then, x is a solution of (3.44) with | x| = M. Now, by the last
inequality, we have

(1 —£(logm)'~)M

1
(1+1logn) —
||P||W(M)m

which contradicts (3.52). Hence, .# has a fixed point in [1, ] by Theorem 1.17, and
consequently the problem (3.41) has a solution. This completes the proof. O

Example 3.9 Consider the following fractional boundary value problem

D?x(f) e F(t,x), 1 <t<e,
5 (3.56)

x(1) =0, x(%) = ;x(g) + %x(Z) + %x(z)

where

1 | sinx|? 1 t |x| ]

Ft,x) = [(:+ 2) 8(Isina* +3) 10" 3G+ Dl + 1

Clearly |[F(t.x)||» := supily| : y € F(t.x)} < p@®)y(|x]) foreach (1.x) €
[1,e] x R with p(¢) = %/#71) ¥ (|lx|l) = 1. By the condition (3.12.3), it is found
that M > 1.601815. Thus all the conditions of Theorem 3.12 are satisfied and in
consequence, there exists a solution for the problem (3.56) on [1, ¢].
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3.8 Notes and Remarks

In Sect. 3.2, we studied a three-point boundary value problem of Hadamard type
fractional differential equations via Krasnoselskii-Zabreiko fixed point theorem.

We have investigated in Sect. 3.3 the existence and uniqueness of solutions for
a semi-linear Hadamard type fractional differential equation supplemented with
nonlocal non-conserved boundary conditions involving Hadamard integral. The
uniqueness result is proved by applying Banach’s fixed point theorem while the three
existence results are established by means of Krasnoselskii’s fixed point theorem,
Leray-Schauder’s nonlinear alternative, and Leray-Schauder degree respectively.
We have also discussed a companion problem (3.34) by replacing the condition
Al"x(n) 4+ Bx(e) = ¢ with AI"x(e) + Bx(n) = c in problem (3.18). The results
presented in this section are more general and correspond to several known and
new results corresponding to specific values of the parameters involved in the
problem (3.18). For instance, we have:

e Bytaking A = 0,c = 0, B # 0, our results correspond to the ones for Hadamard
type fractional differential equations with Dirichlet boundary conditions.

e LettingA = 1,B = —1,c = 0 and n — e in the results of this paper, we obtain
the ones presented in [22].

e WithA # 0,B = 0,c¢ = 0, our problem becomes an “average type” nonlocal
boundary value problem in the sense of Hadamard integral (y = 1 in classical
sense). This reduced integral condition can also be termed as a “conserved”
condition in the sense of Hadamard. In this case, the operator Q : & — & takes
the form:

0x(1) = ﬁ /1 (102?)

A(logn)«=t 1 n\r+e=t f (s, x(s))
_m 1 (10g;) Tds, tell,e.

5. X))
S

In relation to problem (3.34), we can make similar observations.

The multivalued case of the problems studied in Sect. 3.3 is considered in
Sect. 3.4. We have established some existence results when the right hand side
is convex as well as non-convex valued. The first result relies on the nonlinear
alternative of Leray-Schauder type. In the second result, we combine the nonlinear
alternative of Leray-Schauder type for single-valued maps with a selection theorem
due to Bressan and Colombo for lower semicontinuous multivalued maps with
nonempty closed and decomposable values, while in the third result, a fixed point
theorem for contractive multivalued maps due to Covitz and Nadler is used. Note
that the special case A = —1,B = 1, ¢ = 0 was studied in [12].
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In Sect. 3.5, we studied boundary value problems of Hadamard type fractional
differential equations and inclusions with nonlocal boundary conditions. The results
for single-valued case are proved via Banach’s contraction principle and a fixed
point theorem due to O’Regan, while the result for multivalued case is obtained by
means of the nonlinear alternative for contractive maps when the multivalued map
F(t,x) is convex valued.

The content of this chapter is based on the papers [15, 24, 30] and [23].



Chapter 4

Existence Results for Mixed Hadamard

and Riemann-Liouville Fractional
Integro-Differential Equations and Inclusions

4.1 Introduction

We introduce a new class of mixed initial value problems involving Hadamard
derivative and Riemann-Liouville fractional integrals. Existence as well existence
and uniqueness results are proved for mixed initial value problems involving
Hadamard and Riemann-Liouville type integro-differential equations and inclusions
via appropriate fixed point theorems. We also obtain an existence result for the
inclusion case by following a relatively new approach known as “endpoint theory”.

4.2 Existence Results for Mixed Hadamard and
Riemann-Liouville Fractional Integro-Differential
Equations

In this section, we discuss the existence and uniqueness results for a new class of
mixed initial value problems involving Hadamard derivative and Riemann-Liouville
fractional integrals given by

m

D* (x(t) — Zlﬂihi(l‘, x(t))) = g(t,x(t), Kx(¢)), telJ:=[1,T],
i=1

(4.1)
x(1) =0,

where D? denotes the Hadamard fractional derivative of order o, 0 < o < 1, I?
is the Riemann-Liouville fractional integral of order ¢ > 0, ¢ € {81, B2,. .., Bm}»
g€ C(JxR%R), hy € C(J xR, R) with h(1,0) = 0,i = 1,2,...,m, and Kx(f) =
[} o(t, 5)x(s)ds, (1, 5) € C(J%,R).
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The main tools of our study for (4.1) include Krasnoselskii’s fixed point theorem,
Banach’s fixed point theorem and Leray-Schauder’s nonlinear alternative.

In order to define the solution for problem (4.1), we need the following lemma.
The proof of this lemma is obvious [96] in view of the fact that Hadamard fractional
derivative is the left-inverse operator to the Hadamard fractional integral.

Lemmad4.l Let 0 < o < 1, and the functions g,h;, i = 1,2,...,m satisfy
problem (4.1). Then the unique solution of the problem (4.1) is
1 ! G ds n
- z - Bip,.
x(1) F(a)/; (logs) g(s, x(s), Kx(s)) g + ;I hi(t,x()), te€l
4.2)

Let E = C(J,R) be the space of continuous real-valued functions defined on
J = [1, T] endowed with the norm ||x|| = sup,¢, [x(?)].

Theorem 4.1 Assume that:

(4.1.1) there exists a constant Ly > 0, such that
hi(t, x) — hi(, y)| < Lolx =y, (4.3)

forteJandx,ye R, i=1,2,...,m
(4.1.2) there exist functions 6; € C(J,R™Y), i = 1,2, ..., m, such that

|hi(2, x)| < 6;(1), V(t,x) €J xXR;

(4.1.3) there exist functions v, . € C(J,R™), such that

lg(t.x. )| < v(®) + p@)lyl. Y(t.x.y) € ] x R”.

Then the problem (4.1) has at least one solution on J, provided that
"L (T —1)b
Lo Z T=n" _ 1. (4.4)

Proof Setting sup,¢, [v(1)| = [[v], sup,e; (D] = [|pll, supe; [6:(D)] = [16:]], i =
1,2,...,m, we consider Bg = {x € E : ||x|| < R}, where

(log T)® (log T)*
(Zm 64+ e ||)/( ool | s + SEDLT),

logT
y = T/ u* e "du, o = sup{|e(t,s)| : (¢t,5) € J xJ}and
0

4 (log T)*
ol | s + 1 |
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Next we define the operators 2 : B — E and .7 : Bx — E by

20 =2, ﬁ /1 = 9P (s x(s)ds, 1, (4.5)

t a—1 d
Tx(t) = %/1 (log g) g(s,x(s),Kx(s))?s, teld. (4.6)

For any x,y € Bg, we have

|2x(1) + Ty(0)| < / (t = )" |hi(s, x(5))|ds

F(ﬂ)

1 ! t a—1 ds
+m /1 (log ;) lg(s,y(s),Ky(s))|?
= Z —/ (t — 5)P116:(s)|ds
1 4 t a—1 ds
) / (log2) (W@ + In@IKOD

I'(@)
(T (log T)*
_Zmﬂ)n U+ o Il

14 (log T)*
+<Po||M||R[F(a) i 1)]

<R

Now we show that 7 is continuous and compact. The operator 7 is obviously
continuous. Also, .7 is uniformly bounded on By, as
(log T)* Y (log T)”
— v R
W+ ok | s 4+ 28
Let 11,72 € J with 71 < 75 and x € Bg. We define sup, , e xpexp, 18t % ¥)| =
g < oo. Then, we have

-7l <

|<7)C(‘L'2) — 9x(t1)| =

a—1 d

1 o T1\2! ds
_W 1 (10g?> g(s,x(s),Kx(s))?

< Fia 5y log )" — Gogm)| + 2(0g(r/m))",
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which is independent of x, and tends to zero as t, — 17 — 0. Thus, 7 is
equicontinuous. So .7 is relatively compact on Bg. Hence, by the Arzeld-Ascoli
Theorem, .7 is compact on Bg.

Now, we show that .2 is a contraction. Let x, y € Bg. Then, for ¢ € J, we have

|2x(0) — 2y(1)| < (6= )P (5. x(s)) — his. y(s))Ids
. lr(mf

m 1 ¢
Lollx — — [ -9t d
< Lyl y”;nﬂi)/l(’ 9P 1ds

< Lollx— ynZ F(ﬁ

Hence, by the given assumption (4.4), .7 is a contraction.
Thus all the assumptions of Krasnoselskii fixed point theorem (Theorem 1.2) are
satisfied, which implies that the problem (4.1) has at least one solution on J. a

Example 4.1 Consider the following mixed Hadamard and Riemann-Liouville
fractional integro-differential initial value problem:

p |x()| + 3
sin(r log 1)x(s)
3(s2+1)

3
D'/* (x(t) - Zlﬂfh,-(t,x(;))) - % L Wit loghlx(®)]

+(1+10gt)/ ds, te[l,el/z],
1

x(1) =0.
(4.7)
Herea = 1/4, 81 =2/5, 8> =3/5,B3 =4/5,m=3,T = ¢"/?, and

e! |x]| 1 1 2(logt) .

+ logt sin(rr log ¢
(«f g)|x|+y(1+logt)’ o(ts) = (log 1)

8(t.x.) = I+ 3 N

Using the given values, we have g9 = 1/6, |hi(t,x) — hi(t,y)] < (1/3)|x — ¥,
i = 1,2,3, |g(t,x,y)| < (1/2) + 24/t + (1 + logt)|y| which satisfy (4.1.1)-
(4.1.3) with Ly = (1/3), v(t) = (1/2) + 24/t and pu(r) = 1 + logt.

" (T — 1P
We can show that y = 5.059974208, Lo » ~ —————
= I+

Y (log T)*

= 0.580837503 < 1.
ol | s+ 2

= 0.856880869 < 1 and
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Therefore, by Theorem 4.1, the problem (4.7) has at least one solution on
[1,e'/?].

Theorem 4.2 Assume that h; : J xR — R, i = 1,2,...,m, are continuous
functions satisfying the condition (4.1.1). In addition, we assume that:

(4.2.1) |g(t.x,y)—g(t.x,y)| < Li|x—X|+La|y—y|, YVt € J, L1, L, > 0, x,%,y,y € R.

Then the problem (4.1) has a unique solution if

(T — 1) (log T)* y (log T)*
Z TBi+1) LlF(a +1) +Lago [F(a) o+ 1)] <1

Proof Let us fix sup,e(; 77 [8(2,0,0)[ = N, sup,eqy 1 |hi(1,0)| = Ki, i = 1,2,....m
(T-1nP | (ogT)"
re+1 Fa+1)
show that FB, C B,, where B, = {x € E |lx|| < r} with the operator F : E — E
defined by

Then, we

and choose r >

M
e where M = ZK

1 ! ol ds “
- - - Biy,.
(FI0) = s [1 (logs) (5. x(5). Kx()~ +;1 hit,x(1)), 1 €J.
(4.8)
For x € B,, we have
(Fx)(1)]
_ oBi—1
<13 lr(ﬁ)/u 9P (5, x()Ids
ds
e / tog *) |g(s,x(s),Kx(s))|s§
EIRDS > F(ﬁ) / (6= )P (i, x(5)) — hi(s. )] + hi(s. 0))ds
L[ ol d
e (108 ) " (0.0 K6 = 60,001+ e(s.0. 0)|)Ss}
(T —1fi (log T)* 14 (log T7)*
< Zif(ﬁz‘f- 1)(L0r+K)+(L1r+N)F(a+ D + Logor [r( ) + TatD 1)]
=Ar+M<r,

and hence || Fx| < r, which implies that FB, C B,.
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Now, for x,y € E and for each t € J, we obtain
|(Fx) (1) — (Fy)(1)

< sup
te[l1,T]

m ; ! _sﬂi—l (5. () — Ti(s s .
;F(ﬁi)/]“ )P hi(s.x(5)) — his. ¥(s))|d.

! t AN ds
+ @ J, (10g ;) lg(s, x(s), Kx(s)) — g(s, y(s). Ky(s))|?§

llx =yl

2{: (T-l)m ; (og )" ‘L 0[ y (log T)* ]

TG+D  MTe+) F@ T@+l

Therefore ||Fx — Fy|| < Allx —y||. As A < 1, F is a contraction. Thus, the
conclusion of the theorem follows by the contraction mapping principle (Banach
fixed point theorem). O

Example 4.2 Consider the following mixed Hadamard and Riemann-Liouville
fractional integro-differential initial value problem:

4 2
pl/2 (x(,) - Z[ﬂihi(z,x(t))) = 10(11+ 2) (x (?il)lc(()t')xl(m)

i=1
1 t ]—stx(s) 3
6 /; (1+l)(1+|cos(ns/2)|)ds+’ re(l.el,

x(1) =0.
4.9)

Herea = 1/2,8, =1/2,8,=3/2,83=5/2,4=7/2, m =4,T = ¢, and

1 —2t
hy(t, — 41 , ho(t,x) = i ,
1(t,x) = 200 (1 T + ) |x|, ha(t,x) sin |x|
1 _ 1 |x|

hy(t,x) = ———tan" ! |x|, ha(t,x) = — ,
) = S ogn W Wl M) = 35 (t+|x|)
(toxy) = 1 x* + 10]x] +l+§

S =100+ U5+ o 6 ¥

el—st
p(t,s) =

(1 4+ + |cos(ms/2)])

With the given data, we find that 99 = 1/2, |h;i(t,x) — hi(z,y)| < (1/10)|x — y|,
i = 1’2’3’4’ |g(t7x7y) - g([,)_C,)_))| = (1/10)|x - )_C| + (1/6)|y - 5]| which
satisfy (4.1.1) and (4.2.1) with Ly = (1/10), Ly = (1/10) and L, = (1/6).
Since fol u e "du = /m erf(1), where erf(:) is the Gauss error function, we
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have y = 4.06015694. Hence, we obtain A = 0.88873633 < 1. Therefore, by
Theorem 4.2, the problem (4.9) has a unique solution on [1, ¢].
Our final existence result is based on Leray-Schauder nonlinear alternative.

Theorem 4.3 Assume that g : J x R> — R is a continuous function and the
following conditions hold:

(4.3.1) there exist functions p1,p> € C(J,RT), and a nondecreasing function v :
R* — R* such that (1, x,y)| < pr(®)¥ (Ix)) +p2(0)|y| for each (t,x,y) €
J x RZ;

(4.3.2) there exist functions q; € C(J,RT), and nondecreasing functions £2; :
R* — RY such that |hi(t,x)| < qi(£)2;(|x]) for each (t,x) € J xR, i =
1,2,....m

(4.3.3) there exists a number My > 0 such that

1 o
(1 — Ipaloo [ 7l + 205 ) Mo

(log 7)*
I'e+1)

> 1,

Z F(ﬁl ||611||9(M0)+||P1||1/f( B

logT a
. - 14 (log T)

thy =T *~Le~Udu, and <1
with y /0 u*" e "du, and ||p2||¢o |:F(oz) + Tt )

Then the problem (4.1) has at least one solution on J.

Proof Consider the operator F defined by (4.8). It is easy to prove that F is
continuous. Next, we show that F maps bounded sets into bounded sets in E. For a
positive number p, let B, = {x € E : |x|| < p} be a bounded set in E. Then, for
each x € B,, we have

< - 1 ' — /31'_1 .
(F0)(0)] < ;—m@» /1 (1 — )P | (s. x(s))|ds
1o a1 d
*W / (102 )" lgts.x(0) Kn(s)

(log T)*
Z F(ﬂ, = l)nq,umm ey O Fe

log T)“
+lp2llpop [F)(/a) + 15(004g+)1)}

Thus,

(log T)*

1P| < Z r(ﬁ, = 1)||ql||9(r> v O e

log T)*
Hpsloop | 1os + 2
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Now, we show that F maps bounded sets into equicontinuous sets of E. Let
t1,t, € J witht; <1, and x € B,, where B, is a bounded set of E. Then, we have

I(FX)(tz) — (Fx)(0)]

/ (12 — )P hy (s, x(s))ds — / (fr — )P i (s, x(s))ds

F(/S) F(ﬂ)

1 2 15 a—l ds
+ m[ (log ;) g(s,x(s),Kx(s))?

1 a—1 d
i s ]
Z %Q O 1oy — 1+ 16— 1P — (0 — 1]
N Ip1llY () + [Ip2llpop(T — 1) [[(log ,)* — (log 11)®| + 2(log(t2/11))"].

I'le+1)

Obviously the right hand side of the above inequality tends to zero, independently
of x € B, as t — t; — 0. Therefore it follows by the Arzeld-Ascoli Theorem that
F : E — E is completely continuous.

The result will follow from the Leray-Schauder nonlinear alternative once we
have shown the boundedness of the set of all solutions to equations x = AFx for
A€ [0, 1].

Let x be a solution. Then, for ¢t € J, following the computations used in proving
that F' is bounded, we obtain

0= X1 Va2 + 1 ST

1 o
Hpzllied | s + 1

Consequently, we get

1 o
(1= trallon | 25 + 22 ]

Y (log 7)*
Xl: ﬁlH)llq,IIfZ(IIXIIH Il (Il

<1
I'a+1)
In view of (4.3.3), there exists M, such that || x| # M. Let us set

={xeE:|x|| <My+1}.



4.3 Mixed Hadamard and Riemann-Liouville Fractional Integro-Differential. . . 95

Note that the operator F : U — E is continuous and completely continuous. From
the choice of U, there is no x € dU such that x = AFx for some A € (0, 1). Hence,
by the Leray-Schauder alternative (Theorem 1.4), we deduce that F' has a fixed point
x € U which is a solution of the problem (4.1). O

Example 4.3 Consider the following mixed Hadamard and Riemann-Liouville
fractional integro-differential initial value problem

5
D! (x(t) =21t x@)) =52 (50 +3)

i=1
el /t 1 + | sin st
3 1 7 + 3st

x(s)ds, t € [1,63/2],

x(1) =0.
(4.10)

Here « = 3/4, 81 = 1/2, B, = 3/4, 85 = 5/4, B4 = 3/2, B85 = 7/4, m = 5,
T = ¢3/? and

1
hi(t, ) = ( - T ). i=1.2.3.45,
i+2logt) \24 +i

1 log ¢ 1 el 1 + |sin7wst
( g +_)+y _ 1+ |

t,, == tv
g(t.x,y) T2\ 3 Y13 @(t,s)

37 T+ 3st

With the given data, we find that ¢y = 1/5, |g(t.x,y)| < (1/(1 + 2*))((1/2)|x| +
(1/2)) + (7' /3)yl, [hi(r, 0] < (1/( + 21ogn)(|x|/(24 + D), i = 1,2,3,4,5,
which satisfy (4.3.1)~(4.3.3) with p;(t) = 1/(1 + 2¢2), ¥ (|x]) = (1/2)(|x| + 1),
pa(t) = e'7/3, qi(t) = 1/(i + 2logt), 2i(]x]) = |x|/(24 + i), i = 1,2,3.4,5.
Further, we find that y = 4.681329240, ||p1|| = 1/3, Ip2ll = 1/3, llgill = 1/i,i =
1,2,3,4,5, and ||p2| /@0 [% + 1(1((’5?:)] ~ 0.3529974 < 1. Hence there exists a

positive number My > 1.888596954. Therefore, by Theorem 4.3, the problem (4.10)
has at least one solution on [1, ¢%/?].

4.3 Existence Results for Mixed Hadamard
and Riemann-Liouville Fractional Integro-Differential
Inclusions

In this section, we consider the following mixed Hadamard and Riemann-Liouville
fractional integro-differential inclusions:

m

D* (x(t) - Zlﬂihi(t,x(t))> € F(t,x(t),Kx(1)), teJ:=[1,T),

i=1

4.11)
x(1) =0,
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where a, 1P, hi,i = 1,2,...,m, Kx are as in problem (4.1), and F : J x RZ —
Z(R) a multivalued map, (Z(R) is the family of all nonempty subsets of R).

Definition 4.1 A function x € €' (J,R) is called a solution of problem (4.11) if
there exists a function v € L'(J,R) with v(¢) € F(t,x(1), Kx(f)), a.e. on J such that
x(1) =0and

1 t o1 ds " )
x(f) = Ta)/l (log E) v(s)? + ;Iﬂ'hi(t,x(t)), relJ

4.3.1 The Upper Semicontinuous Case

Our first existence result, for the initial value problem (4.11) deals with the convex
valued right-hand side of the inclusion and is based on Krasnoselskii’s fixed point
theorem for multivalued maps (Theorem 1.16).

Theorem 4.4 Assume that (4.1.1) and (4.1.2) hold. In addition, we suppose that:
(4.4.1) there exist functions v, u € C(J,R™) such that

£, x, y)| := sup{[v] 1 v € F(t,x, y)[} < v(®) + p@)]yl,

14 (log T)*
I'@)  T(+1)

Y(t,x,y) € J x R? with <p0||u|||: j| < 1, where

sup,e; (1) = [lp|l and
logT
y=T [ e du. (4.12)
0

Then the problem (4.11) has at least one solution on J, provided that

(T —1)fi
Z TG1T <1. (4.13)

Proof Define an operator 2f : E — Z(E) by

hekE:

= 1 ! oa—1 d m
2r(x) h(t) = m/] (log L—z) v(s)?s + ;ﬂ"hi(t,x(t)) (4.14)

forv € Sg,.
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Setting sup,¢; v ()| = |[v]|, sup,e; |6:(D)] = [|6i]l, i = 1,2,...,m, we consider
Br ={x € C(J,R) : ||x|| < R}, where

(- -DFf L (logT)" y ., (ogT)
R> (; e+ S 1)IIUII)/(1—¢0|IMII [+ 1))

We define the operators 2 : Bg — E by

2x(1) = ; %ﬂ) /1 t(t — )P hi(s, x(s))ds, t e,

and a multivalued operator .7 : Bx — Z(E) by

Tx(t) = %hEE:h(t):%[(IOgg)

In this way, the problem (4.11) is equivalent to the inclusion problem u € Qu+ Ju.
We show that the operators £ and .7 satisfy the conditions of Theorem 1.16 on Bg.

First, we show that the operators 2 and 7 define the multivalued operators
2,7 : Bg - P¢p(E). We prove that 7 is compact-valued on Bg. Note that
the operator .7 is equivalent to the composition .Z o Sy, where .Z is the continuous
linear operator on L (/,R) into E, defined by

a—1 ds
v(s)—, v € Spy
s

L)) = %a)/lt (1og f)ol_1 v(s)?.

N

Suppose that x € Bg is arbitrary and let {v,} be a sequence in Sg,. Then, by
definition of Sr,, we have v,(t) € F(t,x(t), Kx(t)) for almost all + € J. Since
F(t,x(t), Kx(t)) is compact for all + € J, there is a convergent subsequence of
{v, (1)}, (we denote it by {v, ()} again) that converges in measure to some v(f) € Sg,
for almost all # € J. On the other hand, .Z is continuous, so .Z(v,)(t) = Z(v)(¢)
pointwise on J.

In order to show that the convergence is uniform, we need to establish that
{Z(v,)} is an equi-continuous sequence. Let 1,1, € J with #; < f,. Then, we
have

|$(vn)(t2) - g(vn)(tlﬂ

F(la) /ltz (log %)ail vn(s)? - F(la) /ltl (log %)ail vn(s)?

_ VI llllooR(T = 1)
- I'oa+1)

[[(log t2)* — (log #)*| + 2(log(t2/11))"].
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We see that the right hand of the above inequality tends to zero as t, — #;. Thus,
the sequence {-Z(v,)} is equi-continuous and by using the Arzela-Ascoli Theorem,
we get that there is a uniformly convergent subsequence. So, there is a subsequence
of {v,}, (we denote it again by {v,}) such that £ (v,) - Z(v). Note that, Z(v) €
Z(Sr.). Hence, 7 (x) = Z(SF.) is compact for all x € Bg. So .7 (x) is compact.

Now, we show that .7 (x) is convex for all x € E. Let 71,2, € 7 (x). We select
fi.f> € Sk such that

1 ! NG ds
Zi(f)=m/l (logg) fi(S)?» i=1,2,
for almost all r € J. Let 0 < A < 1. Then, we have
o+ (=020 = —— [ 2 1= 0he %
P+ (=220 = 1 [ (o) RAG + 0 -BEIT

Since F has convex values, so Sr, is convex and Afi(s) + (1 — A)f2(s) € Sp. Thus
A+ (1 =Nz € T(x).
Consequently, .7 is convex-valued. Obviously, 2 is compact and convex-valued.

Next, we show that 2(x) + 7 (x) C Bg for all x € Bg. Suppose x € Bg and
h € 2 are arbitrary elements. Choose v € Sg, such that

1 t PN d o
h(t) = T(X)/l (log ;) v(s)?s + ;1’3%1’(% x(1)).

for almost all ¢ € J. Hence, we get

t

- 1 ! _ NG ds
01 = 3 5 [ =9 s sl + s [ (1o ) ol S

< - ; t _ O\Bi—1p.
—;r(ﬁi)/](t P71 16,(s)ds

l t t a—1 ds
+W/ (log ;) (V@) + [©IIKx(s)]) —

(log T)* Y (log )
ZF(ﬂ, o+ s v+ sl | s + S0

<R.

Thus ||#|| < R, which means that 2(x) + .7 (x) C By for all x € Bg.
The rest of the proof consists of several steps and claims.
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Step 1:  We show that 2 is a contraction on E. This is a consequence of (4.1.1).
Indeed, for x,y € E, we have

12x(1) — 2y(0)] < ; ﬁ /1 (1= 5P (s x(8)) = s, y(6)) s

< — - L ' — Bi—1
< Lol y”;r(ﬂi)/l“ 5P lds

m (T—l)ﬁ’
Lo|lx — —_—
< Lollx yn;wim

Hence, by the given assumption (4.13), 2 is a contraction.
Step 2: 7 is compact and upper semicontinuous.
This will be established in several claims.

CLAM I: . maps bounded sets into bounded sets in E. For each h €
T (x), x € Bg, there exists v € S such that

h() = % /ll (1og g)a_l v(s)?.

Then, we have

(log 7)*

hl| <
I ”_F(oe+1)

y (log 7)*
vl + IIMllwoR[p(a) + Ia+ 1)]

and thus the operator .7 (Bg) is uniformly bounded.
CLAM II: .7 maps bounded sets into equi-continuous sets. Let Ty, 7, € J with
71 < 1 and x € Bg. Then, we have

|7 x(12) — T x(11)]

Ay e

_ IVl + llll9oR(T = 1)
- IM'o+1)

[|(log 72)* — (log 71)*| + 2(log(z2/71))"],

which is independent of x, and tends to zero as 7, — t; — 0. Thus, 7 is
equicontinuous. So .7 is relatively compact on Bg. Hence, by the Arzela-
Ascoli Theorem, .7 is compact on Bg.

In our next step, we show that .7 is upper semicontinuous. By Lemma 1.1, .7
will be upper semicontinuous if we establish that it has a closed graph, since
7 is already shown to be completely continuous.
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CLAM IIL: .7 has a closed graph. Let x, — x«,h, € J(x,) and h, — h.
Then, we need to show that A, € 7 (x«). Associated with h, € 7 (x,), there
exists v, € Sr,, such that for each r € J,

1 ! NG ds
i = == [ (10 5) v 2.
0= 1 | (0ef)" 0.0
Thus it suffices to show that there exists v« € Sp,, such that for eacht € J,

hy(t) = % /ll (log E)a_l v*(s)%.

Let us consider the linear operator @ : L!(J,R) — E given by

f»@@@zﬁ%[ﬁ@gwb@?

N

Observe that

I (6) = ()] = -

.ﬁal]mﬁflwm»wgm?uea

asn — oo.
Thus, it follows by Lemma 1.2 that & o Sg, is a closed graph operator. Further,
we have that h,(f) € @(Sky,). Since x,, — x,, we have

for some v« € Spy,. Hence 7 has a closed graph (and therefore has closed values).
In consequence, the operator .7 is upper semicontinuous.

Thus, the operators .2 and .7 satisfy all the conditions of Theorem 1.16 and
hence its conclusion implies that x € 2(x) + .7 (x) is a solution in B,. Therefore
the problem (4.11) has a solution in B, and the proof is completed. O

4.3.2 The Lipschitz Case

Now, we prove the existence of solutions for the problem (4.11) with a nonconvex
valued right hand side by applying a fixed point theorem for multivalued maps due
to Covitz and Nadler (Theorem 1.18).
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Theorem 4.5 Let (4.1.1) and the following conditions hold:

(4.5.1) F :J xR* — P,(R) is such that F(-,x,y) : J = P.,(R) is measurable
foreach x,y € R;

(4.5.2) Hy(F(t,x,y),F(t,x,y)) < m(t)(|x — x| + |y — ¥|) for almost all t € J and
X%,y € Rwithm € C(J,RT) and d(0, F(,0,0)) < m(t) for almost all
trel.

Then the problem (4.11) has at least one solution on J if

1)/3,'

(log T)*
F(ﬂ F)

IIMIIF( n 1)(1 +oo(T - 1)) +LoZ

Proof Observe that the set Sp, is nonempty for each x € E by the assump-
tion (4.5.1), so F has a measurable selection (see Theorem II1.6 [57]). Now, we show
that the operator §2r, defined by (4.14), satisfies the assumptions of Theorem 1.18.
To show that 2¢(x) € P (E) for each x € E, let {u,},>0 € 2r(x) be such that
u, — u (n — o0) in E. Then u € E and there exists v, € Sr,, such that, for each
tel,

a—1

1 ! t ds  ~— g
M,l([) = m/; (lOg E) Un(s)? + ;]ﬁ'h[(l,xn(t)).

As F has compact values, we pass onto a subsequence (if necessary) to obtain
that v, converges to v in L'(J,R). Thus, v € Sr.. and for each r € J, we have

t a—1 d mn
va(t) = (1) = ﬁ /1 (log é) v(s)?s + 3" Pihy(e x(1)).
i=1

Hence, u € 2p(x).

Next. we show that there exists § < 1 (8 := |m]|| ;l((’i_?;(l + (T — 1)) +
—1)Bi
Loy m, gﬁll)rl)) such that

Hy(£2p(x), 2F (X)) < §||x — X|| foreach x,x € E.

Let x,x € E and h; € £2r(x). Then there exists v (¢) € F(t,x(t), Kx(¢)) such that,
foreacht e J,

a—1

1 ! d “
hy(f) = m/l (10g§) vl(s)?s—i—;Iﬂ"h,-(t,x(t)).

By (4.5.2), we have

Hy(F(t,x,Kx), F(t,x,KX)) < m(t)(|x(t) — x(®)| + |Kx(t) — Kx(?)]).
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So, there exists w € F(t, x(¢)) such that
[v1(®) —wl| < m@)(Ix(1) — x(0)| + [Kx(1) — KxX(1)]). t€J
Define U : J — P (R) by
U@0) = {w e R |vi(1) —w| = m(0)(Ix(2) — x(1)] + |Kx(2) — Kx()])}.

Since the multivalued operator U(¢) N F(t,x(¢), Kx(¢)) is measurable (Proposi-
tion II1.4 [57]), there exists a function v,(¢f) which is a measurable selection for
U. So vy(t) € F(t,x(t),Kx(t)) and for each t € J, we have |v(f) — vy(#)| <
m(t)(|x(r) — x(0)| + [Kx(1) — Kx(1)]).

For each t € J, let us define

m

ha(t) = %/} (1og g) Uz(s)— + Zlﬂ'h (1, X(1)).

Thus,
1 a—1
0 = ha0] = s [ (10 E)" 1) =021
+§jﬁwunanr—mmxmm
i=1

< iy og D™ )3
_wm%w+na+%w D)llx— |
+ OZF(ﬂ +1) — x|

Hence,

(log T7)*

hy —hy|| <
I = ol < 3l 5=

lml| =———5 (1 + do(T — 1))

[l = xII.

+L
°er+n
Analogously, interchanging the roles of x and X, we obtain

(log 7)*

Fag @ =1)

Hy(2r(x), 2p(x)) < 1§ [Im]|

— x|

+MZ&W&U
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Since §2r is a contraction, it follows by Theorem 1.18 that 2 has a fixed point
x which is a solution of (4.11). This completes the proof. |

4.3.3 Examples

Example 4.4 Consider the following mixed Hadamard and Riemann-Liouville
fractional integro-differential initial value problem

3
D'/? <x(t) — Zl(2i+l)/2hi(t,x(t))) € F(t,x(r), Kx(r)), te[l, e,

i=1

x(1) =0,
(4.15)
where
logt |x]| tan~! || -
hi(t,x) = — tx) = ——, h(t,x) = — .
00 = ST w209 = B0 10gn B0 = 5y sinkd
(i) Consider the multivalued map F : [1,¢] x R x R — Z(R) given by
_ 2 r—
x— F(t,x,Kx) = |:(t + 1)3 x || | e4 /1 COS(Ts)x(s)ds,
t 2 tr—
/ cos ( s)x(s)ds .
2+10gt 2
(4.16)

Here o = 1/2, 81 = 3/2, B, =5/2, B3 =7/2, m = 3, T = e. With the given
data, we find that @o = 1/2, |h;i(t, x) — hi(t,y)| < (1/25)|x —y|, i = 1,2,3,
which satisfies (4.1.1) with Ly = 1/25. Since fol w2 tdy = Jmerf(1),
where erf(-) is the Gauss error function, we have y = 4.06015694. For f € F,
we have

|x| e’ 1y _» 1
< 2+ 1 —K|x|, t+ = i —K
[f|_max(( + )3+|x|+ 4 g \/—+2 ¢ +2+logt g

| Kx|

2
S+ 14—
- 2 4 logt

Thus

[yl

”F(tvxvy)” = Sllp{lf| vf € F(tvxvy)} = tz +1+—,
2+ logt
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Y(t,x,y) € [1,e] x R? withv(f) = 2 + 1, u(t) = 1/(2 + logt). Then, we have

ool | =7 + 998D 1 _  ¢s47603548 < 1.
) T@+1)

Hence, (4.4.1) is satisfied. It is easy to verify that |h;(z,x)| < (logt)/25,
|ha(t,x)| < 7/(58(1 + logt)) and |hs(t, x)| < 2¢~'/21. In addition, we can
show that

T —1)b
LOZ ; = 0.1372254755 < 1.
= Iri+1

Thus all conditions of Theorem 4.4 are satisfied. Therefore, by the conclusion
of Theorem 4.4, the problem (5.21) with F(¢, x, Kx) given by (4.16) has at least
one solution on [1, ¢]

Let F : [1,¢] x R? — Z(R) be a multivalued map given by

x|
(V2 + log 1)2(3 + |x])
+ ! i
— SIN
(V2 +log1)?

x — F(t,x,Kx) = [0

t
e V' x(s)ds

1
+ 5] 4.17)

Then, we have

2 1
sup{|x| : xe F(t,x,Kx)} < —— + —,
plll X € Fln k) = o2t g

and

Hu(F(t,x, Kx), F(t, %, K¥)) < (Ix — %| + |Kx — K¥|) .

1
(V2 + log1)?

Let m(r) = 1/(v/2 + logr)?. Then, we have Hy(F(t,x, Kx), F(t, X, KX)) <
m(t)|x — x| with d(0, F(z,0,0)) = 1/9 < m(f) and ||m| = 1/2. Also

—Df
F(ﬁ 1)

(log T)*

= 0.9437742360 < 1.
rle+1)

lm|| === 1+ ¢o(T — 1)) + Lo Z

Thus all the conditions of Theorem 4.5 are satisfied. Therefore, by the
conclusion of Theorem 4.5, the problem (5.21) with F(t, x, Kx) given by (4.17)
has at least one solution on [1, e].
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4.4 Existence Result via Endpoint Theory

In this section, we consider the following mixed initial value problem involving
Hadamard derivative and Riemann-Liouville fractional integrals:

D* <x(t) — Zlﬂ"hi(t,x(t))> € F(t,x(t)), teldJ:=][1,T], 4.18)
i=1 ’

x(1) =0,

where D denotes the Hadamard fractional derivative of order o, 0 < o < 1, I?
is the Riemann-Liouville fractional integral of order ¢ > 0, ¢ € {B1, B2, ..., Bu}>
F:JxR — ZR), (Z(R) is the family of all nonempty subsets of R), h; €
C(J xR, R) with #;(1,0) =0, i =1,2,...,m.

Definition 4.2 A function x € €' (J,R) is called a solution of problem (4.18) if
there exists a function v € L!(J,R) with v(f) € F(t,x(¢)), a.e. on J such that
x(1) =0and

1 t Fre—1 ds .
x(1) = Ta)/l (log ;) v(s)? -I-;Iﬂ‘hi(t,x(f))’ rel.

Define an operator N : E — Z(E) by

heE:
A G

_ t 1 5 m
N@ =13 e = ﬁ /1 (1og -) v(s)d? + 3 P, u(r)
i=1

(4.19)
S

for v € Sk, where Sg, denote the set of selections of F' defined by

Spu:=1{v e L'(J,R) : v(t) € F(t,u(r)) forae.t € J}.

Theorem 4.6 Suppose that ¢ : [0,00) — [0, 00) is a nondecreasing upper semi-
continuous mapping such that liminf,—, oo (t — ¥ (¢)) > 0O and ¥ (¢t) < tforallt > 0.
Also, let F : J xR — 2., (R) be an integrable bounded multifunction such that
F(,u): J = Pe(R) is measurable for all u € R. Assume that there exist functions
7,7 € C(J, [0, 00)) such that

(log 7)*

FEDL) 0w uo - v,

Ha(F(t,u(®) = F(t, v(@) < &1 (|In]

(T — 1)Fi

TG Ao = o),

Jhite,w) = it v)] < eI Y
i=1
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where sup,e; |k (t)| = ||k|| with k = 0,7], and &1, &, are positive constants such that
&1 + & < 1. If the multifunction N has the approximate endpoint property, then the
inclusion problem (4.18) has a solution.

Proof We show that the multifunction N : E — Z(E), defined by (4.19), has an
endpoint. For this, we prove that N(u) is a closed subset of H(F) for all u € E.
Since the multivalued map ¢ + F(t, u(t)) is measurable and has closed values for
all u € E, so it has measurable selection and thus, Sg, is nonempty for all u € E.
Assume that u € E and {z,},>1 be a sequence in N () with z, — z. Forevery n € N,
choose v, € S¢,, such that

1 ! o1 ds G
2, (f) = m/l <log ;) vn(s)? + ;Iﬂ'h,»(t, u, (1)), tel.

By compactness of F, the sequence {v,},>1 has a subsequence which converges
to some v € L!(J). We denote this subsequence again by {v,},>;. It is clear that
v € S, and for all ¢ € J, we have

z.(t) = z(t) = % /lt (log £>a

This shows that z € N(«) and so N is closed-valued. On the other hand, N(u) is
a bounded set for all u € E as F is a compact multivalued map.

Finally, we show that H;(N(u), N(w)) < ¥ (||lu — w||). Let u,w € E and h; €
N(w). Choose v, € Sg,, such that

1 v(S)% + ;Iﬁihi(t7 u(r)).

1 t a—1 d mn
hy (1) = m/l (log 2) vl(s)?s + ;Iﬁihi(f» w(1)),

for almost all ¢ € J. Since

(log T)*

) (= wio))

Ha(F(u() = F(t,w(0) = 1 (1]

for all ¢t € J, there exists z € F(¢, u(t)) provided that

(log T)* \~

010 =1 = e1(lnll ) 700 () = (o)

for all ¢ € J. Now, we consider the multivalued map U : J — Z(R) as follows:

(log T)*

S s) 0w =)

U@ =JzeR: @ -z <l
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(log T)*
I'a+1)
tion U(-) N F(-, u(+)) is measurable. Choose v,(¢) € F(t, u(t)) such that

Since v; and ¢ = & <||n|| ) Ny (Ju — w|) are measurable, the multifunc-

010 = 2(0)] = —— oY () = w(0)
e

for all ¢ € J. We define the element h, € N(u) by

a—1

ho(t) = — /[(10 ’) v()ds—i-i]ﬂ'h(t (1))
= =~ - S)— ! i ’u ’
? I'w) J g S pae

for all t € J. Thus, one can get

|y () — ha(8)] <

t a—1 d
), (o) @ — eI

+ ) 1Pt () — it w(t))]

i=1

Y (llu—wl)

(1) -SoE D)7y Loe D
N+ T+1)

+82<||77||ZF(ﬂ +1)) I ||Zr(ﬂ +1)wnu—vn)
= Y (lu—w).

Hence,

171 = hall < Y (lu—wi]).

Therefore Hy(N(u), N(w)) < ¥ (|lu — w||) for all u, w € E. By hypothesis, since
the multifunction N has approximate endpoint property, by Theorem 1.19, there
exists u* € X such that N(u*) = {u*}. Consequently, the problem (4.18) has the
solution #* and the proof is completed. O

Example 4.5 Consider the following mixed Hadamard and Riemann-Liouville
fractional integro-differential problem

4 .
D'/2 (x(t) - le’z“h,.(r,x(t))) € F(t,x(), te]l,e,
i=1

x(1) =0,

(4.20)
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where

_ 1 x(1)
il K(0) = (i+ ﬁlogt) (25 + i) '

Clearly 7(r) = 1/(26(1 + +/3log 1)) with ||| = 1/26. Let F : [1,e] x R — Z2(R)
be a multivalued map given by

2 14k 3
Setting 1(r) = (3logr)/2,t € [1,e], we have ||n| = 3/2. Choosing ¥ (y) = y/2,
it is clear the function ¥ is nondecreasing upper semi-continuous on [1, e] such that
liminf, oo (y — ¥ (¥)) > 0 and ¥ (y) <y forall y > 0. Also we have

421

3logt 2
x—>F(t,x)=|:O, o8 il ]

Inll(log T)*\ 1 3log ¢ ]
F(QH)) SE(x =),

for x, x € R.Let X = C([1,e], R). Let N : X — £?(X) be an operator defined by

Hy(F(t. x) — F(1.5)) < %gt — 3 < (

N(u) = {z € X : there exists v € Sg, such that z(f) = w(¢) forall t € [, ¢]},

where
1 ! A G ds “a—
W) = s /1 (log2) v +i=211ﬁ'h,-(r,w(r>), rell.el.

Since sup,ey) lull = 0, thus infyex sup;ey(, lu — sl = 0. Consequently,
the operator N has the approximate endpoint property. Thus all the conditions
of Theorem 4.6 are satisfied. Therefore, by the conclusion of Theorem 4.6, the
problem (4.20) with F(¢, x) given by (4.21) has at least one solution on [1, e].

4.5 Notes and Remarks

Section 4.2 contains the existence and uniqueness results for mixed initial value
problems for fractional differential equations involving Hadamard derivative and
Riemann-Liouville fractional integrals, while the inclusions (multivalued) analog of
the problem considered in Sect. 4.2 is studied in Sect. 4.3. Section 4.4 contains an
existence result for a mixed initial value problem involving Hadamard derivative
and Riemann-Liouville fractional integrals, via endpoint theory. The papers [25, 26]
and [27] are the sources of the work presented in this chapter.



Chapter 5

Nonlocal Hadamard Fractional Integral
Conditions and Nonlinear Riemann-Liouville
Fractional Differential Equations and Inclusions

5.1 Introduction

In this chapter, we develop the existence theory for nonlocal boundary value prob-
lems of nonlinear Riemann-Liouville fractional differential equations and inclusions
supplemented with the Hadamard fractional integral boundary conditions. The key
tool for the present study is the Property 2.25 from [96, p. 113] (see Lemma 1.6).

5.2 Nonlocal Hadamard Fractional Integral Conditions and
Nonlinear Riemann-Liouville Fractional Differential
Equations

In this section, we study existence and uniqueness of solutions for the following non-
linear Riemann-Liouville fractional differential equation with nonlocal Hadamard
fractional integral boundary conditions:

RLqu(t) =f(t,x(t)), re [O’ T]’ (51)
x(0) =0,  x(T) =) aul"x(n), (5.2)

where 1 < g < 2, p.D? is the standard Riemann-Liouville fractional derivative
of order ¢, yI”' is the Hadamard fractional integral of order p; > 0, n; € (0,7),
f [0, T] xR — Rand o; € R,i = 1,2,...,n are real constants such that

Z o nl q—l.
(q— 1)”'
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The uniqueness results are obtained via Banach’s fixed point theorem, Banach’s
fixed point theorem combined with Holder’s inequality and nonlinear contractions.
Existence results are established by means of Krasnoselskii’s fixed point theorem,
Leray-Schauder’s nonlinear alternative and Leray-Schauder’s degree theory. All the
results are illustrated by examples.

n —1

Lemma5.1 Ler A, := T7! — %

: ; (q— 1

o € Ry, € (0,7), i = 1,2,3,....,.nand h € C([0,T],R). Then, the

nonlocal Hadamard fractional boundary value problem of linear Riemann-Liouville
fractional differential equation

£ 01 < g <2 p >0

r.DIx(t) = h(), 0<t<T, (5.3)

subject to the boundary conditions
n
x(0)=0.  x(T) =Y aml"x(n). (5.4)
i=1
is equivalent to the following fractional integral equation

q—1 n
x(t) = reI?h(1) — tA_l (RLIqh(T) - Zai(HIpiRquh)(ni)> . (5.5)

i=1

Proof Using Lemmas 1.4 and 1.5, the equation (5.3) can be transformed into an
equivalent integral equation

x(t) = red9h(t) — 1t — et (5.6)

for ¢1,c; € R. The first condition in (5.4) implies that ¢; = 0. Applying the
Hadamard fractional integral operator of order p; > 0 on (5.6) and using property:

(#IP's771) (1) = (g — 1)7P1197! (see Lemma 1.6), we get
q—1
al"x(t) = (" reI*D) (1) — c1 (g7 ) (1) = (a7 ReI*h) (1) — ¢ G-
q —_ 1

which, together with the second condition of (5.4), implies that

n n g
. i i
R IOR(T) — e T =Y ai(ul” rd"h) () — 1 Y (qj Iy
i=1

i=1

Thus,

= Ail <RLIqh(T) - Zai(HIpiRLIqh)(ni)) .

i=1

Substituting the values of ¢; and ¢, in (5.6), we obtain the solution (5.5).



5.2 Nonlocal Hadamard Fractional Differential Equations 111

Conversely, it can easily be shown by direct computation, that the integral
equation (5.5) satisfies the problem (5.3) and (5.4). This completes the proof. O

Throughout this chapter, for convenience, we use the following notations:

rI®F (5. x(5)) () = /OZ(Z — )7 f (s, x(s))ds,  z € {1, T},

1
I'(o)
fort € [0, T] and

1 nopr AN _ ,
il 76500 = o [ [ (1o 1) =t He s,

where n; € (0,7) fori =1,2,...,n.

Let &y = C([0, T], R) denotes the Banach space of all continuous functions from
[0, 7] to R endowed with the norm defined by ||x|| = sup,e[ 7 [x(¢)[. By Lemma 5.1,
we define an operator &7 : & — & associated with the problem (5.1)—(5.2) as
follows:

(A x) (1) = red?f (s, x(s)) (1)

_ )
_ ’j‘_l (RLqu(s,x(S))(T) - Zai(HlpiRL,qf(s,x<s>)>(ni>) . 6D

i=1

Observe that the problem (5.1)—(5.2) has solutions if and only if the operator <7 has
fixed points.
In the sequel, we set a constant

T4 727! 79! i' -
P = + + ailg ;. (5.8)
I'(g+1)  |[Allg+1) Al g+ 1) =

In the following subsections, we present existence, as well as existence and
uniqueness results, for the problem (5.1)—(5.2).

5.2.1 Existence and Uniqueness Result via Banach’s Fixed
Point Theorem

Theorem 5.1 Assume that:

(5.1.1) there exists a constant L > 0 such that |f (¢, x) — f(t,y)| < L|x —y|, for each
te[0,T) and x,y € R.

If
L) < 1, (5.9)

where @, is defined by (5.8), then the problem (5.1)—(5.2) has a unique solution
on [0, T].
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Proof We transform the problem (5.1)—(5.2) into a fixed point problem, x =

o/ x, where the operator </ is defined by (5.7). Observe that the fixed points of

the operator .7 are solutions of the problem (5.1)—(5.2). Applying the Banach’s
contraction mapping principle, we shall show that .7 has a unique fixed point.

We let sup,jo 7 [f(£,0)] = M < oo, and choose r > 7
— Lo,
/B, C B,, where B, = {x € & : ||x|| < r}. For any x € B,, we have

[(@x)(@)| < sup §reI?If(s,x(5)|() + 7RLIqlf(s x())|(T)
1€[0,T] | A1l

q—1

0 2 el R A .50 )
i=1

<RI (s, x(9) = f (5. 0)] + If (s. O))(T)
T4-1

+mRLIq(lf(s -X(8)) = f (5. 0) + [f (s. OD(T)

q_ n
AT 2 el 56) =501 + 5.0 )
-1
< (L] + MR ()(T) + L] + M);‘—'Rmm(r)

T " ,
(Ll + M) > Jerl R (1) (i)
i=1

T T2q— Tq—] n
={r+M + + ailaPin?
NTFa+n T aire+n |A1|1"(q+1)§| ilg "
= (LV-I-M)(Pl <r.

Thus we get /B, C B,.
Next, we let x,y € &. Then, for ¢ € [0, T], we have

(%) (1) — () ()]
T9— 1

=< redf (5. x(5)) —f (5. y())[(®) + mRLIqlf(s -X(8)) = f (5. y(DI(T)

n

.
+1 D el 6:3(9) =656 )

A £

T4 T2q 1 Tq—l n
=L + + ltilg ™y | llx = yll
(F(q+1) | A1 (g + 1) |A1|F(q+1)§

= L& [lx -yl

to show that
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which implies that ||@/x — &y| < L®;||x — y|. As Ld; < 1,47 is a contraction.
Therefore, by the Banach’s contraction mapping principle, we deduce that <7 has a
unique fixed point which corresponds to the unique solution of the problem (5.1)—
(5.2). The proof is completed. O

Example 5.1 Consider the following nonlocal boundary value problem for a non-
linear Riemann-Liouville fractional differential equation with Hadamard fractional
integral boundary conditions:

3/2 _ sin® (1) ) [x(1)] é
D x(t) = @132 O+ 1 + 7 tel0,3],

X(0) =0, x(3)+ v/5al" (2) LN (5) + B (3) .

5 4 2 2

(5.10)
Here ¢ = 3/2,n = 3, T = 3, a1 = 4/5 an = /3/2, a3 = —+/5,
P = \/5, p = 1, p3 = 1/2, m = 3/4, N = 3/2, ny = 9/4 and

f(.x) = Gin* (o) /(e + 3)*)(|x/(1 + |x) + (v/3/2). Since [f(1,x) = f(1,y)| <
(1/16)|x—y|, the condition (5.1.1) is satisfied with L = 1/16. Further, it is found that
@) ~ 7.239901027, and that L&; ~ 0.4524938142 < 1. Hence, by Theorem 5.1,
the problem (5.10) has a unique solution on [0, 3].

5.2.2 Existence and Uniqueness Result via Banach’s Fixed
Point Theorem and Holder’s Inequality

Theorem 5.2 Suppose that: f : [0, T] x R — R is a continuous function satisfying
the following assumption:

(5.2.1) [ft,x) — f(&,y)| < 8@)|x — |, fort € [0,T], x,y € R and § €
Lz ([0, T],RT), o € (0, 1).

Denote ||§]| = (fOT |8(s)|%ds)" I

T (1—0)1—” T24—0-1 (1—0)““
) +

I'(g9) \q—0o A" (@) \g—0o

79! (1—0)1—0 ‘ Y
+ D leillq =o' <1, (5.11)
A (g) \g—0 p

Yo == [I6]]

then the problem (5.1)—(5.2) has a unique solution on [0, T].
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Proof For x,y € & and for each ¢ € [0, T], by Holder’s inequality, we have
|(x)(1) — (y)(1)]

= rel?lf (s, x(5)) — f (5, y()) (1) + 1

7 |RL1‘Ilf(s -X(5)) = f (s, y(s))[(T)

n

.
i1 7 22 el 6,36 = 556D )

— —5)a7!
= TG )/(r )T 8(s)[x(s) — y(s)|ds

T4~ B
IA | (q) / (T = 5)77"5(s)|x(s) — y(s)|ds

) Z oot [1 ] (02 ™) 6= 050 <yl
< o ([asra) ([ eonta) ey
e OT«T—s)q—l)linds)l_g ([ @ortas) 1
+|T/qx_1| n g, () ([enm )
« /0 S(é(r))édr)a %ux—yn
e (322) T bt i e (322) T e
g (20) ; ro )y (o) S

T4 0 (1—o\'™° T2l [1_g\'™° Ta1 -0\
151 (—) + ( ) N ( )
I'igg\g—o AT (q) \g—0 AT (q) \g—0

x Y leil(g — 0)”"'7?_”} e = yll-

i=1

In view of the condition (5.11), it follows that 27 is a contraction. Hence, Banach’s
fixed point theorem implies that ./ has a unique fixed point, which is the unique
solution of the problem (5.1)—(5.2). The proof is completed. O
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Example 5.2 Consider a nonlocal boundary value problem of a nonlinear Riemann-
Liouville fractional differential equation with Hadamard fractional integral bound-
ary conditions of the form:

! |x(1)] 3
D*x(r) = —5—. 1, te|0,= |,
D x(?) e+ 8 |x(®)|+2 + 2

3 2 3 6
x(0)=0, «x (5) + EHIﬁ/z)C (g) + nHI*/gx (g)

1 3 I 9
a2 2 s (2
51 x(10)+ N ST
(5.12)

Here g = 4/3,n = 4, T = 3/2, a1 = 1/5, a0 = —2/3, a3 = 1//3, 04 =
—7/2, pr = 1/4,py = v2/2,p3 = 6/5.ps = V3, m = 3/10, p = 3/5,
n3 = 9/10 and n4 = 6/5. Since |[f(z,x) —f(z,y)| < (2¢'/(e' + 8))|x — y|, (5.2.1) is
satisfied with §(r) = 2¢'/(e' + 8) and 0 = 1/2. Using the given values, we find that
Yo ~ 0.9380422264 < 1. Hence, by Theorem 5.2, the problem (5.12) has a unique
solution on [0, 3/2].

5.2.3 Existence and Uniqueness Result via Nonlinear
Contractions

Theorem 5.3 Let f : [0,T] x R — R be a continuous function satisfying the
assumption:

(5.3.0) [f(t,x) = f(t.y)| < h(f),%

[0, T] — R™ is continuous and H* the constant defined by

fort € [0,T),x,y > 0, where h :

q—1 q—1

T T
H* = rulW(T) + —— T + 4] 2 Z |otil " R d ().

Then the problem (5.1)—(5.2) has a unique solution on [0, T
Proof We define a continuous nondecreasing function ¥ : Rt — R* by ¥(e) =
H*
£ , Ve >0, such that W(0) = 0 and ¥(¢) < ¢ forall ¢ > 0.

H* 4 ¢
For any x,y € & and for each ¢ € [0, T], by (5.7), we have

(%) (1) — () ()]

q—1

< rd?lf (5. x(5)) — f (s, y()|(1) + r

] ruIf (5. x(5)) — £ (5. y())(T)

ﬁ_l D et 5360 =5 YD)
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I — | ‘1_‘ |x — |
Tq— " , lx —
|A1| Z ot | 1P i1 (h(s)m) (:)
U (lx — 79! YK
< —(”);I* i) (RLI"h(T) + mRLIqh(T) + a0 ; |ai|H1piRLIqh(ni)>
= Y (llx =yl

This implies that || .27 x—.o/y|| < ¥(||x—y||). Therefore .2 is a nonlinear contraction.
Hence, by Theorem 1.11, the operator </ has a unique fixed point, which is the
unique solution of the problem (5.1)—(5.2). This completes the proof. |

Example 5.3 Consider the following nonlocal boundary value problem:

2 |x(7)| 4
D'°x(1) = . 3+ -, t€[0,2],
RL x(2) (12 WOl +1 + 3+ 5 [0,2]
JT 2 2 5/4 4 3/7 3
x(0) =0, x(2) =24IV"x S +§H1 x(3 + 3% 5)

(5.13)

Hereg =7/6,n=3,T =2,a; = 2,05 = 2/3, 03 = /3, p1 = /7, p> = 5/4,

p3=3/7,m =2/5mn =4/3, 13 = 3/2and f(t,x) = (©*|x[/((1+2)*) (Jx| + 1)) +

3t + (4/5). We choose h(t) = t>/4. Then, we find H* ~ 0.6432886158. Clearly,
2

[f(t,x) _f(t’y)| = (I+ 2)2

Ixl = bl ﬁ( =yl )
L+ x| + [yl + [yl | — 4 \0.6432886158 + [x —y| )~

Hence, by Theorem 5.3, the problem (5.13) has a unique solution on [0, 2].

5.2.4 Existence Result via Krasnoselskii’s Fixed Point Theorem

Theorem 5.4 Letf : [0,T] x R — R be a continuous function satisfying (5.1.1). In
addition, we assume that:

(5.4.1) If(,0)] < (), ¥(t,x) €[0,T] xR, and ¢ € C([0,T],R™).
Then the problem (5.1)—(5.2) has at least one solution on [0, T, provided that

T24~ 74! n o
=t ilgPn; | <1 5.14
n= ey A e & (5.14)

Proof Setting sup,e(o 7 ¢(1) = [l¢|| and p > [l@[|®1, where @, is defined by (5.8),
we consider B, = {x € & : ||x|| < p} and introduce the operators ./ and .2, on
B, by
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x(t) = rdf (s, x(s)) (@), 1€][0,T],

1
ﬁwm——i—wa»mmn Zﬁummwmﬂmxm)remry

i=1

For any x,y € B,,, we have

|(12)(1) + (2y) (1)

IA

sup § red?|f (s, x(s))[ (1) + —RLIqIf(S y)I(T)
1€[0.7] [Aq]

Z|Z]MM%JW®ﬂmWH

T4 T24— T~ "
lell + + leilg™"
g+ |All@+1) Al (g +1) ;
= llellPr =< p.

This shows that &/x + @4y € B,. It is easy to check that % is a contraction by
using (5.14).

Continuity of f implies that the operator .<#] is continuous. Also, 7 is uniformly
bounded on B, as

T4
x| < —|l¢l.
Il = oy el

Now, we prove the compactness of the operator <7} .

We define sup(, yejo.7jx5, If(t.x)] = f < oo, and consequently, for 0 < 1,
t, < T, we have

[(1X)(12) — (A1 x)(11)] = T )|/ [(r2 = $)"" = (11 = )7 "1f (s, x(5))ds

/(&—ﬂqf@AQMs

n

f
< —2 Dl —1,]9+ |t -],
_F(q+l)[|2 7+ 165 =5l

which is independent of x, and tends to zero as t, — t; — 0. Thus, & is
equicontinuous. So .27 is relatively compact on B,. Hence, by the Arzela-Ascoli
Theorem, <7 is compact on B,. Thus, all the assumptions of Theorem 1.2 are
satisfied. So the conclusion of Theorem 1.2 implies that the problem (5.1)—(5.2)
has at least one solution on [0, 7. |
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Example 5.4 Consider the nonlocal problem for a nonlinear Riemann-Liouville
fractional differential equation with Hadamard fractional integral boundary condi-
tions given by

—f2 .2
2t) |x(®)| r—1
Dy = €SI @D . relo,2x],
r D7 x(D) t+3)?2 @Ol +1  t+1 [0.27]
x(0) =0,
5.15)
3 2 (
x(27) + V3ul'?x (z) + a4 )=
3 4 3
1 4 5
HI4/5)C(7T)+ —HI4/3)C _7T +2H12/3)C —]T .
9 3 3
Here ¢ = 5/4,n = 5, T = 2w, 01 = —+/3, 0 = =3/4, 03 = 1,4 = 1/9,

as; = 2,p1 = 1/2,pp = 3/4,p3 = 4/5, ps = 4/3, ps = 2/3, m = =n/3,
N =2m/3,n3 =m, 04 =4mw/3,n5 = 57/3,and f(t,x) = (e " sin2(2t)|x|)/(((t+
3)2)(|x| + 1)) + (¢ — 1)/(t + 1). Since |f(t.x) —f(t.y)| < (1/9)|x —y|, (5.2.1) is
satisfied with L = 1/36. Further, we have that y; ~ 0.9518560542 < 1. Clearly,

42
<e’ +|t—1|
-9 t+1°

e sin2(2)  |x(0)] r—1
t+32 |x@|+1 t+1

If(@.x)| =

Hence, by Theorem 5.4, the problem (5.15) has at least one solution on [0, 277].

5.2.5 Existence Result via Leray-Schauder’s Nonlinear
Alternative

Theorem 5.5 Assume that:
(5.5.1) there exist a continuous nondecreasing function ¥ : [0, 0c0) — (0, 00) and
a function p € C([0, T],RT) such that

If@.wl = pOY(lxl) foreach (1.x) €[0,T] xR;

(5.5.2) there exists a constant M > 0 such that
M
yoniple;
where @, is defined by (5.8).
Then the problem (5.1)—(5.2) has at least one solution on [0, T.
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Proof Firstly, we shall show that the operator <7 defined by (5.7) maps bounded sets
(balls) into bounded sets in &. For anumber r > 0, let B, = {x € & : ||x|| < r} be
a bounded ball in &p. Then, for z € [0, T], we have

(7 x) ()]
-1
< sup § redf (s, x(s)|(1) + q_RL]qlf(S x(s)(T)
t€[0,T] |A |

wpl Z letilaI” e If (s, x(5)) | (i)

g—1

= Y (xDretp(s)(T) + W(IIXII)T

A redp(s)(T)

19—t L _
+w<ux||)m > latilul? ke dp(s) (n;)
i=1

T4 TZq 1 qul n
< Ag~Pind
< v (il (F(q,+ 5+ At A S n,),

and consequently,

/x| < ¥ ()llpl|Ps.

Next, we will show that &/ maps bounded sets into equicontinuous sets of &y.
Let 71, 7, € [0, T] with 7y < 7 and x € B,. Then, we have

(/%) (r2) — (#x) (1)

[('L’z — )7 — (r; — )T f (s, x(s))ds + /TZ (12 — $)7f (s, x(5))ds

CH ‘——rl“> G H
%jm—mewm+—ﬂT—meummwm
i=1
=< 1_(1//(_'_)1)[2(72_Tl)q+|fz_771 ”

+m‘—ﬁ”wm[

Al redp(s)(T) + Z |ai|H1piRLqu(s)(ni)]~

i=1

As 1, — 11 — 0, the right-hand side of the above inequality tends to zero
independently of x € B,. Therefore, by the Arzeld-Ascoli Theorem, the operator
oy — & is completely continuous.

Finally, we show that there exists an open set U C & with x # ve/x for v €
(0,1) and x € 9U.
Let x be a solution. Then, as in the first step, we have

@] = v (lxIDIlpl|®1. ¢ €[0T,
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which leads to
x| -
Y (xDllpll@r —
In view of (5.5.1), there exists M such that ||x|| # M. Let us set

U={xeé& : |x|| <M}

Notice that the operator </ : U — & is continuous and completely continuous.
From the choice of U, there is no x € dU such that x = v.eZx for some v € (0, 1).
Consequently, by the nonlinear alternative of Leray-Schauder type (Theorem 1.4),
we deduce that <7 has a fixed point x € U, which is a solution of the problem (5.1)—
(5.2). This completes the proof. O

Example 5.5 Consider the following nonlocal boundary value problem:

2
= + \/m +=1, t€[0,e],
+1 0 204+ x)) 2
1 1 2
x(0) =0, x(e) = EHIﬁ)C (5) - 51—1[‘/§x (5) + ﬁy[ﬁx(l).
(5.16)
Hereq = 6/5,n=3,T =e, a1 = 1/2,0p = =5, 03 = ¥/3,p1 = v/2,p1 = /3,
=B = 12, = 2/3, 15 = 1, and f(1, %) = (1/64)(1 + 2)((2/(|x] +
D)+ (V/x)/ (A + /%)) +(1/2)). Itis easy to find that @; ~ 3.905177250. Clearly,

2 Vil 1)

1
| 2
64( +t)<|x|+1 +2(1+ ,/|x|)+2

1
DPx(f) = —(1 + £
RL x(1) 64( +1)

f (2.0 =

< %(1 + ) (x| + 1).

Choosing p(t) = (1/64)(1 + ) and ¥ (|x|) = |x| + 1, we can show that (5.5.2) is
satisfied for M > 1.048704821. Hence, by Theorem 5.5, the problem (5.16) has at
least one solution on [0, ¢].

5.2.6 Existence Result via Leray-Schauder’s Degree Theory

Theorem 5.6 Letf : [0,T] x R — R be a continuous function. Suppose that:
(5.6.1) there exist constants 0 < k < <Dl_1, and K > 0 such that
lf(t,x) < k|x| + K forall (t,x) €[0,T] xR,

where @, is defined by (5.8).
Then the problem (5.1)—(5.2) has at least one solution on [0, T.
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Proof Consider the fixed point problem
x = ox, (5.17)

where the operator .27 is given by (5.7). We shall prove the existence of at least one
solution x € & satisfying (5.17). Define a ball Bg = {x € & : |x(¢)| < R}, with a
constant radius R > 0, and show that < : Bg — &) satisfies a condition

x # 0.x, Vx € 0Bg, Vo € [0,1]. (5.18)
We set
H(0,x) = 0 x, x €&y, 6 €0, 1].

As shown in Theorem 5.5, the operator 7 is continuous, uniformly bounded and
equicontinuous. Then, by the Arzeld-Ascoli Theorem, a continuous map %y defined
by hg(x) = x — H(f,x) = x — 6./x is completely continuous. If (5.18) holds,
then Leray-Schauder degrees are well defined and by the homotopy invariance of
topological degree, we have

deg(hg, Bg,0) = deg(I — 6.<7, Bg, 0) = deg(h;, Bg,0)
= deg(hg, Br,0) = deg(I,Bg,0) =1 # 0, 0 € Bg,
where I denotes the unit operator. By the nonzero property of Leray-Schauder
degree, hi(x) = x — o/x = 0 for at least one x € Bg. Let us assume that x = 6.97x

for some 6 € [0, 1] and for all ¢ € [0, T] so that

(@] = 10(=/x)(1)]

A

< rdlf (s x()(0) + mml"lf(s X($)[(T)

t"_
|A

2 Z leti 1P R 19| (5. x()) | ()

q—1

(el + KoL (D) + el + M)

IA

reI(1)(T)

q
(k] + K>|TA—| Z &l v 1 () ()

T T4~ 71
< K i —Pi
= )(F<q+1>+|A1|r<q+1> I |r(q+1>z' ol "’)

= (kx| + K)Pr,
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which, on taking norm (sup,jo 7y [x(t)| = [lx[|) and solving for ||x||, yields
Ko,
llxll < :
1 K(pl
Ko, . . .
IfR = I + 1, the inequality (5.18) holds. This completes the proof. O
—kd

Example 5.6 Consider a nonlinear Riemann-Liouville fractional differential equa-
tion with Hadamard fractional integral boundary conditions of the form:

1 . /x | x|
D'x(t) = — (—) 1, te[o,1],
RL x(1) . sin 2X ]+ 1 + [0, 1]

1 3 (5.19)
x(0)=0,  x(1)=34""x (5) — 2,1 (Z) .

Hereq =7/4,n=2,T=1,01 =3, 00 = -2,p1 =1/2,p =3/2,n1 = 1/2,
n, = 3/4, and f(¢t,x) = (1/27)(sin(zwrx/2))(|x]/ (x| + 1)) + 1. Using the given
values @; ~ 1.582207843. Since

1 . ym |x| 1
1,x)] = |— sin (=x) - 1| <- 1,
.0 lznsm(zx) 1 ’—4|X|+
. . . 1 1
(5.6.1) is satisfied with k = 1/4 and M = 1. Note that x = 1 < > ~
1

0.6320282158. Hence, by Theorem 5.6, the problem (5.19) has at least one solution
on [0, 1].

5.3 Nonlocal Hadamard Fractional Integral Conditions and
Nonlinear Riemann-Liouville Fractional Differential
Inclusions

In this section, we study the multivalued variant of the problem (5.1)—(5.2) given by
rDIx(t) € F(t,x(1)), 0<t<T, 1<qg<2,

n (5.20)
x(0) =0, x(T) = ZaiHIp"x(m),
i=1
where F : [0,7] x R — Z(R) is a multivalued map, & (R) is the family of all
nonempty subsets of R.

Definition 5.1 A function x € €2([0, T], R) is called a solution of problem (5.20) if
there exists a function v € L' ([0, T], R) with v(¢) € F(z,x(f)), a.e. on [0, T] such that
Dix(r) =v(t), l <g<2,ae.onf[0,T]andx(0) =0, x(7) =Y ", a;ul’ix(n,).
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5.3.1 The Lipschitz Case

In this subsection, we prove the existence of solutions for the problem (5.20) with a
not necessary non-convex valued right hand side, by applying a fixed point theorem
for multivalued maps due to Covitz and Nadler (Theorem 1.18).

Theorem 5.7 Assume that:

(5.71) F : [0,T] x R — Z,(R) is such that F(-,x) : [0,T] — Z,(R) is
measurable for each x € R,;

(5.7.2) Hy(F(t,x),F(t, X)) < m(t)|x — X| for almost all t € [0, T] and x,x € R with
m € C([0,T],R") and d(0, F(t,0)) < m(t) for almost all t € [0, T.

Then the problem (5.20) has at least one solution on [0, T) if
[ml| @y < 1,

where @ is defined by (5.8).

Proof Define an operator & : & — P (&y) by

B(x)
he 6"0 :
t T
. i e+ [ (T — 5y v(s)ds
g BRERSE T
TA T L F(p)/ / s
for v € Sg,.

Observe that the set Sg, is nonempty for each x € & by the assumption (5.7.1),
so F has a measurable selection (see [57, Theorem III.6]). Now, we show that
the operator A satisfies the assumptions of Theorem 1.18. To show that B(x) €
Z.(8)p) for each x € &, let {u,},>0 € H(x) be such that u,, — u (n — 00) in &.
Then u € & and there exists v, € Sg, such that, for each ¢ € [0, T], we have

_ 1 t - tq—l T i
u,(t) = TQ)/O (t— )7 v,(s)ds + m/() (T —s)7  v,(s)ds

971 Mi l’r _1 ()
Tl & F(p,)/ / — = drds

As F has compact values, we pass onto a subsequence (if necessary) to obtain
that v, converges to v in Ll([O, T],R). Thus, v € Sp, and for each ¢t € [0, T], we
have
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t T
va(t) > v(t) = %/{; (t— )7 v (s)ds + /0 (T — 5)4 v (s)ds

AT (q)

A F(q) F(p,)[ / (s—nr)1 . drds

Hence, u € %(x). Next, we show that there exists §<1 (3 = ||m|| @) such that

Hy(B(x), B(x)) < 3||x—)_c|| for each x,x € &.

Let x,x € & and h; € % (x). Then there exists v, (f) € F(t,x(¢)) such that, for each
t €[0,T],

t T
h(t) = % fo (t— )4 vy (s)ds + /0 (T — 5)4 v, (s)ds

AT (q)

- -2
AT 2 F(pl)/ / —r)? . drds.

By (5.7.2), we have

Hy(F(1,x), F(1,%)) < m(@)]x(t) — x(0)].
So, there exists w € F(t,x(¢)) such that
[v1(t) —w| = m@)|x(@) —x(@)|. t€][0,T].
Define U : [0, T] - Z(R) by
U@0) = {w e R:|vi(1) —w| = m@)|x(r) — x(0)]}.
Since the multivalued operator U(f) NF (¢, X(¢)) is measurable [57, Proposition I11.4],
there exists a function v,(f) which is a measurable selection for U. So v,(f) €

F(t,x()) and for each t € [0, T], we have |v{(¢) — v, (¢)| < m(t)|x(z) — x(¢)|.
For each t € [0, T, let us define

h(t) = Tq )/(t—s)q Yo (s)ds +

a1 " P! 1 Uz(}")
_Alr(q)izr(pl)/ / T

I F( )/ (T — 5)7 vy (s)ds
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Then

|h1 (1) = ha (1))

t -1 r
= 7 | =6 vl + mfo (T =97 01(5) = v2(s)lds

A el [ P 0 = )
+|A1|r(q)l.2r<p) J; (e 7 s

[l - n |'|n’ [lx = xI
X||.
I ( RNV |A1|1 (q+ D=

i=

Hence,
1A = hall < Im[| @1 ]lx — X]|.
Analogously, interchanging the roles of x and X, we obtain
Hq(#(x), B(x)) < [m]| Py ]|lx — x]|.
Since 4 is a contraction by the given assumption, it follows by Theorem 1.18

that 4 has a fixed point x which is a solution of (5.20). This completes the proof. [

Example 5.7 Consider the following boundary value problem for Riemann-
Liouville fractional differential inclusions with nonlocal Hadamard fractional
integral boundary conditions:

rD?x(t) € F(t,x(t)), 1€ (0,5/2),

x(0) = 0, x(5/2) + 3/2u1V**x(3/2) = wuI¥**x(1/2) + V2ul"*x(2),
(5.21)
where ¢ = 3/2,n = 3,7 = 5/2,0y = mor = —3/2,a5 = /2,p =
V3/2, pp = ~2/2.,p3 = 1/2,91 = 1/2,n, = 3/2, 13 = 2. By using computer
program, we find that A} ~ —1.56277153 # 0.
Let the multivalued map F : [0,5/2] — Z(R) be given by

(5.22)

1 + sin® 1
x— F(t,x) = |:O + s —j|

16(1 + 1)2

Then, we have

1 1 _ 1 _
sup{|x| : x € F(t,x)} < m+§ and H,(F(t,x), F(t,%)) < m|x—x|.
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Let m(r) = 1/(8(141)?). Then Hy(F(t, x), F(t,%)) < m(t)|x—Xx| and ||m||;1 = 5/56.
Using the given data, we find that § ~ 0.95635768 < 1. Thus all the conditions
of Theorem 5.7 are satisfied. Therefore, by the conclusion of Theorem 5.7, the
problem (5.21) with F(z, x) given by (5.22) has at least one solution on [0, 5/2].

5.3.2 The Carathéodory Case

In this subsection, we consider the case when F' has convex values and prove an
existence result based on nonlinear alternative of Leray-Schauder type, assuming
that F is Carathéodory.

Theorem 5.8 Assume that:

(5.8.1) F :[0,T] x R — Z(R) is Carathéodory and has nonempty compact and
convex values;

(5.8.2) there exist a continuous nondecreasing function ¥ : [0, c0) — (0, 00) and
a function p € C([0, T],R™) such that

[F@.0)ll7 = supilyl : y € Ft.x)} < p() Y (lIxl)) for each (t.x) € [0, T] < R;

(5.8.3) there exists a constant M > 0 such that
M
- >
v (M)]lp|| @
where @, is defined by (5.8).

)

Then the problem (5.20) has at least one solution on [0, T).

Proof Consider the operator & : &y — (&) defined in the beginning of the proof
of Theorem 5.7. We will show that % satisfies the assumptions of the nonlinear
alternative of Leray-Schauder type. The proof consists of several steps. As a first
step, we show that Z is convex for each x € &. This step is obvious since Sgy is
convex (F has convex values), and therefore, we omit the proof.

In the second step, we show that & maps bounded sets (balls) into bounded sets
in &. For a positive number p, let B, = {x € & : |x|| < p} be a bounded ball in
&o. Then, for each h € #(x), x € B,,, there exists v € Sg, such that

h(t) = / (t—s) Lo (s)ds +

F( ) / (T — 5)4 v (s)ds

AF()

il

a1 2 )
Ar(q) F(p) / = drds
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Then, for ¢ € [0, T], we have

|a(r)| < m/ (t— ) H(s)|ds +

o el /"i /S ni\Pi~! —1 v(n)]
+ log — (s— )T —=—drds
A1 (q) ; I'(p) Jo Jo ( S) s

T4 T2~ T97! = |ai|n}
< 1
_W(||x||)||p|| (F(C]‘l‘]) + |A1|F(q+1) + |A1|F(q+]); qpi ’

and consequently,

—1
|A |F( )/ (T —s)7  v(s)|ds

18]l < ¥ (o)l Ipl| @1

Now, we show that the operator & maps bounded sets into equicontinuous sets
of &.Let 11,1, € [0,T] with 7 < 1, and x € B,,. For each h € %(x), we obtain

|h(T2) —h(t))|

T ‘/ [(z2 =)™ = (21 = )77 If (5. x(s))ds + f (r2 — )77 f (5. x(s))ds

(r, _Tl ) 1
+—|A]|F(q) /(T—s)q [v(s)|ds

( _Tl |Ol,| pi— r@*lw vds
* |A1|F(q) r@)/L )y dr

_ Il
- F(q+ 1)

L@ =Tl ) (H 5 |o;-[|)7?).
i=1

(2 — ) + |75 — /]

AT (g+ 1)

Obviously the right hand side of the above inequality tends to zero, independently
of x € B, as i, — 11 — 0. As 4 satisfies the above three assumptions, therefore
it follows by the Arzeld-Ascoli Theorem that B : &, — (&) is completely
continuous.

By Lemma 1.1, % will be upper semi-continuous (u.s.c.) if we prove that it has
a closed graph, since & is already shown to be completely continuous.

Thus, in our next step, we show that % has a closed graph. Let x, — x«, h, €
HB(x,) and h, — hs. Then, we need to show that h,. € ZB(x.). Associated with
h, € #(x,), there exists v, € Sg,, such that for each 7 € [0, T],
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_ 1 t i Z‘q—l T i
h,(t) = m/{) (t— )T v,(s)ds + m/() (T —s)T  v,(s)ds

(a1 ni pie ()
TAT L F(p,)/ / m s

Thus it suffices to show that there exists vx € Sg, such that for each ¢ € [0, T,

:L t _ 91 ! _ 9!
hy (1) F(q)/o(t $)T vk (s)ds + /O(T $)T vk (s)ds

AT (q)

1! g Th _ U*(r)
‘Alr(q);rm)/ A log ) (== drds

Let us consider the linear operator ® : L' ([0, T], R) — & given by

q—1

T
-1
AT (q) Jo (I =) vie)ds

f>00)@ = G )/(t—s)q Y(s)ds +

" 120
A @ 2 F(p,)/ / (s—r) . drds

Observe that

1 (2) = Rx D)

/ (1= )7 (0 (s) — vx (5))ds + ——— / (T — )9 (un(s) — s (5))ds

1
I'(q)

_ a1 i g—1 (vn(r) — v«(r))
AT & F(p,)/ / =" g s

as n — o0o. Thus, it follows by Lemma 1.2 that ® o Sp, is a closed graph operator.
Further, we have A, (1) € ©(SF,,). Since x, — xx, therefore, we have

_ 1 t 1 tq—l T 1
hy(t) = mfo (t— )T vi(s)ds + m/(; (T — 5)7 vy (s)ds

! " q—lv*_(r)
AT & F(m)/ / (s =) = drds,

for some vy € S, .

AF()

— 0,
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Finally, we show there exists an open set U C &, with x ¢ 0%(x) for any
6 € (0,1) and all x € dU. Let 8 € (0,1) and x € 6Z%(x). Then there exists
v € L'([0, T],R) with v € Sg such that, for ¢ € [0, 7], we have

t

x(t) = %q)/ot(t—s)q_lv(s)ds—i— 1 ;_( )/ (T — 5)7 v (s)ds

gt " o; i v(r)
— ! (s—r = 2 drds
AT@ 2T ) | (e s

As in the second step, we can obtain

Ixll < ¥ (lxIDIlpl Py

which implies that

H
YlxiDlpller —
In view of (5.8.3), there exists M such that ||x|| # M. Let us set

={x e x| <M.

Note that the operator % : U — Z2(&) is upper semi-continuous and completely
continuous. From the choice of U, there is no x € dU such that x € 6 %(x) for
some 6 € (0, 1). Consequently, by the nonlinear alternative of Leray-Schauder type
(Theorem 1.15), we deduce that % has a fixed point x € U, which is a solution of
the problem (5.20). This completes the proof. O

Example 5.8 Consider the boundary value problem for Riemann-Liouville frac-
tional differential inclusions with nonlocal Hadamard fractional integral boundary
conditions studied in Example 5.7 with the values of F'(z, x) as follows:

(a) Let F:[0,5/2] x R — Z(R) be a multivalued map given by

F(t.%) al e iy ‘)‘2+(t+93)2
x—>Ftx)=| ——ip—— =, e —
1 + sin® 2x + |x] 2 2
(5.23)
For f € F, we have
1
1 93?2
If| < max ++t2+—,l+e_xz+(t+—) <9, xeR.
1 + sin” 2x + |x| 2 2

Thus, |F(t.x)ll» = sup{ly| : y € Ft.x)} = 9 = p()y(llxl), x € R,
with p(tr) = 1, ¥ (||x]|) = 9. Further, using the condition (5.8.3), we find that
M > 96.400854. Therefore, all the conditions of Theorem 5.8 are satisfied.
So, the problem (5.21) with F(¢, x) given by (5.23) has at least one solution on
[0,5/2].
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(b) Let F:[0,5/2] x R - Z(RR) be a multivalued map given by

S ) P A B (5.24)
X X)) =|e -, — 1. .
3714 2|x| 2

For f € F, we have

3
lflfmax(e_"4+ il t+—)§2+t,x€R.

t

371+ 20x 2
Here, |F(1.0)|» := supily| : y € F(1.0)} = 2+ 1) = p(O¥(Ix]). x € R,
with p(£) = 2 + ¢, ¥ (||x||) = 1. It is easy to verify that M > 48.200427. Then,

by Theorem 5.8, the problem (5.21) with F(z, x) given by (5.24) has at least one
solution on [0, 5/2].

5.3.3 The Lower Semicontinuous Case

In the next result, it is assumed that F is not necessarily convex valued. Our strategy
to deal with this problem is based on the nonlinear alternative of Leray Schauder
type together with the selection theorem of Bressan and Colombo (Lemma 1.3) for
lower semi-continuous maps with decomposable values.

Theorem 5.9 Assume that (5.8.2), (5.8.3) and the following condition hold:

(5.9.1) F:[0,T] x R - Z(R) is a nonempty compact-valued multivalued map
such that

(a) (t,x) —> F(t,x) is £ ® P measurable,
(b) x+—> F(t,x) is lower semi-continuous for each t € [0, T].

Then the problem (5.20) has at least one solution on [0, T).

Proof 1t follows from (5.8.2) and (5.9.1) that F is of Ls.c. type. Then from
Lemma 1.3, there exists a continuous function f : &, — Ll([O, T],R) such that
f(x) € F(x) forall x € &.

Consider the problem

reDIx() = f(x(2), 0<t<T, 1<qg<2,

n (5.25)
x(0) =0, x(T) = ZaiHIpix(ni)'

i=1

Observe that if x € €%([0, T], R) is a solution of (5.25), then x is a solution to the
problem (5.20). In order to transform the problem (5.25) into a fixed point problem,
we define the operator % as
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Drx() = —— / (= 9 ao))ds + / (T — 9 ()
YT @ b AT (q) Jo

1! G m pi= _1f ()
A F(q) F(p,)/ / log —r)? — drds

It can easily be shown that % is continuous and completely continuous. The
remaining part of the proof is similar to that of Theorem 5.8. So, we omit it. This
completes the proof. O

5.4 Riemann-Liouville Fractional Differential Equations
and Inclusions with Nonlocal Hadamard Fractional
Integral Boundary Conditions

In this section, we introduce the general form of nonlocal conditions by replacing
x(T) by g(x) in (5.2) and consider the following boundary value problem

rDIx(t) = f(t,x(2)), t€(0,7), (5.26)

x(0) =0, g =Y anlx(n), (5.27)

i=1

where g : C([0,T],R) — R.
Also, we study the multivalued analogue of the above problem

rDx(t) € F(t,x(t)), te(0,7), (5.28)

X0) =0, gk =) anl’x(m), (5.29)

i=1
where F : [0,7] x R — Z(R) is a multivalued map, Z(R) is the family of all
nonempty subsets of R.

n ) z-/—l
Lemma 5.2 Let A, := Z &ill; #0,1<g=<2p;>00€R n€(0,7),

(g— 1P
i=1
i=1,2,3,....,nand h € &. Then, the nonlocal Hadamard fractional boundary
value problem for linear Riemann-Liouville fractional differential equation

reDIx(t) = h(2), 0<t<T, (5.30)
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subject to the boundary conditions (5.27) is equivalent to the following fractional
integral equation

g—1

x(t) = rel?h(t) — tA_z (Z oi(gl” reIh) (n;) — g(x)) . (5.31)
i=1

Proof We omit the proof as it is similar to that of Lemma 5.1. O

5.4.1 Existence Results: The Single-Valued Case

In view of Lemma 5.2, we define an operator 2 : § — &; by

g1
@90 = [ Tt

G = (@)
Ml & r(p)/ / —OTTE AT (53

19— 1
+fg(x) t€[0,T].

For convenience, we set:

T T " Joi|nf
- + i (5.33)
"= T+ |A2|F(q+1>,;
and
Te~!
ko = . (5.34)
VW

In the next, we prove an existence and uniqueness result for the problem (5.26)—
(5.27) by means of Banach’s fixed point theorem.

Theorem 5.10 Letf : [0,T] x R — R and g : C([0,T],R) — R be continuous
functions. Assume that:

(5.10.1) |f(t,x) —f(t,y)| < LIx—y[,Vt €[0,T], L >0, x,y € R;
(5.10.2) |g(u) — g)| < Lllu—v|, £ < k' forallu,v € C([0,T],R);
(5.10.3) y = Lpo + Ltk < 1.

Then the problem (5.26)—(5.27) has a unique solution on [0, T].

Proof For x,y € & and for each ¢t € [0, T], from the definition of the operator 2
defined by (5.32), and assumptions (5.10.1), (5.10.2), we obtain
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I(2x)(1) = (20) )]

<[ “‘F(s)) 5. 3(6)) = . (60 lds

- Joul [ 11 (@, x(0) f(f ol
IAzIF(q) r(p)/ / -7
T4~
q—1
<L||x—y|||: / ¢ F(") ds
T |oti] ”’ _ z—1f L_] B
+|A2|F(q) r(p)/ [ (o) sy sds}r s
T4 Tq—l n |ai|r]? T4
< Lllx—yl F(C]+l)+|A2|F(q+]); e }+|Alellx v

= (Lpo + tko)llx — ylI.

Hence
[2x— 2yl < yllx—yl-

As y < 1 by (5.10.3), the operator 2 is a contraction from the Banach space &,
into itself. Thus, the conclusion of the theorem follows by the contraction mapping
principle (Banach fixed point theorem). O

Example 5.9 Consider the following nonlocal boundary value problem:

2

DY x(t) = —< W o,
R 3(V3+12 L+ (5.35)
B 1 V2 1 gy A T
X(O) —0, gX(]T)—}-T = EHI X(E>—§HI )C(g)

Hereq =3/2, T=m, n=2,0,=1/2, a0 = —4/5 p1 =3, p =2/3, 1 =
/2. = 7/3. g0) = (1/8)x(m) + (v2/2) and f(1.0) = (¢~ x])/(B(v3 +
H%)(1 + |x|)) — 1. By using computer program, we find that A, ~ 0.78220904 #
0, po ~ 6.13531215 and ko & 2.2659593. As |[f(t,x) — f(z,y) < (1/9)|x — y| and
lg(t,x) — g(t,y) < (1/4)|x — y|, therefore, (5.10.1) and (5.10.2) are satisfied with
L=1/9and{ = 1/4 < 0.44131419 = k; !, respectively. Also y = Lpy + lky ~
0.96494626 < 1. By the conclusion of Theorem 5.10, the nonlocal boundary value
problem (5.35) has a unique solution on [0, r].

Our next existence result is based on O’Regan’s fixed point theorem
(Theorem 1.6).
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Theorem 5.11 Let f : [0,T] x R — R be a continuous function. Suppose
that (5.10.2) holds. In addition, we assume that:

(5.11.1) g(0) = 0;
(5.11.2) there exists a nonnegative function m € C([0, T], R") and a nondecreasing
function ¥ : [0, 00) — (0, 00) such that

If . w)] <= m@)y ([ul) forany (t.u) € [0,T] xR;

r 1
(5.11.3) sup )
;e(Om)P0||m||1/f(r) 1 — kol

where po and ko are defined by (5.33) and (5.34) respectively. Then, the prob-
lem (5.26)—(5.27) has at least one solution on [0, T).

Proof Consider the operator 2 : & — & defined by (5.32). We decompose 2 into
a sum of two operators

(2x)(1) = (210)(1) + (220)(1), 1€][0,T], (5.36)
where
(21x)(n) 1
t _ q—
U2 (5, x(s))ds
(5.37)
A:];(q) r(p) ”’[ f)q_lwdrd& t€10,7),
i=1
and
tq—l
(2ox)(1) = A—Zg(x), t€0,T]. (5.38)
Let

={xedo: |« <r}

From (5.11.3), there exists a number ry > 0 such that

ro 1

. 5.39
polmlv o) - T— kot -39

We shall prove that operators 2; and 2, satisfy all the conditions of Theorem 1.6.
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Step 1. The set 2(K,,) is bounded. For any x € K,,, we have

a1
ErE / ¢ FE)) (s, x(s))lds

797! log| [ g—1 (@ x()]
i r(pl)/f —7) P

< [lm{l¥(ro)

T |al|77,
r'g+1) |A2IF(¢1+ D)=
= |lmll¥ (ro)po-

This shows that 2, (K,,) is uniformly bounded.
The conditions (5.10.2) and (5.11.2) imply that

q—1

T
<
122000 = T,

for any x € K,,. Thus, the set 2(K,,) is bounded.

Step 2. The operator 2, is continuous and completely continuous.
By Step 1, 2;(K,,) is uniformly bounded. In addition, for any #,,#, € [0, T], we
have:

[(21x)(12) — (21x)(11)]

N (ty —5)T = (11 — 5)17!] 2(ty—s)1™
=/ o ontonias+ [ s
i |a K 1 @ x(@)] x(r)>|
T ATQ r<p,) / / -9
llm ]|y (ro) |y (ro) ™" — 647" & Jewiln?
5 F(Q‘l‘l) [z(tz_tl)q—i_ltg_tll]”_i_ |A2|I—v(q+]) ; qp,-

which is independent of x, and tends to zero as t, — f; — 0. Thus, 2 is
equicontinuous. Hence, by the Arzeld-Ascoli Theorem, 2, (K,,) is a relatively
compact set. Now, let x,,,x € K,, with ||x, — x| — 0. Then the limit |x, () —
x(#)] — 0 is uniformly valid on [0, 7. From the uniform continuity of f(¢, x) on
the compact set [0, T] x [—rg, ro], it follows that ||f(z, x,(¢)) — f (¢, x(?))|| = O is
uniformly valid on [0, T]. Hence || 2x, — 2x|| — 0 as n — oo which proves
the continuity of 2. Consequently the operator 2 is continuous and completely
continuous
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Step 3.  The operator 2, : [_(,.0 — &y is contractive. Observe that
1

(229() — (29 (0)| = (qA—||g(x) g(y)l_;l—léllx vl = Bl =yl

with 6 = kol < 1 by (5.10.2). Hence 2, is contractive.
Step 4.  Finally, it will be shown that the case (C2) in Theorem 1.6 does not occur.

For that, we suppose that (C2) holds. Then, we have that there exist ¥ € (0, 1)
and x € 0K, such that x = k Zx. So, we have ||x|| = r¢ and for ¢ € [0, T,

(1) = K{ / @ F()Z_ £(s, x(s))ds

! i 1f(@x(r) x(r))
A21"(q) Z F(p,) / / —O" (x)}

Using the hypotheses (5.11.1)—(5.11.3), we get

1
|x(r)|<vf<||x||){ [ s

777! |Oll| — (":)
+|A2|r(q) T AL T s §

g—1
+
| Az

Taking the supremum over ¢ € [0, T], we obtain

El|x].

< (T —s5)"!

e vf(nxn)% / I o
Tq_ |al| Ni 17’ - m(-[)
IAzIF(q) “ I'(p)) Jo [ log = -0 Tdm}

q—1

+
| As]

Ellxll,

or

Zro,

ro < [mlly (ro)

Tq_ Z |al|n1
F( IRV NI PEP |A2|

which implies that

ro < pollm||¥ (ro) + kol ro.
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Thus,
A
polml¥(ro) = 1 — kot
which contradicts (5.39). Thus we have shown that the operators 2, and 2,
satisfy all the conditions of Theorem 1.6. Hence, the operator 2 has at least one

fixed point x € I_(ro, which is the solution of the problem (5.26)—(5.27). The proof
is completed. O

Example 5.10 Consider the following nonlocal nonlinear fractional boundary value
problem:

x|+ 1
DY) = (:x: +2+|x|), (€ 0.1/3).

t
2
1 1 4 1
x(0) =0, 2 sin (x (g)) = 71—1[”x (E) (5.40)
1 1 1
eV P2
gt (8) tal s
Hereq=5/3, T=1/3, n=3, 01 =4/7, oy = 1/4, a5 =1, py =7, p, =
1/2, p3 = 3/2, m = 1/12, m;» = 1/8, n3 = 1/5, g(x) = (1/4)sin(x) and
f(t,x) = (t/2)((Jx] + 1)/(|x| + 2) + |x|). By using computer program, we find that
Ay ~ 1.09451783 # 0, po ~ 0.11808820, ko ~ 0.43923438. As |g(x) — g(y)| <
(1/4)|x—y| with £ = (1/4) < 0.43923438 = k; ! and g(0) = 0, therefore, (5.10.2)
and (5.11.1) are satisfied respectively. Since |f(¢,x)| = |(t/2)((Jx] +1)/(}x] +2) +
|xD)| < (¢/2)(x* + 3|x| + 1), we choose m(t) = t/2 and ¥ (|x|) = x> + 3|x| + 1, and
find that

-
sup ——— =~ 10.16189578 > 1.123353914 = .
re(0,00) Pollm[ ¥ (r) 1 — kot

Therefore, by Theorem 5.11, the problem (5.40) has at least one solution on [0, 1/3].

5.4.2 Existence Results: The Multivalued Case

In this section, we will prove an existence result for the problem (5.28)—(5.29) by
using the nonlinear alternative for contractive maps (Theorem 1.17).

Definition 5.2 A function x € ¢>([0, T],R) is a solution of the problem (5.28)—
(5.29) if x(0) = 0, gx) = Za,-Hlpfx(n,-), and there exists a function f €

i=1

L' ([0, T], R) such that £(f) € F(t,x(¢)) a.e. on [0, T] and
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_ 1
o= [ F?; fisyds

ot d q_lf()
“hl(g L F(p)/ / Tt AT (54
11

+A—2g(x).

Theorem 5.12 Assume that (5.10.2) holds. In addition, we suppose that:

(5.11.1) F:[0,T) x R > 2, (R) is L'—Carathéodory multivalued map;
(5.11.2) there exists a continuous nondecreasing function ¥ : [0,00) — (0, 00)
and a function m € C([0, T], RY) such that

IF@. )]l = supily| : y € F(1.x)} = m()y(Ix]) for each (1.x) € [0.T] x R;

(5.11.3) there exists a number M > 0 such that
(1 —ko)M
pollm|ly (M)
where po and kg are defined by (5.33) and (5.34) respectively.
Then the problem (5.28)—(5.29) has at least one solution on [0, T].

> 1, (5.42)

Proof To transform the problem (5.28)—(5.29) into a fixed point problem, we
consider the operator .4 : & —> (&) defined by

he éa() .
"t —s)7!
0 1:(‘]) nf(s)ds _
N ) = S o [ (1 B D)
W0 =1 " ro | ) (o) o s
q—l
+78(X)
for f € Spy.

Next, we introduce two operators: .4 : &y —> &y by
g—1

Mix(t) = tA—zg(x), (5.43)

and the multivalued operator .45 : & —> £ (&) by

heé&:

(t—s)a!
/0 T f(s)ds

P -/
Azr(q) 2 F(p)/ f TRy drds
(5.44)

MO =1 0 =
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Observe that 4" = 4] +.45. We shall show that the operators .4 and .45 satisfy
all the conditions of Theorem 1.17 on [0, T]. For that, we consider the operators
M, N 2 By > Py (&), where B, = {x € & : |x|| < r} is a bounded set in
&p. First, we prove that .45 is compact-valued on B,. Note that the operator .45 is
equivalent to the composition .Z o Sp, where .Z is the continuous linear operator on
L'([0, T], R) into &, defined by

t (4 g1
L)1) = /O %v(s)ds

o " q—lﬂr
Thr( £ F(p)/ f T o drds

Suppose that x € B, is arbitrary and let {v,} be a sequence in Sg,. Then, by
definition of Sr ., we have v, (f) € F(t, x(¢)) for almost all ¢ € [0, T]. Since F(t, x(¢))
is compact for all ¢ € J, there is a convergent subsequence of {v,(?)}, (we denote it
by {v,(¢)} again) that converges in measure to some v(t) € Sg, for almost all 7 € J.
On the other hand, .Z is continuous, so .Z(v,)(t) — -Z(v)(¢) pointwise on [0, T].

In order to show that the convergence is uniform, we have to show that {Z(v,)}
is an equi-continuous sequence. Let #1,t, € [0, T] with #; < ;. Then, we have

|2 () (12) = Z (va) (1))

[tl (o —5)47" — (1) — )77 '] 2 (ty —s)77!
0 I'(q) i I'(q)

—1 _ q—l ni pi—
n I, —1 |a,| / / oyt [0, (7)] Jeds
|A2|I"(q) F(p,) s

_ iy )
“I'(g+1

<

v, (s)ds| + vn(s)ds

vy MY OIS S el
[2(t — 1) + 5 — 1] + VRIRCES) ; o
We see that the right hand of the above inequality tends to zero as , — ¢;. Thus,
the sequence {Z(v,)} is equi-continuous and by using the Arzeld-Ascoli Theorem,
we get that there is a uniformly convergent subsequence. So, there is a subsequence
of {v,}, (we denote it again by {v,}) such that Z(v,) — £ (v). Note that £ (v) €
Z(Sr)- Hence, 5 (x) = Z(Sp,) is compact for all x € B,. So .45(x) is compact.
Now, we show that .45(x) is convex for all x € &). Let z1, 7, € A5(x). We select
fi.f> € Sk such that

[
2 = [ 2o

! g - L)
Tl (g) ;F(pl)/ / O s
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i =1,2, for almostall ¢ € [0, T]. Let 0 < v < 1. Then, we have
[vzi + (1 —v)z2](0)

- (’}f); U 9 + (1= vl

-1 VA + (1= A
Azr(q) F(p) / / - s drds

Since F has convex values, so Sk is convex and vfi(s) + (1 — v)fa(s) € Sk
Thus

vz1 + (1 —v)zp € ().

Consequently, .45 is convex-valued. Obviously, .4] is compact and convex-valued.
The rest of the proof consists of several steps and claims.

Step 1:  We show that A1 is a contraction on &. This is a consequence of (5.10.2),
and the proof is similar to the one for the operator 2, in Step 2 of Theorem 5.11.

Step 2:  We shall show that the operator .43 is compact and upper semicontinuous.
This will be given in several claims.

Claim I: .45 maps bounded sets into bounded sets in &y. To see this, let B, =

{x € & : ||x|| < r} be abounded set in &. Then, for each h € A5(x), x € B,,
there exists f € Sp, such that

1
h(e) = [ ‘ F(s); f(s)ds

2 )
A2F(Q)ZF(P)/ [ - dids

Then, for ¢ € [0, T], we have

t —s q—1
0] < f “FT;)V@W

TSl L)
@ 2= Ton by (e Tt

te g1
SW(leII)[ /0 %mmds

! lol ™ g—1m(0)
L@ £ r(p)// m oty s

T4 77! Zl 1|7]1
I'(qg+ 1) [As| (g + 1) &

<y(r
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Thus,

21 < ¥ (rpollml|.

Claim II: ~ Next, we show that .45 maps bounded sets into equicontinuous sets.
Lett,t, € [0,T] and x € B,. For each h € .#5(x), we obtain

|h(12) = h(11)]

sl["@_”f;a“_WAVmﬁﬁ-”Q“;gf?wﬁ
|ZTA12|_FI(;)I 2 S g [ (e ) 6o E s

sﬁ@ﬁﬁﬁﬂa—mq+@—ﬁu+””W“qu”q”fjmmz

42|17 (g + 1)

Obviously the right hand side of the above inequality tends to zero, indepen-
dently of x € B, as t, — t; — 0. Therefore it follows by the Arzeld-Ascoli
Theorem that .45 : & — (&) is completely continuous.
By Lemma 1.1, .45 will be upper semi-continuous (u.s.c.) if we prove that it
has a closed graph since .45 is already shown to be completely continuous.
We establish it in the next claim.

Claim III: .45 has a closed graph. Let x, — xx,h, € A5(x,) and h, — hy.
Then, we need to show that h, € A5 (x«). Associated with &, € 45(x,), there
exists f, € Sr., such that for each ¢ € [0, T],

o) = / =" s

r ( )
ni pi—
/ / )q—1fn(f) dtds
AzF (q) L r (P) s
Thus it suffices to show that there exists fix € Sr, such that for each r € [0, T,
Lr—s)"!
he(t) = —————fx(s)ds

o I'(q )

14! *

f / r)q_lf—(f) dtds

AT (61) < T (p) s

Let us consider the linear operator @ : L' ([0, T],R) — &, given by

t oy a1
f > 00 = /0 %f(s)ds

121 n o; i Pz _f(
g—1/ 7
Azf(q) I"(p) [ —1) . drds
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Observe that
|72 () — hs (1) |
_ (t—S)q_
- H () ————(fu(s) — fx(5))ds
lq_l Ni B (fn(‘[) —f* (T))
AzF(q) F(p,)/ / - 1) lfdrds — 0,

as n — 0o. Thus, it follows by Lemma 1.2 that ® o Sg, is a closed graph operator.
Further, we have A, (1) € ©(SF,,). Since x, — x, therefore, we have

=)
hy(t) = | TTw ————f«(s)ds
o " n g-1/+(1)
“hlg & r(p)/ / e,

for some f; € Sg,,. Hence .45 has a closed graph (and therefore has closed values).
As aresult .45 is upper semicontinuous.

Therefore the operators .4#{ and .45 satisfy all the conditions of Theorem 1.17
and hence its application yields either condition (i) or condition (ii) holds. We show
that the conclusion (ii) is not possible. If x € k.41 (x) + «43(x) for k € (0, 1), then
there exists f € Sg, such that

_ "(t—s)!
x(t) =« T ———f(s)ds
1! " G pi= _1fx(7)
AZF(q) F(p) / —1)? Y dtds

q—l

+—g(x)§ , te[0,T].

Consequently, we have

-
|x(r)|<m||x||)|mll[ / i

T4~ Yl |al ni dr Tq_
q—1 —ds e
|A2|F(q) r(p,)/ / -0 }+ ] llx[l.

which, on taking supremum over ¢ € [0, T], yields
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(T -
llxll < W(”X”)% / m(s)ds

! o] g—1m(@) !
7(1 ds
e & F(p)j I =7 5]

=< ¥ llxIbllmlipo + kolllx]l.

If condition (ii) of Theorem 1.17 holds, then there exists ¥ € (0, 1) and x € 0By,
with x = x4 "(x). Then, x is a solution of (5.36) with |x| = M. Now, the last
inequality implies that

(1 —kOM _
pollmlly (M) ~

which contradicts (5.42). Hence .4 has a fixed point in [0, 7] by Theorem 1.17, and
consequently the problem (5.28)—(5.29) has a solution. This completes the proof. [

Example 5.11 Consider the following fractional boundary value problem

D7 *x(1) € F(t,x), t€(0,1/2),

B 1x(1/6)] 3 s (1.2 v (1)
MO =0 T rasep 3T (3) AV (543)
+H1ﬁx ,

where F : [0,1/2] x R?> — Z(R) is a multivalued map given by

x = F(t,x) = [qu +eos®2n) (14 0(1+ e } .

51+ 1x]) 7 6(1 + sin® 4x)

Here ¢ = 7/2, T = 1/2, n = 3, oy = 3/5, oo = 2/7, a3 = 1, py
V2.0 = N3.ops = V5 o= 173, m = 1/4 s = 1/5 g) =
(1/4)(|x|/(1 + |x])). Using computer program, we find that A, &~ 1.13066832 #
0, po ~ 0.20657749, ko ~ 0.52588681.

As |g(x) —g(y)| < (1/4)|x —y|, therefore, (5.10.2) is satisfied with £ = (1/4)
(1/0.52588681) = k, '. Forf € F and x,y € R, we have

A

[f| < max (t|x|(l +cos?2x) (1 +0)(1 + [x])e >’

141
) < 1+ , e R.
51+ 1)) 6(1 + sin’ 4x) ) g HhD. =

Thus,

IF@ )2 = sup{ly| : y € F(t.x)} =m@y(lx[). xeR,
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with m(t) = (¢t + 1)/6, ¥ (||x]|) = 1 + ||x||. By computing directly, we find that
there exists a constant M > 0.06322119 such that (5.12.3) holds. Clearly, all the
conditions of Theorem 5.12 are satisfied. Hence the problem (5.45) has at least one
solution on [0, 1/2].

5.5 Riemann-Liouville Fractional Differential Equations
with Multiple Hadamard Fractional Integral Conditions

In this section, we study the following boundary value problem of Riemann-
Liouville fractional differential equations supplemented with multiple Hadamard
fractional integral conditions:

rDYx() = f(t,x(1), 1<a<2,te(0,7), (5.46)

X(0) =0, Y inlPix(n) =) 8ul"x(E) + A, (5.47)
i=1 j=1

where g, D“ denotes the Riemann-Liouville fractional derivative of order «, f :
[0,T] x R — R is a continuous function, n;, § € (0,7), A, u;, §; € R, for all
i=12,....mj=12,...,n and ulV is the Hadamard fractional integral of
orderyy >0 (Y =8,y,i=1,2,....mj=12,...,n).

First of all, we consider the following lemma, which deals with the linear variant
of the problem (5.46)—(5.47) and plays a pivotal role in developing the existence
theory for the problem at hand.

Lemmas53 Letl <a <2 8,y >0,n,&§ € (0,T), A,u,6; € R fori =
,2,....m,j=1,2,...,nand h € &. Then the solution of the following Riemann-
Liowville fractional differential equation

reDYx(t) = h(t), t€(0,7), (5.48)

subject to the multiple Hadamard fractional integral conditions
X(0)=0. > junlPx(m) = 8ul"x() + A, (5.49)
i=1 j=1

is equivalent to the following integral equation

tot—l

x(t) = 1

n m
D Syl aIh(E) = 3 paal” el () + A
j=1 i=1

+ RLlah(t), (550)
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where

m n

Ay =) il = )Pt = S — 1)TIET £ 0. (5.51)

i=1 j=1

Proof Applying the Riemann-Liouville fractional integral of order « to both sides
of (5.48), we get

x(t) = kit + kot* 2 + eI h(0). (5.52)

where k;, k, € R.
Using first condition of (5.49) in (5.52), we find that k&, = 0. In conse-
quence, (5.52) reduces to

x(1) = k' 4 g I%h(0). (5.53)
For any p > 0, by Lemma 1.6, it follows that
alPx(t) = k(o — 1) P27 4 gIP o I%R(2). (5.54)

The second condition of (5.49) together with (5.54) yields

1 n ' m ‘
k] = _A E SJHIVJRLIah(Sj) — E ,bLl‘HIﬂ'RLIah(T]i) + A s (555)
3 ; .
j=1 i=1

where Aj is defined by (5.51). Substituting the value of k; into (5.53),
we obtain (5.50). The converse follows by direct computation. The proof is
completed. O

Throughout this section, for convenience, we use the following notations:

rIf (s, x(5)(z) = ﬁ/o (z—s)“flf(s,x(s))ds for z € [0,7],

and

HIHRLI“f(s,x(s»(v):m /0 /O (102 )™ =y LD g

forv € (0,T], wherez € {t,T,vi, v}, u € {B;,yjyandv = {n;, &}, i=1,2,...,m,
j=12,...,n

By Lemma 5.3, we define an operator .% : & — & associated with the
problem (5.46)—(5.47) by
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oa—1 n m
(Fx)() = tA3 Sl R I®f (5, x(5)) (&) — Z pir P R IF (5, x(5)) (1) + A
=1 i=1
+ reLf (s, x()) (1), (5.56)

with A3 # 0. It should be noticed that problem (5.46)—(5.47) has solutions if and

only if the operator .# has fixed points.
For the sake of convenience, we put

1 71 m Te—1 n
b= ——— | T*+ ,'0[_/3" ? + — Sila™VEr |, 5.57
= T ( T 2 el + s 301 s,) (5.57)

TaflM'
2, = . 5.58
> = T (5.58)

In our first result, we prove the existence and uniqueness of solutions for the
problem (5.46)—(5.47).

Theorem 5.13 Ler f : [0,T] x R — R be a continuous function satisfying the
assumption (5.1.1). If

Lo, < 1, (5.59)

where @, is given by (5.57), then the problem (5.46)—(5.47) has a unique solution
on [0, T].

Proof We transform the problem (5.46)—(5.47) into a fixed point problem, x = Zx,
where the operator % is defined by (5.56). By using the Banach’s contraction
mapping principle, we shall show that .# has a fixed point, which is the unique
solution of problem (5.46)—(5.47).

M
Let us define SUP/e(o.7] If(z,0)] = M < oo and choose r > ET7 Then,

we show that #B, C B,, where B, = {x € & : ||x|| < r}. For any x € B,, and
taking into account Lemma 1.6, we get

toz—l

sup 3 ged[f (s, x()I (1) + 7 (Z 8717 R I | (5, x(5))(§7)
j=1

Bz
r€f0.1] | As]

IA

+ Z |,ui|HIﬂiRLID( f (s, x(s)) () + |A|)}

i=1

IA

wed® (If (5.x(s)) = £ (5, 0) + [f (5. 0)[)(T)

D tiladP et ([ (5. x(5)) = £ (5. 0)] + £ (5. 0)]) ()

i=1

Toc—l
[ As]

+
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Toz " o T~ 1|)L|
| A|Z|8|H1%RL1 (If (5. x()) — (5. 0) + I (5. 0)]) (&) + N

< (Lr+M)

1 o T B jea
r(a+1)(T IAIZ'“'“ ”'ﬂAlDW yg)}

Ta—lMl
[As]
= (L)’+M)¢2 + 92 <r,

_l_

which implies that . B, C B,.
For x,y € & and for each ¢ € [0, T], we have

|7 x(1) = Fy ()]
< rL(If (5, x(5)) —f (s, y(s)) (@)

Otlm

ypA Z |ail P R (1f (5, %(s)) = £ (s, () D) (i)

|A 2 Z |87 R I (If (5, x(5)) — £ (s, y($)))(§)

< Llx—yl

1 oy 71 i il + To1 i P
Fla+1) | As] S P4 Ry ! !

= L&y x -y,

which consequently implies that | Fx — Fy|| < L&|lx —y||. AsL®, < 1, Fisa
contraction. Hence, by the Banach’s contraction mapping principle, we deduce that
the operator .% has a fixed point which corresponds to the unique solution of the
problem (5.46)—(5.47). This completes the proof. O

Example 5.12 Consider the following nonlocal boundary value problem of
Riemann-Liouville fractional differential equation with Hadamard fractional
integral boundary conditions

cos?(2mt)  |x(D)]

5
D*B3x(r) = =, 0<r<2,
mD XD = ST o 1 T 4

x(0) =0,
1/2 3 5/4 3 5
2l 7x (1) + EHI ) T[H13x<\/§)
3 1
= V3ul x (%) —ul'Px (5) + Vel *x (5) +5.

(5.60)
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Herea =4/3, m=3,n=3,A=5T=2,u =2, u, =3/2, u3 = —m,
Bi = 1/2, B = 5/4 B =53 m = 1Lm =3/4n = V2,8 = V3,
52 = _62’ 53 = ﬁ’ Y1 = 3/2’ V2 = 1/3’ V3 = 7/4’ ‘i:l = 77:/2’ 52 = 3/2’
£ = 1/3 and f(¢,x) = (cos>(2mt)|x])/((#* + 3)*(|x| + 1)) + 5/4. Since |f (¢, x) —
f@&y)| < (1/9)|x — y|, (5.13.1) is satisfied with L = 1/9. Further, we find that
Az ~ —19.82738586, @, ~ 3.14973662 and LD, =~ 0.3499707356 < 1. Hence,
by Theorem 5.13, the problem (5.60) has a unique solution on [0, 2].

Next, we prove the second existence and uniqueness result by means of nonlinear

contractions.

Theorem 5.14 Let f : [0,T] x R — R be a continuous function satisfying the
assumption:

(5.14.1) f(t,x) —f(t,y)] < g(t)%,t € [0,7], x,y = 0, where g :

[0, T] — R7 is continuous and the constant G* is defined by

Tot—l m .
G* = rd”g(T) + ] Z il P Rt g (i)
=1
Ta—l n
AT D 18l Rl g (&) (5.61)
j=1

Then the problem (5.46)—(5.47) has a unique solution on [0, T].

Proof We consider the operator .% : & — & given by (5.56) and a continuous
G*6
nondecreasing function ¥ : R(J{ — RT defined by ¥(9) = 1 d Ve > 0.
Note that the function ¥ satisfies ¥ (0) = 0 and ¥ (6) < 6 for all 6 > 0.
For any x, y € & and for each ¢ € [0, T], we have

|7 x(1) = Fy@)] < red®(If (5. x(5)) = (5. y(s))D (@)

[ 1

P

m

Z | il PRI (If (s, x(s)) = £ (5, () ) (i)

Ot

IAI

Z |81 eI (If (5, x(5)) — (s, () ()

[x(s) = (5| ) -

S RLIO[ (g(s) G* + |x(s) _y(s)|

- b (s 20
+ T Zm it (60 gy ) ()

7o & . [x(s) — y(s)]
+ A ]:ZI |8 1" RLT (g(s) G+ () —y(s)l) (&)
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o—1

T & 4
(RLI“g(T) + Z il a? R d®g(n;)
i=1

< Y=o
|As] <

G*

o—

1 n
+ A > |3j|H1ijL1ag(5j))
=1

=¥ (llx=yl).

This implies that || #x—.Zy|| < ¥(||x—y||). Therefore, % is a nonlinear contraction.
Hence, by Theorem 1.11, the operator .% has a fixed point which is the unique
solution of the problem (5.46)—(5.47). This completes the proof. O

Example 5.13 Consider the following nonlocal boundary value problem for
Riemann-Liouville fractional differential equation with Hadamard fractional
integral boundary conditions

t |x(1)] £ 3
D3 2x(t) = — 4+, 0<t<3,
mD D) = o+l T2 T
x(0) =0,
5.62)
L s (3 774 (9 3 4 (] 2 54/3 (
EHI X (5) + 3yl x 1 ZHI X 3 7ol x (\/g)

5 1
= «/gyln/éx (ﬁ) - EHINSX (Z) + 251 x (e) — 4.

Herea =3/2,m=4,n=3,A=—-4T =2, u; =1/2, us =3, u3 = -3/4,
M4 z_ﬂzaﬂl = 1/3’132 :7/4’,83 = 1/2’:34 =4/3’771 = 5/277’2 = 9/47773 =
1/37 N4y = ‘/5581 = \/5,82 = _5/2’83 =2, Y1 = 11/67 Y2 = 7/5’ V3 = 2/3,
§1 = V7,6 = 1/4,& = eand f(t,x) = (t]x)/((t + (x| + 1)) + 2/2 + 3/4.
We choose g(r) = t/16 and find A &~ —32.10761052 and G* ~ 0.3314426952.
Clearly,

) _ x| = Iyl )
If (2. x) = f(2.y)] (+ 42 (1 + [x| + [y] + [x][y]

_ b=yl
= 16 \0.3314426952 + [x —y| ) °

Hence, by Theorem 5.14, the problem (5.62) has a unique solution on [0, 3].
Next, we present an existence result by means of Krasnoselskii’s fixed point
theorem.

Theorem 5.15 Assume that f : [0, T] x R — R is a continuous function satisfying
the assumptions (5.1.1) and (5.4.1). If

LT*
—_— <
I'a+1)

then the problem (5.46)—(5.47) has at least one solution on [0, T).

1, (5.63)
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Proof We define sup,c(o 77 |¢(1)| = |l¢|| and choose a suitable constant 7 such that
7> |l¢|| P2 + §2,, where @, and £2, are defined by (5.57) and (5.58), respectively.
Furthermore, we define the operators & and 2 on Br = {x € & : ||x|| < 7} as

o—1

(P00 = -

(Z&-Hﬂf'mzaf<s,x<s>>@»
=1

- Z//«iHIﬁiRLlaf(va(s))(m) + A)» t€[0,7],

i=1
(2x)(t) = red°f (5, x(5)) (1), t€[0,T].

For x,y € By, we have

2% + 2y

1 Toz—l m Ta_l n
< ol [ 1+ 3 ot + o g
I'ao+1) | A5 ; | A5 ]=Zl j i

Ta—llM
| As]
= llellP, + §2,

<Tr.

This shows that Zx + 2y € Br. By using the assumption (5.13.1) together
with (5.63), it is easy to show that .2 is a contraction. Since the function f is
continuous, we have that the operator &2 is continuous. Further, we have

a—1

T —yj ea
ALIr@t ) Z|M|Of P +Z|5|01 g

i=1 j=1

Ta_ll/u

+
| As|

1Zx] < llell

Therefore, &2 is uniformly bounded on By. Next, we prove the compactness of the
operator . Let us set sup, v e(o.7jxs, [f (1, X)| = f < oo. Consequently, we get

I(Zx) (1) = (Z2)(12)]

oa—1 n
d (Z 8l kI (5, x(5)) (§) — Z pirdP R 1%f (5, x(5) (i) + A)

i=1

a—1 n
b (Z Sl L5, X)) — 3 ol s s 5(6)) (1) + A) ‘

i=1

> m

4 =57 8 -
o P S:la™VEX + A ],
e F(Hl)Zuu "t e +1)ZH & + 1Al
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which is independent of x, and tends to zero as t, — t; (0 < £, < t; < T). Thus,
& is equicontinuous. So & is relatively compact on Br. Hence, by the Arzeld-
Ascoli Theorem, &7 is compact on Br. Thus all the assumptions of Theorem 1.2 are
satisfied. So the problem (5.46)—(5.47) has at least one solution on [0, T]. The proof
is completed. O

Remark 5.1 1In the above theorem, we can interchange the roles of the operators &
and 2 to obtain a second result replacing (5.63) by the following condition:

LT 1
PERCED) Zlmla ﬂ'm+2|8|a g | <1

Our next existence result relies on Leray-Schauder’s nonlinear alternative.

Theorem 5.16 Assume that f : [0, T] x R — R is a continuous function satisfying
the assumption (5.5.1). In addition, we suppose that:

(5.16.1) there exists a constant N > 0 such that
N
>
Iplly (N)P> + £2,
where @, and $2, are defined by (5.57) and (5.58), respectively.
Then the problem (5.46)—(5.47) has at least one solution on [0, T].

)

Proof Firstly, we shall show that the operator .%, defined by (5.56), maps bounded
sets (balls) into bounded sets in &. For a positive number R, let By = {x € &) :
x|l < R} be a bounded ball in &,. Then, for ¢ € [0, T], we have

|7 x(0)]

IA

reA“Uf (s, X()(T) + 2 (Z 181177 R f (5, X()I(§))

14s]

+ Z il ad? R |f (s, x()) | mi) + |)~|)

=1

< liplly dixlD m (T“ + % ; lpila =P + T(:l%;; |5j|a_y'$ﬁ) }
" Al
[As]
Jo—1
= lplly(R) I _|_ D (Ta‘l' A ;|Mi|(¥_ﬁ"’7, |A A Z|5 lo™ y’E“)}
n Al
[As]
=K.

Therefore, we conclude that ||.Zx|| < K.
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Secondly, we show that .7 maps bounded sets into equicontinuous sets of &. Let
SUP(, vefo.1jxse [f (1 X)| = f* < 00, vi,v2 € [0,T] with vy < v, and x € Bg. Then,
we have

[(Fx)(v2) = (Fx) ()]

ReI®f (s, x(5)) (v2) — reI®f (5, x(5)) (V1)

_ (Z Sl I (536 (E) — 3 sl a5 x(5) () + A)

i=1

A_ (Z Sl a1 (536 (E) — 3 sl a5, x(5) () + A) '
j=1

i=1

<L
~ Ia+1)

[ =i /3 TR M
A F(a+1)z|“|a T+ T e+ ).

2(vy —v)* + }vg‘ - v‘l"|]

Obviously the right hand side of the above inequality tends to zero independently
of x € Bg as vy — vj. Therefore it follows by the Arzeld-Ascoli Theorem that
F 1 &y — & is completely continuous.

Finally, we show that there exists an open set U C & with x # 6.%x for 6 €
(0,1) and x € dU. Let x be a solution. Then, for ¢ € [0, T], and following the similar
computations as in the first step, we obtain

TO— P _m p Ta—l n
L il Ny~ Yi£%
R |\ Ty S 2 ile

llxll < llplly llxlD

Ta—l|/1|
[As]

= llply dixl) P2 + £2..

Consequently, we have

Il

el dlxl Py + $2, —

In view of (5.16.2), there exists N such that ||x|| # N. Let us set
U=1{xed&:|x| <N} (5.64)
Note that the operator . : U — & is continuous and completely continuous. From

the choice of U, there is no x € dU such that x = 6.%x for some 8 € (0,1).
Consequently, by nonlinear alternative of Leray-Schauder type (Theorem 1.4), we
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deduce that .% has a fixed point in U, which is a solution of the problem (5.46)—
(5.47). This completes the proof. |

Example 5.14 Consider the following nonlocal boundary value problem

65sin(x/6) 3 + cos(f)

D6 (f) = L 0<t 7
mD ) = e e T g1 sh=7
x(0) =0,
3 2 2
5[-112/3)6 (@) - 7H15/4)C (3) — 5[-119/2)6 (;) (565)

= Zul”*x (\/§> + 241" 3x (1)
7 7 4 5
+ JTHII/S)C (JT_) — —H19/7.X (—) + 5

4 e

Herea = 11/6,m =3, n=4,A=5/3,T =m, 1 =3/2, up = =7, uz = =2/3,
B =2/3,=5/4B3=9/2m=em=3m=2/r,8§=¢e,8=2,
8 = 7,8 = —T/4, y1 = 9/4, v, = 11/3, 93 = 1/3,y4 = 9/7, & = /3,
£ =1,8 = 7/2, & = 4/e and f(t,x) = (6sin(x/6))/(4w + 2* + 1)?) + (3 +
cos(t))/ (8w + 1). Clearly

_ 6 sin(x/6) 3 + cos(?) |x] + 1
10.0] = | s+ 2 = G eos Gy (M)

Choosing p(t) = 3 + cos (¢) and ¥ (|x|]) = (|x| + 1)/(87), we find that A3 ~
—50.6564991, @, ~ 6.20634772, 2, ~ 0.08540929522, and N > 87.75640147.
Hence, by Theorem 5.16, the problem (5.65) has at least one solution on [0, ].

Now, we apply the Leray-Schauder degree theory to obtain the final existence
result.

Theorem 5.17 Assume that f : [0,T] x R — R is a continuous function.
Suppose that:

(5.17.1) there exist constants 0 < k < @{1, and K > 0 such that
If(t,x) < k|x| + K forall (t,x) € [0,T] xR,
where @, is defined by (5.57).

Then the problem (5.46)—(5.47) has at least one solution on [0, T].

Proof Consider the fixed point problem
x=Zx, (5.66)

where the operator .% is given by (5.56). We will show that there exists a fixed point
x € &y satisfying (5.66). It is sufficient to show that .7 : B, — & satisfies

x#uFx, VxeoB, VYuel01], (5.67)
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where B, = {x € & : ||x|| < p, p > 0}. Let us define
H(u,x) = pFx, xe b, uel01].

It is easy to see that the operator % is continuous, uniformly bounded and
equicontinuous. Then, by the Arzeld-Ascoli Theorem, a continuous map 4, defined
by hy(x) = x — H(u,x) = x — uFx is completely continuous. If (5.67) is true,
then the following Leray-Schauder degrees are well defined and by the homotopy
invariance of topological degree, we have

deg(hu’B,Dvo) = deg(]_ /"Ly’prO) = deg(hl?Bp’O)
= deg(ho, B,,0) = deg(I,B,,0) =1#0, 0€B,,

where I denotes the unit operator. By the nonzero property of Leray-Schauder
degree, hj(x) = x — %x = 0 for at least one x € B,. In order to prove (5.67),
we assume that x = % x for some p € [0, 1]. Then

|7 x(0)]

IA

S
sup {RLI" (s, x(s) (1) + (Z 181617 0% |f (s, ¥(5))1(§))

re[0.7] | As] =

+ Z il P R I |f (5. x(5) | (my) + M|)}

i=1

IA

(|lxll + K)

1 ™4 Vit Xm:|u~|o{_ﬁ’r]‘?‘ + To—1 Xn:|8v|a—1’/59‘
Ie+1) [43] = Al &Y g

Toz—l|k|
[As]

= («|lxll + K)®, + £2,.

which implies that

Ko, + §2,
Ixll = —=—.
1— K(pz
K&, + £2
where £2, is defined by (5.58). If p = 12—+¢2 + 1, the inequality (5.67) holds.
— KDy
This completes the proof. |

Example 5.15 Consider the following nonlocal boundary value problem
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(t+ 2 "x 4

D5x(f) = , 0<r<4,
D) = 2 10(" +5)  13(e¥ +3)
x(0) =0,
1 10 7 9
31% % (E) + 4l () + enl”*x (?) + gul (Z) (5.68)

11 12
= Z1_119/4)6 (E) — tan2(4)H110/3x (7)

2
3 13 9\ 11
—SplPPx = ) = V1P x|+ —.

e 4 8 9

Hereo = 9/5,m =4, n =41 =11/9,T =4, u1 =3, s = 4, u3 = e,
Mg = 7/3, ,31 = 5/2, ,32 = 1/3, /33 = 5/4, ,34 = 11/5, m = 1/2, N = 1w,
N = 10/3, Ng = 9/4, 8 = 7T/2, 8y = —tan2(4), 53 = —3/6, 84 = —/11,
Y1 = 9/4, V2 = 10/3, V3 = 2/5, Y4 = 3/7, E] = 11/6, Sz = 12/7, 53 = 13/4,
£ = 9/8andf(t,x) = ((t+2e7)x)/(Bx>+10(rr" +5)) + (4)/(13(e* +3)). Clearly
[f(t.x)| < 751x| + 15, s0 (5.17.1) is satisfied with k = 1/10 and K = 1/13. Further,
we compute Az &~ 37.7176876, &, ~ 9.743207923 and kP, ~ 0.9743207923 <
1. Hence, by Theorem 5.17, the problem (5.68) has at least one solution on [0, 4].

5.6 Riemann-Liouville Fractional Differential Inclusions
with Multiple Hadamard Fractional Integral Conditions

In this section, we discuss the existence of solutions for Riemann-Liouville
fractional differential inclusions supplemented with multiple Hadamard fractional
integral conditions:

reD*x(t) € F(t,x(1)), 0<t<T, 1 <a <2,

" " (5.69)
X0) =0, > wulPix(n) =Y Sul"x(E) + A,

i=1 j=1

where F : [0,T] x R - Z(R) is a multivalued map, and & (R) is the family of all
nonempty subsets of R.

5.6.1 The Carathéodory Case

In this subsection, we consider the case when F' has convex values and is of
Carathéodory type. An existence result for the given problem is obtained by
applying the nonlinear alternative of Leray-Schauder type.
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Theorem 5.18 Assume that the assumptions (5.8.1) and (5.8.2) hold. In addition,
we suppose that:

(5.18.1) there exists a constant M > 0 such that
M
YD lpI@: + AL/ A]
where @, is defined by (5.57).

)

Then the problem (5.69) has at least one solution on [0, T).

Proof Define an operator .7 : & — P (&y) by

he éo() :

reI® (1)

ta—l n .
TO= =17 (Z&Hﬂwv@» (5:70)
= 3\ “
j=1

- Z WirrlP R 10 () + /\)

i=1

for v € Spg,. It is obvious that the fixed points of .%# are solutions of the
problem (5.69).

We will show that .% satisfies the assumptions of Leray-Schauder nonlinear
alternative (Theorem 1.15). The proof consists of several steps.

Step 1. .Z(x) is convex for each x € &.

This step is obvious since Sg, is convex (F has convex values), and therefore, we
omit the proof.

Step 2. % maps bounded sets (balls) into bounded sets in &.

For a positive number p, let B, = {x € & : ||x|| < p} be a bounded ball in &. Then,
for each h € . (x), x € B, there exists v € S such that

o1 n . m .
h(t) = rel®v(t) + A ( Sl Rl v(§)) — E pind? R I v () + A).
3 . 3
j=1 i=1

Then, we have

A

l’a_l n . m . o
(0] < wl* (O] + A—3< Sl sl [0E)] = D pand el )| + lkl)
1

j= i=1

Ta—l n
1o
|A3| le J J

Pl Cllxll) T & 5
< PV ey —— o P +
T+ 1) 43| ;'“' 7

+T7!|Al/]As]
®alplly (lxl) + 77141/ | As].
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Thus
Il < D2llpllv (p) + T~ Al/] As].

Step 3. % maps bounded sets into equicontinuous sets of &.

Let 7, 7, € [0, 7] with 71 < 12 and x € B,. For each i € .% (x), we obtain
|h(z2) — h(T1)|

= %q) ’/(;TI (2= 9" = (m = )" Ju(s9)ds + /:(Tz —5)* 'v(s)ds

(g =l i - o ¢
e Z Sl Rl |0 (§)] = D it rud® v (ny)]
i=1

_ Iplv )
TG+

@ =PIV (N e g s
ey & e 2 bl )

2(r, — ) + |752 -7 |]

Obviously the right hand side of the above inequality tends to zero, independently
of x € B, as 1o — 11 — 0. As . satisfies the above three assumptions, it follows by
the Arzeld-Ascoli Theorem that % : & — Z2(&) is completely continuous.

Since .# is completely continuous, in order to prove that it is u.s.c., it is enough
to show that it has a closed graph.

Step4. .F has a closed graph.

Let x, — x«,h, € F(x,) and h, — h,. Then, we need to show that h, € .F (x«).
Associated with 1, € .% (x,), there exists v, € Sp,, such that for each 7 € [0, T,

i=1

0[_1 m
ha(t) = rel®v,(t) + (Z 8l R 1% v, (&) — Z WirrdP R I v, () + A)
Aj

Thus it suffices to show that there exists vy« € Sr, such that for each r € [0, 77,

o1 n , m ‘
ha(t) = red®va(t) + A (ZSJHIy’RLlav*(Sj) - ZMiHIﬂ’RLlav*(fii) +A).
3 N
j=1

i=1

Let us consider the linear operator @ : L' ([0, T], R) — & given by

f=00)() = RLIaU(t)+ <25H1y’ rulv(&)) — Z/’LZHlﬂl LI“v(n)Jrl)

i=1
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Observe that
24— 1

Iha 6) = (0] = T

Rl (a (1) — s (1)) +

( Z Siul " ReI” (vn)&)) — v (§)))
=

- Z Wird P g 1% (v, () — v*(n,-))> ” — 0,

i=1

asn — oo.
Thus, it follows by Lemma 1.2 that ® o Sg, is a closed graph operator. Further,
we have h,(f) € ©(Sr,,). Since x,, — x4, therefore, we have

l’a_l n . m .
ha(t) = rel“va (1) + A_( Sl Rl V() — ) pantl” Rl Vi () + A),
3\ 4 ,
j=1 i=1
for some vx € Spy, .

Step 5. We show there exists an open set U C & with x ¢ 0.% (x) for any 6 € (0, 1) and
all x € 9U.

Let § € (0,1) and x € 6.7 (x). Then there exists v € L'([0, T], R) with v € Sg,
such that, for ¢ € [0, T, we have

tO‘_l n . m .
x(t) = 0 gel%v(t) + 0 n < SV prI%v (&) — § wird? %0 () + /1)'
3 ,
j=1 i=1

As before, we can obtain

a—1

1 T “ 7o
— | T* + o™i + Sila™VEY
F(a+1)( T & e |Aa|j=zl"| E)%

+7¢7!Al/145]
= Y (D llpll@: + T A1/1451,

llxll < w(llxDlipl

which implies that

[l
V(XD IpI P2 + TR/ 1Al —

In view of (5.18.3), there exists M such that ||x|| # M. Let us set
U={xeé&: x| <M.

Note that the operator .Z : U — (&) is a compact multivalued map, u.s.c. with
convex closed values. From the choice of U, there is no x € U such that x € 0.7 (x)
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for some 6 € (0, 1). Consequently, by the nonlinear alternative of Leray-Schauder
type (Theorem 1.15), we deduce that .% has a fixed point x € U, which is a solution
of the problem (5.69). This completes the proof. O

5.6.2 The Lower Semicontinuous Case

Here we assume that the multivalued map F is not necessarily convex valued.

Theorem 5.19 Assume that (5.8.2), (5.18.1) and (5.9.1) hold.
Then the boundary value problem (5.69) has at least one solution on [0, T].

Proof 1t follows from (5.8.2) and (5.9.1) that F is of l.s.c. type. Then from
Lemma 1.3, there exists a continuous function f : & — L!([0,T],R) such that
f(x) € Z(x) forall x € &.

Consider the problem

rDIx(t) = f(x(1)), 0<t<T, 1<a <2,

m n (5.71)
x(0) =0, ZHiHIﬂix(ni) = Z Sl x(§) + A

i=1 j=1

Observe that if x € €2([0, T], R) is a solution of (5.71), then x is a solution to the
problem (5.69). In order to transform the problem (5.71) into a fixed point problem,

we define the operator .% as

ttx—l
A3

Fx(t) = relf(x(1) + (Z 8l rud*f (&) — ) pand” reI®f () + /\)-
j=1 i=1

It can easily be shown that .% is continuous and completely continuous. We
omit the rest of the proof as it is similar to that of Theorem 5.18. This completes
the proof. |

5.6.3 The Lipschitz Case

In this subsection, we prove the existence of solutions for the problem (5.69) with a
not necessary nonconvex valued right hand side, by applying a fixed point theorem
for multivalued maps due to Covitz and Nadler (Theorem 1.18).

Theorem 5.20 Assume that the assumptions (5.7.1) and (5.7.2) are satisfied. Then
the problem (5.69) has at least one solution on [0, T] if |m| @, < 1.
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Proof Consider the operator .% defined by (5.70). Observe that the set Sg is
nonempty for each x € &, by the assumption (5.7.1), so F has a measurable
selection (see [57, Theorem III.6]). Now, we show that the operator .# satisfies
the assumptions of Theorem 1.18. We show that .7 (x) € Z.(&p) for each x € &.
Let {u,}u>0 € % (x) be such that u, — u (n — o0) in &. Then u € & and there
exists v, € Sp,, such that, for each ¢ € [0, T],

tafl n . m ‘
uy(t) = RLlavn(t) + As ( 8jHIy/RLIaUn(§j) - Z'uiHIﬂlRLlavn(ni) + A)
=1 i=1

As F has compact values, we pass onto a subsequence (if necessary) to obtain that
v, converges to v in L' ([0, T],R). Thus, v € Sr, and for each ¢ € [0, T], we have

t’a_l n V m .
un(t) = v(t) = pel®v(1) + A_3(Z Sl RLI® V(&) — Zﬂiﬂlﬂ’RLlav(ﬂi) + A)-

j=1 i=1

Hence, u € .7 (x). B B
Next, we show that there exists § < 1 (6 := ||m]| ®,), such that

Hy(Z (x), Z (%)) < §|lx — X|| foreach x,X € &.

Letx,Xx € & and hy € % (x). Then there exists v, (z) € F(¢,x(¢)) such that, for each
t€0,T],

toc—l
As

hi(t) = rel%vi(2) + (Z(nglijLlavl(Ej) - ZM[HIﬂiRLlavl(ni) + )t)-
=1

i=1
By (5.7.2), we have
Hy(F(t, %), F(1, %)) < m(1)|x(t) — x(1)].
So, there exists w € F(t, x(¢)) such that
[v1(1) —w| < m@)|x(t) —x@)|. t€][0,T].
Define U : [0, 7] — 2 (R) by

U@ = {weR: o (1) —w| = m@)|x(t) - xX(1)]}.

Since the multivalued operator U(7) NF(z, X(¢)) is measurable [57, Proposition I11.4],
there exists a function v,(f) which is a measurable selection for U. So v,(f) €
F(t,x()) and for each t € [0, T], we have |v{(¢) — v, (?)| < m(¢)|x(r) — x(¢)].
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For each t € [0, T, let us define

hy(t) = gel®va(2) + A3 (Z&HIVJRLI v2(§) — Z szlﬂ‘mlo‘vz(n) + )L)

Jj=1 i=1
Thus,

|71 (£) — o (1)

< rdvi(t) — v2(0)]

|A | (Z(S/HIV’RLIQWI(SJ) - U2(51)| + Zﬂzﬂlﬂ‘RLIa|U1(77 ) — 02(77:)|)

i=1

11 1 m T‘)‘*l n
e | T |mila i + 1878 | ¢ llx = XII.
r(+1)( |A|Z |A3|,;’ ’

Hence,
[l1hy — Aol
<l e TS o + —nge | b e =3
@+ a5 & i

Analogously, interchanging the roles of x and X, we obtain

Hy(Z (x). F (X)) < 8||lx— x|,
where § = ||m|®,| < 1.

So .7 is a contraction. Therefore, it follows by Theorem 1.18 that .% has a fixed
point x which is a solution of (5.69). This completes the proof. O

Example 5.16 Let us consider the following nonlocal boundary value problem

rDx(1) € F(t,x(1)), te€ (0, g) ,
x(0) =0,

1 2 2 1 3 4 1
425 (2 302 (2 = 2 02 (2 ROIVENY Bt -
H x(3)+H \3) =3 g T 3) Ty
(5.72)
Here wehave o = 5/3, T =3/2,m=2,n=2, u1 =4, up =3,81 =2/5, 8> =

1/2’ m = 1/37 = 2/3551 = 2/3752 = 3/5’ Y1 = 1/2a Y2 = 1/372,.:1 = 1/4’
& =4/3, A = 1/7. By using computer program, we find A3 & 6.221625494 # 0.

(a) Let F:[0,3/2] x R — Z(R) be a multivalued map defined by

x— F(t,x) = |: (5.73)

l+cos2x ¢ +2t3+ }
2 +sin’x 2e*+3 9
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(b)
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For f € F, we have

1 + cos?x e’ 213 9
[fl < max —— + = +1) <=, xeR
2 +sin®x 2+ 3 9 4

Thus,

&~ o

IF@. 0| = supilyl 1y € F(t,x)} = - = p() ¥ ([Ix]). x € R,
withp(r) = 9, ¥ (||x||) = 1/4. Further, using the condition (5.18.3), we find that
M > 3.779988106. Therefore, all the conditions of Theorem 5.18 are satisfied.
So, the problem (5.72) with F(t, x) given by (5.73) has at least one solution on
[0,3/2].

Let F:[0,3/2] x R - Z(R) be a multivalued map defined by

(5.74)

3sin?x 3
x—F(t,x)y=10 .

s+
(V8 +2n2 128
Then, we have

3

sup{|x| :x e F(t,x)} < —— + —,
Pl 3 € P = 2o+ g

and

_ 3 _
Hd(F([,)C),F(t, )C)) = mPC—Xl.

Let m(f) = 3/(~/8 + 20)%. Then Hy(F(t,x),F(1,X)) < m(7)|x — | with
d(0, F(¢,0) < m(¢) and ||m| = 3/8. Further ||m| @, ~ 0.624983363 < 1. Thus
all the conditions of Theorem 5.20 are satisfied. Therefore, by the conclusion of
Theorem 5.20, the problem (5.72) with F(z,x) given by (5.74) has at least one
solution on [0, 3/2].

5.7 Hadamard-Type Fractional Differential Equations

with Multiple Nonlocal Fractional Integral Boundary
Conditions

In this section, we investigate the following boundary value problem of Hadamard
fractional differential equations equipped with multiple nonlocal fractional integral
boundary conditions
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Dix(t) = f(t,x(r), 1<qg=<2,te(l,e), (5.75)

x(1) =0, > AJx(pi) = Z 1 (Pix(e) — JPix(E)) (5.76)

i=1 j=1

where DY denotes the Hadamard fractional derivative of order ¢, f : [1,¢] x R — R
is a continuous function, n;, § € (1,e), 4;, uj € R, foralli = 1,2,...,m,j =
L2,...,0, 0 <Ny < oo < Ny & < & < --- < &, and J? is the Hadamard
fractional integral of order ¢ > 0 (¢ = o, B, i =1,2,...,m,j=1,2,...,n).

We emphasize that integral boundary conditions in (5.76) are encountered in
various applications such as population dynamics, blood flow models, chemical
engineering, cellular systems, heat transmission, plasma physics, thermoelastic-

ity, etc.
Moreover, the condition (5.76) is a general form of the integral boundary
conditions and covers many special cases. For example, if ¢; = f; = 1, for all

i=1,2,...,mj=1,2,...,n, then the condition (5.76) reduces to

x(1) =0,
n d Nm d e d e d
AI[ x(s)—s+---+xm/ X(S)—S=M1/ x(s)—s+---+unf ()2
1 s 1 s & S &n s

For the sake of computational convenience, we set

I'(q) +a—1 I'(q) _ B
ZA rG+a )(log’?,)" Z ’F(q+/3,) (1 (log&) ) (5.77)

Lemmas54 Let Ay #0, 1 <qg=<2 0, 8;>0,n, &€ (le)fori=1,2,....m
j=1,2,....,nand h € C([1, ¢], R). Then x is a solution of the following fractional
differential equation
Dix(t) = h(t), te (1,e), (5.78)
subject to the boundary conditions
(1) =0, Y AU =Y p; (FFx(e) — IPx(&)). (5.79)
i=1 j=1

if and only if it is a solution of the following integral equation

—1 n
x( = e > 1 (17 Pin(e) — 17 Pin(g)

A =
log)?™ ' &
_(logn™ > ATt h(n) + Jh(s). (5.80)

A
4=
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Proof Applying the Hadamard fractional integral of order g to both sides of (5.78),
we have

x(1) = z1 (log )" + 2, (log )72 + J7h(1), (5.81)

where z;, 220 € R.
Using the condition x(1) = 0 in (5.81) implies that z; = 0. Therefore (5.81)
becomes

x(t) = z; (log H)4™" + J9h(r). (5.82)
For any p > 0, it follows that

P x(t) = 71 ?:%igiz'i (log )P~ 4 J4tPh(r). (5.83)

Using the second condition of (5.79) with (5.83) in (5.82) leads to
1 n 1 m
2 =— CJTPine) — 1PN — — Y CAJTTY R, (5.84)
i A4;u,( () &) A%j (m:)

Substituting the value of z; into (5.82), we obtain (5.80) as required. The converse
follows by direct computation. The proof is completed. |

By Lemma 5.4, we define an operator % : C([1, ¢], R) — C([1, ¢], R) associated
with the problem (5.75)—(5.76) by

(log )(I 1 m

(Fx)(1) = T (5. x(s)) (1) — Z A (5,x(5)) (i)

_1 n
H B by )@ S E) . 689
=1

with A4 # 0. It should be noticed that problem (5.75)—(5.76) has solutions if and

only if the operator .%# has fixed points.
In the sequel, we set &1 = C([1, ¢], R) and

(log n;)® T4 - 1+ (log &)Fita
Z' "F(a,+q+1) [Aq |ZI "F(ﬂ,+q+1)

[0))
’ F<q+ ) |A4|

(5.86)

The first existence and uniqueness result is based on the Banach contraction
mapping principle.
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Theorem 5.21 Let f : [l,e] x R — R be a continuous function satisfying the
assumption (5.1.1). Then the problem (5.75)—(5.76) has a unique solution on [1, e] if

Ly < 1, (5.87)

where @3 is given by (5.86).

Proof We transform the problem (5.75)—(5.76) into a fixed point problem, x = Zx,
where the operator .7 is defined by (5.85).

to show that

We set supe(; o [f(#,0)] = M < oo and choose r > _ Lo,

FB, C B,, where B, = {x € & : ||x|| < r}. For any x € B,, we have

—1 m
17 = sup L0l + CEL T DA
1€[1,e] i=1

1 g—1 n
4 olgAtL D Il (P (s. x() ] e) + (s, x(5) ()
j=1

< JU(If (s, x(s)) = f (5. 0 + [ (5. 0)]) (e)

! D2 (5,560 = 501+ 5,0

VW] | &
+ ﬁ > lujl(lﬁf“(lf(s,x(s» —£(5.0)| + [f(5.0)])(e)
j=1

+IF(If (5, 2(5) = £(5,0)| + (5. 0)]) &)

" (log n;)t4
3 |M|L

< (L M —_—
SEHED rery Yl 2 e g

i 1+ (log&)fita
A |Z' STy

= (Lr4+M)®; <r.

It follows that .# B, C B,.
For x,y € & and for each t € [1, e], we have

|7 x(t) — Fy(@)]
< JUIf (s x()) = f(s. y(ND (@)

1 471 m
BB S s (75309 =155 6D D)
=1

—1 n
N (lo|gAriq| Iyl ( TR (s, x() — £ (s, y(5) ) (e)
j=1

+IPF(f (5, x(5)) —f(s,y(S))l)(Ej))
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1 1 n 14 @ Bi+a
Z' |dogm)™ ™ (log i)™+ Z' | ot o )7 (log§))

< Lllx— -
s th=vh 7o T |A4| Te+q+1) |A| B +q+1)

= Ldslx —yl.

The above inequality implies that ||.#x — Fy|| < L®s||x — y||. As L&; < 1, F is
a contraction. Hence, by the Banach contraction mapping principle, we deduce that
% has a fixed point which is the unique solution of the problem (5.75)—(5.76). This
completes the proof. O

Example 5.17 Consider the following boundary value problem of Hadamard frac-

tional differential equation with fractional integral boundary conditions

log |x(1)] 1
3/2 _ —
D7x(t) = L G 0D +t1p '€= [1,e],

x(1) =0,

5 1 9 15 10
2V 2 ) 22 (2 ) 3% =) = 28 — J*3

+5 (Jgﬁx(e) — 77 (2)) -2 (Jll/4x(e) — J /4y (4_91))

(5.88)

Hereq = 3/2,/'{] = 2, /\2 = 1/5, A4 = 3, o = 1/4, Oy = 3/2, o3 = 2,
m o= 5/4m = 9/5n =15/7, u =1, u =5 pus = =2, fi = 2/3,
B2 =9/7Bs = 11/4,§ = 10/7,5 = 2,& = 9/4and f(1,x) = (log’|x[)/ (' (++
2)2(3 4+ |x]))1/10. Since |f (¢, x) —f (¢, y)| < (5/27¢)|x—y]|, (5.21.1) is satisfied with
L = 5/27e. With the given values, it is found that A4 ~ —0.6895040549, &3 ~
3.975680952 and L3 =~ 0.2708465347 < 1. Hence, by Theorem 5.21, the
boundary value problem (5.88) has a unique solution on [1, ¢].

Next, we establish the second existence and uniqueness result by means of
nonlinear contractions.

Theorem 5.22 Let f : [l,¢] x R — R be a continuous function satisfying the
assumption:

(5.22.1) If(t,x) = f(t,y)| =< h(f)ﬁ’

[1,e] — R is continuous and a constant H* is defined by

t € [lye], x,y = 0, where h :
= J7h(e) + m Z A T4 T 9R(n;)

1
| N IZW’ | (JPH9h(e) + JPTn(E))) . (5.89)

Then the problem (5.75)—(5.76) has a unique solution on [1, e].
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Proof We consider the operator .# : & — &) given by (5.85) and a continuous
H*
nondecreasing function ¥ : Rg‘ — RT defined by ¥(0) = 1o Vo > 0,

such that ¥ (0) = 0 and ¥ (0) < 6 for all 6 > 0.
For any x,y € & and for each 1 € [1, ¢], we have

|7 x(1) = Fy@)] < J(f (5. x(s)) = f (5. y()D (D)

log 1)1~ &
+ % S T HF 5. x(5) — £ s DD 1)
i=1

+ (lofAt)cli_ Z |1l (J PIEA(If (s, x(s)) — f (s, y(s) ) (e)

PR30 16 DE) )

00 g
H* +1x(5) =)0

) o) =30\
A |Z'A e (”( Vi |x(s>—y(s>|) (m)

) 1x() — ()| )
|A 2 Z'“’ %J " (h( Vi 1 1) =y ) ©

4 Jbita (h(s)H* [x(s) — y(s)] ) (sj)}

5ﬂ@@

+ |x(s) — y(s)|
w(lx—yl) (th(e) o Y )
iz

I/\

H*

|A | Z |MJ ]ﬁri-qh(e) +Jﬂ’+"h($ )))

l1’(||x—y||),

which implies that | #x — Zy| < W¥(||lx — y||). Therefore .# is a nonlinear
contraction. Hence, by Theorem 1.11, the operator .% has a fixed point which is
the unique solution of the problem (5.75)—(5.76). O

Example 5.18 Consider the following boundary value problem for Hadamard
fractional differential equation with integral boundary conditions
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¢ [x(@)]
(t+ 1> 2+ [x@®))

1
D'*x(t) = + 7 teJ=1[l,e,

x(1) =0,

(5.90)
1J6/7 ;) ( ) —27%x(2) =4 (Jsx (e) —Jx (%))
+ ]: (.13/4x(e) J4x (ig))

Hereq = 7/4, Al = 1/4, Az = —2/3, A4 = —2, o = 6/7, Oy = 3, o3 = 5/2,
m=7/3,m=7/5n=2,u=4u=11/4 B =5, =3/4§ = 11/5,
£, = 16/13, and f(1,x) = (¢'|x])/((t + 1)>2 + |x])) + 1/7. We choose h(r) = e /4
and find that A4 &~ —1.672972140 and H* ~ 1.295076743. Clearly,

e 20x| — 21y ) e’( lx —yl )
0 =7l = (1+t)2(4+2|x|+2|y|+|x||y| = 3\ 1295076743 + x|

Hence, by Theorem 5.22, the problem (5.90) has a unique solution on [1, ¢].
The following existence result is based on Krasnoselskii’s fixed point theorem
(Theorem 1.2).

Theorem 5.23 Assume that f : [1,e] x R — R is a continuous function satisfying
the assumptions (5.1.1) and (5.15.1). If

L
— <1, 5.91
I'g+1) >:91)
then the problem (5.75)—(5.76) has at least one solution on [1, e].
Proof We define sup,(; . [#(r)] = [|¢| and choose a suitable constant 7 as 7 >

l@ || @3, where @5 is defined by (5.86). Next, we define the operators & and 2 on
Br={xe & x| <7}as

log)4~! &
(220 = CEE 5y (975,260~ I 656 6)
=1

(log ;)q ! Zk]a’+qf(s x(s))(n;), te(l,el,
i=1

(2x)(t) = JU (s, x(s))(t), t€[l,e].
For x,y € By, we have

N 3 (log n;)**4
Fg+1) A& " " Teit+q+1)

2x + 2yl < ||¢||(

"1t (logg)hhe
1A |Z' #4l r(ﬂ,+q+1)>



5.7 Hadamard Nonlocal Fractional Integral Boundary Value Problems 169

= [¢l®s

<Tr.

This shows that #x+ 2y € By. Using the assumption (5.21.1) together with (5.91),
it can easily be shown that 2 is a contraction mapping. Since the function f is
continuous, we have that the operator & is continuous and

n

RS (log )+ 1+ (log &)t
Px|| < — Ai
1240 = W0l | o S r Gt 7 * |Z| Wl TG 1 e D)

Therefore, &2 is uniformly bounded on B;.
Now, we prove the compactness of the operator . Let us set
SUP(, vef1.e)xs; [f (1: X)| = f < 0o. Consequently, we get

[(Zx)(11) = (Fx)(22)]

log )7~ &
% ZM (Jﬂl"'qf(v x(s))(e) — JPTaf (5. x(s >)(Ej)

g—1 m

M D AT (s, x(5)) (1)
l l

(log tz)" - B+ o

—— (J ITAf (s, x(5))(e) = JPTIf (s, x(s))(é,))
=1

1 m
M 37 st ag(s.x(5)) ()

i=1

_|(og1)471 — (log11)77!| | & (log ;) (log &)Pita
=/ Ad] Z"'F(a+q+1)+Z|J|F(ﬁ Ya+1)

i=1

which is independent of x and tends to zero as t, — #;. Thus, & is equicontinuous.
So & is relatively compact on By. Hence, by the Arzeld-Ascoli Theorem, & is
compact on By. Thus all the assumptions of Theorem 1.2 are satisfied. So the prob-
lem (5.75)—(5.76) has at least one solution on [1, e]. The proof is completed. O

Remark 5.2 In the above theorem, we can interchange the roles of the operators &
and 2 to obtain a second result by replacing (5.91) with the following condition:

L g og et i (L ogg)Pte
44| & T@+q+D |As] 2 T g+ D

Our last existence result is based on Leray-Schauder’s nonlinear alternative.



170 5 Factional Differential Equations with Hadamard Fractional Integral Conditions

Theorem 5.24 Assume that f : [1,¢] Xx R — R is a continuous function satisfying
the assumption (5.5.1). In addition, we suppose that:

(5.24.1) there exists a constant N > 0 such that
N
Ipllv (N) s
where @ is defined by (5.86).

> 1,

Then the problem (5.75)—(5.76) has at least one solution on [1, e].

Proof In the first step, we show that the operator .%, defined by (5.85), maps
bounded sets (balls) into bounded sets in & . For a positive number R, let By =
{x € & : |x|| < R} be a bounded ball in &}. Then, for ¢ € [1, e], we have

| Zx(0)] < Jf(s.x(s))](e) + m Z Al s, () ()

Z il (P 5,3 (@) + T 17 5. 2(5) | 8)

|A|
1O (logn)ete
= Il (b = +1) A Clw ,-;w Fart gt D
1 L (log )Pt
+||p||w<||x||>|A |Z| Ty
ST —— IlW)—ZI logm)™?_
= Ip T +1) P 1Al &= T+ g+ 1)

n

1 + (log&)Pite
+ IR - e + (ogky)

r'Bi+q+1)

= K().

Therefore, we conclude that || Zx| < K.

Secondly, we show that .7 maps bounded sets into equicontinuous sets of 1. Let
SUP(; vyef.ejxsg [f (1 X)| = f* < 00, v, vy € [1,¢] with vy < vp and x € Bg. Then,
we have

[(Fx)(v2) = (Fx)(v1)]

(log v2)?”

= [Jf (s, x(s))(v2) — Z M4 (s, x(5)) (11)

i=1

1 1
+ % D1y (P (s, x(5)) (€) — JPHf (s, x(5) (§)))

j=1
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(lo gv])

—J4f (s, x(5) (V1) + Z A 4f (s, x(5)) ()

MZM (P 9f (s, x(s)) () — I (s, x(5)) (5)))

j=1
< 2(log v, —logv;)? + |(log v2)? — (log v1)?|
- 'ig+1)

+f*

. |(logv2)=! — (log vy)7~!| Zl _Qogm)te yeita
| A4 "T+q+1)

e
) 1)}

Obviously the right hand side of the above inequality tends to zero independently
of x € Bg as vy — v;. Therefore it follows by the Arzeld-Ascoli Theorem that
F . & — &) is completely continuous.

Finally, we show that there exists an open set U C & with x # 6.%x for 6 €
(0,1) and x € dU. Let x be a solution. Then, for ¢ € [1, ¢], we have

(log n;)**4
el < lipllv (llx ||)F( 1y * Il s ”)WZ' e
- 1 + (log &)Pite
+ llpllv (Ix ”)WZ' Sy
= Iplly (lx)®s.

Consequently, we have

[l ]

_— <
Pl (D Ps —

In view of (5.24.2), there exists N such that ||x|| # N. Let us set
={xe & :|x|| <N} (5.92)

Note that the operator .% : U — & is continuous and completely continuous. From
the choice of U, there is no x € dU such that x = 6.%x for some 6 € (0,1).
Hence, by nonlinear alternative of Leray-Schauder type (Theorem 1.4), we deduce
that .# has a fixed point in U, which is a solution of the problem (5.75)—(5.76). This
completes the proof. O
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Example 5.19 Consider the following Hadamard type boundary value problem

2 sin(x/4) 2 + cos(mt)

D x(t) =
W= e 12 T Tor +3

, teJ=1]l,¢,

x(1) =0,

3 7 5 14 11
Jhx (5) — 3774 (2) — 10J°x (Z) +6J7%x (5) + ?Jsx (3)
11 17

(13/2x (e) — J*x (7)) -7 (J3x (e) — Px (E)

(7x (e) = IPPPx (2)).

+

3
4
3

(5.93)
Hereq = 6/5, )Ll = 1, )Lz = —3, A4 = —10, A4 = 6, As = 14/3, o = 4,
a=9/4, 03 =1/5 a0y =7/2,05 =50 =3/2,m =2,n3 =T/4, 04 =5/2,
ns = 11/9’ M1 = 3s M2 = _7s M3 = 4/33 /31 = 3/2’ ﬁZ = 3’ /33 = 5/3,
£ =11/7,& = 17/13,& = 2and f(t,x) = (2sin(x/4))/ (57 + (e + 1)?) + 2+
cos(mt))/ (10 + 3). Clearly,

B 25sin(%) 2 + cos(mn) | _ x| + 1
If(t,x)| = 5n+(ex+1)2+ T _(2+cos(nt))( 10m )

Choosing p(f) = 2 + cos(xt) and ¥(|x]) = (Jx| + 1)/(10x), we find that
Ay &~ —9.148087406, @3 ~ 1.462649525 and N > 0.1623483851. Hence, by
Theorem 5.24, the problem (5.93) has at least one solution on [1, e].

5.8 Notes and Remarks

The contents of Sects. 5.2-5.7 are respectively adapted from the papers [125-127,
154, 157, 162].



Chapter 6

Coupled Systems of Hadamard and
Riemann-Liouville Fractional Differential
Equations with Hadamard Type Integral
Boundary Conditions

6.1 Introduction

In this chapter, we focus on the study of coupled systems of Hadamard and
Riemann-Liouville fractional differential equations with coupled and uncoupled
Hadamard type integral boundary conditions. Coupled systems of fractional order
differential equations are of significant importance as such systems appear in a
variety of problems of interdisciplinary fields such as synchronization phenomena
[81, 84, 179], nonlocal thermoelasticity [130], bioengineering [119], etc. For details
and examples, the reader is referred to the papers [11, 28, 29, 123, 151, 152, 169]
and the references cited therein.

6.2 A Coupled System of Hadamard Type Fractional
Differential Equations with Uncoupled Hadamard
Integral Boundary Conditions

In this section, we discuss the existence of solutions for a coupled system of
Hadamard type fractional differential equations equipped with uncoupled Hadamard
integral boundary conditions

D%u(t) = f(t,u(®),v(), 1<t<e, 1<a =<2,
DPv(r) = g(t,u®),v(r)), 1<t < e, 1<B< 2

u(l) =0, M(e)zlyu(m)— / - @ds y>0,1<0] <e,
w1 =0, v(e) = P'o(om) = 1 [ (102 %) @ds <o <e
6.1)
© Springer International Publishing AG 2017 173
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where D’, § = a, B, is the Hadamard fractional derivative of fractional order &, I”
is the Hadamard fractional integral of order y and f,g : [1,¢] x R x R — R are
continuous functions.

Lemma 6.1 (Auxiliary Lemma) For1 < g <2 andz € C([1, ¢], R), the solution
of the linear problem

Dix(t) =z(t), 1 <t<e,

x(1) =0, x(e) =1"x(0), ©.2)
is equivalent to the integral equation
—1
x(t) = Iz(r) + % [17F92(0) — Iz(e) ] , (6.3)
where
0= : 6.4)
_ F(Q) (lOg 9)y+q—1
r'(y+q
I'(q) 4g—1
P q y+aq 1.
andF(y+q)(og9) #

Proof As before, the solution of Hadamard differential equation in (6.2) can be
written as

x(t) = Iz(t) + c1(log )" + 2 (log )72, (6.5)

where ¢; and ¢, are unknown arbitrary constants. Using the boundary conditions
given by (6.2), we find that ¢, = 0, and

1
= " T97(0) — Iz(e)] . (6.6)
! 1 o \"! (log s)?~! [ ]
11— —— log — ———ds
r'(y) i S S
Substituting the values of ¢; and ¢, in (6.5), we obtain (6.3). The converse follows
by direct computation. This completes the proof. |

Let us introduce the space X = {u(t)|u(f) € C([1,e],R)} endowed with the
norm ||| = max{|u(f)|,t € [1,e]}. Obviously (X, || - ||) is a Banach space. Also
Y ={v(@®)|v(r) € C([1, ¢],R)} endowed with the norm ||v|| = max{|v(r)|,t € [1, €]}
is a Banach space. Then the product space (X x Y, ||(«, v)||) is also a Banach space
equipped with norm || (&, v) || = |Ju|l + [|v]].
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In view of Lemma 6.1, for ¢ = «,0 = oy and ¢ = 8,0 = 0, respectively, we
define an operator 7 : X x Y — X X Y by

(). e
where
a—1
0 = [ (og) A0,
(logr)*~! 01 rra=l f(s, u(s), v(S))
+ A |:F(y + o) [ s
1 ¢ exe=1 f(s,u(s), v(s))
_m 1 <log E) — ds:|,
and
’3 bg(s, u(s), v(S))
DW”X”_FwL/ EE—
(10gt)’3_1 02 y+B=1 g(s, u(s), v(s))
B [rw+ﬂ>f 5
1 ¢ B=1 g(s, u(s), U(S))
) (log ) s }
with
A= ! B = ]
IEON tat g __TB +p-1
TG+ ) (logoy)” TG+ B (log o2)”
and @) (logoy)’tet £ 1, I'(h) (logay)? 71 £ 1.

'y +a) I'(y +8)
For computatlonal COHVCHICHCC, we set

M= 1 1 (logoy)7 N 1 68)
"TTe+1) A\ He+l)  T@+) '

_ 1 1 [ (logoy)’*h 1
%‘Fw+n+ﬁ(mww+n+rw+n) ©9
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Theorem 6.1 Assume that:
(6.1.1) there exist real constants k;, A; > 0 (i = 1,2) and kg > 0, A9 > O such that
Vx; € R, i =1,2, we have
[f(t,x1,x2)| < ko + kilxi| + k2 |x2],
lg(t, x1,x2)| < Ao + Ar]x1] + Az|xa].

In addition, it is assumed that
Mik; + MoA <1 and Mik, + MaAy < 1,

where M| and M, are given by (6.8) and (6.9) respectively. Then the system (6.1)
has at least one solution on [1, e].

Proof First, we show that the operator 7' : X x Y — X x Y is completely continuous.
By continuity of functions f and g, the operator T is obviously continuous.

Let £2 C X x Y be bounded. Then there exist positive constants L; and L, such
that

IF(t u@),v®)| <L, gt u@®),v®)| <L, Yu,v)e .

Then, for any (1, v) € £2, we have

! a=1 \f(s, u(s s
Ty (. v)(1)] < m (1og g w
o Rl (CORTO) WS
|A| F(J/—l-a) s
“ RUCTIORIC)IN
F(a) s
a 1 1 L )/+0t 1 ld
- F(“> Tl F(V—i—oz)
1 ¢ exe—l 1
T )i (1°g;) d}
which implies that
T <) — Ly L[ Coga)™ 1 .
=N Ter ) TR\ TG +a s ) T T ) T
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Similarly, we get

[T2(u,v)|| < L,

= L)M,.

1 + L (log o) N 1
rg+n  BI\r'e;+p+1) I'@E+1)

Thus, it follows from the above inequalities, that the operator 7 is uniformly
bounded.

Next, we show that T is equicontinuous. Let 71, 7, € [1, e] with 7y < 7,. Then,
we have

IT1 (u(12), v(12)) — T1 (u(t1), v(71))|

< an) /” (log T?z)“—‘f(&u(ss),v(S))ds_fl” (log %)“—‘f(s, u(?’v(s))ds

(log )"~ — (log 7)*~! 01 Bra=1 f(s, u(s), U(S))
+ A F(ﬂ + ) / s

a FVORIO) }

F(Ot) s
= m“(log )% — (log 71)%| 4 2(log(r2/71))*]
(log 7)1 — (log 77)* ! ta 1
i A [F(V+a+1)(l°gol)y +F(oz+1):H

Analogously, we can obtain

|T>(u(12), v(12)) — T2 (u(t1), v(11))]

= gy o)’ oz )] + 200x(ea/ )
(log ©)#~! — (log 71)#~!

o B |:F(y +B+1)

rg+1

1
(logon)"*/ + —] ‘

Therefore, the operator T'(u, v) is equicontinuous, and thus the operator 7'(u, v) is
completely continuous.

Finally, it will be shown that the set & = {(u,v) € X x Y|(u,v) = AT(u,v),
0 < A < 1} is bounded. Let (u,v) € &, then (1, v) = AT(u,v). Forany r € [1,¢],
we have

u(t) = ATi(u, v)(1),  v() = AT>(u, v)(0).
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Then
1 1 (logop)? T
WO =3 v |A|<F(y+(x—|—1) F(a—l—l)) (ko + kel + kel
and
1 1 { (logoy)r TP 1
POl =3 m T W(F(y+ﬂ+l) F(,3+1)) (o + Al + Azllo]).

Hence, we have
ull < Mi(ko + ki flull + k2flvll)
and
[vll = Ma(Ao + Arflull + Az[[v]).
which imply that
[ull + vl <= Miko + Mado) + (Miki + MaAy)||ul| + (Mika + MaAs)||v].
Consequently,

Miky + MyAg

’v S
)l = =2

for any t € [1, e], where M is defined by
My = min{l — (M1k; + MaA1), 1 — (Miky + MaA2)}, ki, Ai =0 (i =1,2).

This proves that & is bounded. Thus, by Theorem 1.3, the operator T has at least
one fixed point. Hence the system (6.1) has at least one solution on [1, ¢]. The proof
is complete. O

In the second result, we prove the uniqueness of solutions for the system (6.1)
via Banach’s contraction mapping principle.

Theorem 6.2 Assume that:
(6.2.1) f.g : [1,e] x R? — R are continuous functions, and there exist positive

constants m;, n;,i = 1,2 such that for all t € [1,e] and u;,v; € R,i = 1,2,

[f (£, ur, u2) — f(t,v1,02)| < myfuy — vy| + maluy — vy
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and
lg(t,u1, u2) — g(t,v1, v2)| < nifur — vi| + nafus — val.
Then the system (6.1) has a unique solution on [1, e] if
Mi(my + my) + Ma(ny + n2) < 1,

where My and M, are given by (6.8) and (6.9) respectively.
Proof Define sup,¢; f(2,0,0) = Ny < oo and sup,¢[;  8(7,0,0) = N> < 00, and
choose
NiM, + NoM,
=1 — My (my + my) — Ma(ny + n2)

We show that 7B, C B,, where B, = {(u,v) € X x Y : |(u,v)| < r} and the
operator T is given by (6.7).
For (u, v) € B,, we have

T (e, v)(1)]
" P If (s, uls), U(S))I

- ze[l e] F((x) s

1 01 vt |f(s, u(s), U(S))l

IAI I'(y+a) +Ot) s ds

" U If (s, u(s), U(S))I
F( )/ s ]}
[ " 1 (If (s, u(s), v(s)) — £(5,0,0)| + |£(s,0, 0)|

_tE[l e] F(a) N

/ 01 y+a—1 ([f(s u(s), v(s)) —f(s,0, 0)| + Lf(s 0, O)|
IAI F(y+a)

N

/ “ F (LG u(s). v(s) = £(5,0,0)] + [f(5.0.0)1) |
T 5
1 1 (logay)r T
T+1) |A|<F(y+a+1) F(a—i—l)) (my|lull + mallv|l + N1)

< Mi[(m1 + mp)r + Ny).
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Hence

71 (u, v)[| = Mi[(my + ma)r + Ny].
In the same way, we can obtain

172 (. v)|| < Ma[(n1 + n2)r + No).

In consequence, we have | T(u, v)|| < r.
Now for (i3, v;), (uy,v1) € X X Y, and for any ¢ € [1, e], we get

|T1 (u2, vz)(f) — T (u1, v1)(0)]
“ VIf (s, ua(s), va(s)) — f (s, ui (s), Ul(S))|

- F(oz) s
1 01 vre—1|f(s, us(s), v2(s)) — f (s, u1(s), Ul(Y))|
|A| F(V + o) s
/ “ UIf (s, ua(s), va(s)) — f(s, ui (s), Ul(S))|
1"( ) S

(m1|u2 — I/t1| —|— m2|v2 — U1|)

1 1 (logoy)rte N 1
Fae+l) WA\TG+atrD) T@t)
< My(mi|luz — uy]| + maljva — vi])

< Mi(my + ma)(|luz — wr || + [[va — i),

and consequently, we obtain

(71 (u2, v2) — Ti(ur, v1) || < Mi(my + mo)([luz — wr || + [lvz — w1 ). (6.10)
Similarly, one can find that

T2 (u2, v2) — Ta(ur, vi)|| < Ma(ny + n2)(luz — ur || + [lva — vil])- (6.11)
Thus it follows from (6.10) and (6.11) that
1T (2, v2) = T(ur, v)|| < [Mi(my + m) + Ma(ny + no)](lluz — wr || + [lv2 — i ).
Since My(my + my) + My(ny + np) < 1, T is a contraction. So, by Banach’s fixed

point theorem, the operator 7 has a unique fixed point, which is the unique solution
of problem (6.1). This completes the proof. O
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Example 6.1 Consider the following system of Hadamard differential equations and
integral boundary conditions

1 lu(t)| 1 .
3/2 —¢in2
D “x(t) = 4({ D2 T4 (o) +1+ T v(?, re(l,el,
D*?x(1) = T sin(2rwu(t)) + —16(1|v(t|)1|)(t)|) + > tell,e, (6.12)

u(l) =0, u(e) = Pu(2),
v(1) =0, wv(e) =I*v(5/2).
Here « = 3/2, B = 3/2, vy = 3/2, o0 = 2, 0, = 5/2, f(t,u,v) =
1 1 1
14 —— 41+ —sin’vand g(t, u, v) = — sin(2ru)+

_ — .
4(t+2)21+|u| 32 327 16(1 + [v]) 2
With the given data, we find that A ~ 1.27, B &~ 1.59,

1 1
[F(t ur, up) —f(t, v, v2)| < E|M1 —up| + —|U1 — vy,

1 1
lg(t, ur, ur) — g(t, v1, v2)| < E|M1 —up| + E|Ul — vy,
and
Mi(my + my) + My(ny +mp) =~ 043 < 1.

Thus all the conditions of Theorem 6.2 are satisfied and consequently, its conclusion
applies to the problem (6.12).

6.3 A Coupled System of Riemann-Liouville Fractional
Differential Equations with Coupled and Uncoupled
Hadamard Fractional Integral Boundary Conditions

In this section, we investigate the existence of solutions for a coupled system of
Riemann-Liouville fractional differential equations supplemented with coupled and
uncoupled Hadamard fractional integral boundary conditions.

6.3.1 Coupled Integral Boundary Conditions Case

Consider a boundary value problem of coupled nonlinear Riemann-Liouville frac-
tional differential equations and nonlocal coupled Hadamard fractional integral
boundary conditions of the form
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reDIx(t) = f(t,x(1), y(®), 1€[0,T], 1<g=2,
rDPy(t) = g(t, x(1),y(1)), t€[0,T], 1<p<=2,
x(0) =0, x(T)= ZaiHIpi}’(ni),

i=1

¥0) =0, ¥(T) =) Biul"x(6),

J=1

(6.13)

where gy D?, g DP are the standard Riemann-Liouville fractional derivatives of
orders q,p, yI”, yI' are the Hadamard fractional integrals of orders p;, y;
ni.6; € (0,7), f,g : [0,T] x R* — Randa,,ﬂ, € R i=12,...,n j =

_ q—l
1,2,...,m, are real constants such that Z ” ﬂpl)p Z ( 4 7 £ T4TP72,
— 1) g—1)%

Lemma 6.2 Given ¢, ¥ € C([0, T], R), the solution ofthe problem

RLqu(t) = ¢(t)7 re [07 T]’ 1< q = 2’
RLDpy(t) = l/f(f)» re [O»T]v 1 <p = 27

x(()) =0, X(T) = ZaiHIpiy(ni)v (614)
i=1

Y0) =0, y(T) =" Binl"x(6),

J=1

is equivalent to the integral equations

x(1) = Ll"qb(r)——[z “"p_ <Zﬁﬂm R 1P (6)) — L7 (T))

777! (Z aipl” R I () — RL1q¢(T)>:|’

i=1

(6.15)
and

1 9‘1 ! n
(1) = pedPY (1) — |:Z (fj_—l)y(zalﬂlp'RLlpW(ﬂ) - RLIq¢(T)>

47971 (Z Biul" v I (6) — RLIPW(T)):| ’
J=1

(6.16)
where

Ol?]p_ :3/ - —
o —Z(p_l)pl Z( ! o —TITP72 £ 0, (6.17)
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Proof Using Lemmas 1.4 and 1.5, the equations in (6.14) can be expressed into
equivalent integral equations:

x(t) = reli (1) — 197" — 21972, (6.18)

y(t) = Y (1) —di 77 — dot? 2, (6.19)

for ¢y, ¢3,dy,d; € R. The conditions x(0) = 0, y(0) = 0imply that ¢, = 0,d, = 0.
Taking the Hadamard fractional integral of order p; > 0 of (6.18) and y; > 0
of (6.19) and using the property of the Hadamard fractional integral given in
Lemma 1.6, we get the system

—1

z’?
19(T) — T = E,I"'IP ; d§ i
reli9(T) — ¢ aipl? R 1P () — d, “

i=1

Bio;

PP (T) —d T = Zﬂw’” rul'¢(6) - ClZ( “

which, on solving for ¢; and dj, yields

|:Z anp_ (Zﬂﬂﬂy’ qu¢(0)—RL[P1/f(T))

+7r7! <Z(¥iHIp[RLIp1//(ni) - RLIq¢(T)):|

i=1

and
9‘1 1 n
|:Z (qj_ Iy (ZaiHIp’RLIPW(Ui) - RLIq¢(T)>
i=1

+797! ( Z Bial " ri 19 (6;) — RLIp‘/f(T)):| .

J=1

Substituting the values of ¢, ¢, d; and d, in (6.18) and (6.19), we obtain (6.15)
and (6.16). The converse follows by direct computation. This completes the proof.
|

Throughout this subsection, we use the notations:

R (s, x(s). y () (v) = Fow )[ (v — )" h(s, x(s), (5))ds,
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and

al"Rel” h(s, x(s), y(5)) (v)

_ 1 ! ! 2 u=l _ w1l ﬂ
= —F(u)l“(w)/(; /0 (log t) (t—yv) h(s,x(s),y(s))dst,

where u € {p;, ¥}, v € {t,T,n:,0;}, w = {p.gtand h = {f, g}, i = 1,2,...,n
j=12,....m
Denote by X = {u(#)|u(r) € C([0,T],R)} the Banach space endowed with the

norm ||u|| = max{|u(t)|,t € [0, T]} and similarly we can define a Banach space Y.
In view of Lemma 6.2, we define an operator 7 : X x Y — X x Y by
F1(x.y) (1)
T (x,y)(1) = ( ' . (6.20)
T (x,y)(1)
where
J1(x.y)()

= redf (s, x(s5), y(5)) (1)

—[Z a'npl)p (Zﬂwl”ml"f(s X(5), Y()(6)) — rul? g 5. x(5), y(s))(T))

+Tp_1 (Za"HlpiRLlpg(svx(s)v )’(S))(ﬁz) - RL[qf(S,X(S),y(S))(T)):| )

i=1
and

F(x.y)(1)
= rel’8(5, x(s). () (1)

fp_ ﬂ]eq_ n v
{ e (Z il " 8(5. (). Y(5)) (1) — Rmf(s,x@),y(s))(n)
i=1

+777! ( D Bl Rl (s, x(s), y())(6) — rel? g(s, X(s), y(S))(T))} .

j=1
For computational convenience, we set

L A AR LS
Fg+1) 120G+ D) o p-Dr = g R (g+ 1)
6.21)
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- Totr-! |ovi| T2 Ialn”
M 6.22
T rE A Z -7 T RIreTD 2 Z 022
) Ta+r—1 18,167~ 1 Ta+r—2 B |94
)= Z d Z d (6.23)
1L21I(g +1) = (g =1 ISZIF(q+ D=
) " - " 1B 9‘1 ! Ta+2p—2
M, = + Z | |77, Z j .
Fp+1)  |RIF(p+1) & 1)% 12|+ 1)
(6.24)

The first result is concerned with the existence and uniqueness of solutions for
the problem (6.13) and is based on Banach’s contraction mapping principle.

Theorem 6.3 Assume that (6.2.1) holds. In addition, assume that
(My + M3)(my + m2) + (M + M) (1 + mp) < 1,
where M;,i = 1,2,3,4 are given by (6.21)—(6.24). Then the system (6.13) has a
unique solution on [0, T].
Proof Define sup,¢( 71./(,0,0) = N1 < oo and sup,¢(g 77 8(¢,0,0) = N> < oo and

choose a positive number r such that

(M + M3)N; + (M, + M4)N,
r= = = = ~ . (6.25)
1 — My + M3)(my + ma) — (My + My)(ny + na)

Now we show that 7B, C B,, where B, = {(x,y) € X x Y : ||(x,y)]| < r} and the
operator 7 is defined by (6.20).
For (x,y) € B,, we have

|1 (x. ) (D]

R
- I9f (s, x(s) - l
t:[l(l)%] {RL 'f (s, x(s), y($))(7) 7 [; (p— i

X ( > Bl A (5, x(s), Y()(6)) — ret & (s, x(s), y(S))(T))

=1
+77! ( Z i IP re 1P g (s, x(s), y(5)) (i) — redf (s, x(s), }’(S))(T))i| }
i=1

< red([f (5. x(5), () = (5. 0. 0)] + [f (s, 0, 0)[)(T)

. [Z b (Zlﬁlely’RLIq(lf(s X(5),(5) ~£(5.0.0)
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+1f(5,0,0)[)(6) + ret”(18(s. x(s), y(5)) — 8(s.0,0)| + [g(s.0, O)I)(T))
+777! ( > leilut” gLl ([g(s, x(5), ¥(s)) — g5, 0, 0)] + [g(s, 0,0)])(m;)

i=1

L ([f (5, %(5), ¥(5)) — f(5,0,0)| + |f(5.0,0) I)(T))}

q T ¢ |Oli|’7[~7_l
< rel Ny)(T !
< gl (m||x]| + mallyll + NO(T) + 2] ;:1 o—Dn

x ( Y Blal ke (mallxl] 4+ ma |yl + N + red” (i [lxl] + nallyl] + Nz)(T))

=1

+777! ( Z loti 1 R d” (my [lx]| 4+ n2llyll + N2) (m:)
i=1

F o (ma [|x]| 4 maly|| + N1)(T))}

(m1||x||+m2||y||+1vl)[ w0 + 1o Z . ""’m Zw, W7 re I (D(6)

T9+r—2 . |o z|77p p
I11(1)(T % P()(T
e O |+ Gl £yl £ Vo) |sz| ; el (@)
Tat+p—2 2
—_— il R I? (1) (n;
+ 2] ;|Q|H RL ()(U)i|
T4 T O el O 1B16]
— N Ll J
O x| + ma |1y + I{F(qﬂﬁ |9|F(q+1)i=21(p_l)p[j=21 o
re Il + 2l b el
+ | + (x| + n2llyll + N2) —
TR 21T+ 1D &= (-1
Tetr—2 lazln,
T@re T &

= My (my|Ix]| + mo|lyll + Ni) + Ma(n|1x]| + mollyll + Na)
= (Mym +M2n1)||x|| + (MlmZ +M2n2)||y|| + MN, + M>N,
< (Mlml +M2n1 + Mlmz +M2n2)r +M1N1 + MQNQ.
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Hence

17 (e )| < [My(my + ma) + Ma(ny + mo)]r + MiN;y + MoN,.
In a similar manner, we can obtain

|- 206, Y| < [M3(my + mo) + My(ny + n2)]r + M3Ny + MyNs.

Consequently, |7 (x,y)|| < rby (6.25).
Now for (x7,¥2), (x1,y1) € X x Y, and for any ¢ € [0, T], we get

| 71 (62, y2) (1) = Z1(x1, y) ()]
< rdlf (5. x2(5). y2(8)) = £ (s. 21 (). y1 (D(T)

T~
+.Q

+rel?|8(s, x2(5). y2(s)) — g(s,m(S),yl(S))l(T))

Z(pmp (Zﬂmmmws %2(5). y2(5)) — £ (5,31 (5), 31 (5))(6)

i=1

+1r7! (Z & 1P R85, %2(5). y2(5)) — g(s.x1 (). () 1)

i=1

+rL|f (5, x2(5), y2(5)) = f (s, x1(5), y1 (S))I(T)>]

TY 791 " et & |13j|9jq
< _ _ i
= (mllxz = xi[| + mally2 )’1||)|:F(q+ 0 + 2Ir g+ 1) i§=1 - Dn > :

= 7
T24+p—2 Ta+p—1 loi | ™!
o [ + (2 = x1 || + m2lly2 = 11D :
|21 (q + 1):|

IQIF(P+1)Z(1?—1)”"
Tatr—2 n |Oli|77f
NETTEDP I }

= M (m||x2 — x1 || + mallys — nill) + Ma(n[lx2 — x| + nallys — yi )

= (Mym; + Mony)|x2 — x| + (Mymo + Mom)||ys — v .
Thus we have

.71 (x2, y2) — 3 (1, y)I| < (Mymy + Mony + Mymy + Many)[[lxa —x1 || + [[y2 =y [l]-
(6.26)
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Similarly, we can find that

|22, y2) — P (e, yi) || < (Mmy + Many +Mamy +Mana)[xo — x| + [[y2—y1 []-
(6.27)
Hence it follows from (6.26) and (6.27) that

1.7 (2. y2) =T (1, y) | < [(My+M3) (my +mo) + (Mo +Ma) (1 +12)] ([x2—=x1 |+ [y2 =1 1]

Since (M + Ms3)(my + m2) + (M + My)(ny + n2) < 1, the operator .7 is a
contraction. So, by Banach’s fixed point theorem, the operator .7 has a unique fixed
point, which corresponds to the unique solution of problem (6.13). This completes
the proof. O

Example 6.2 Consider the following system of coupled Riemann-Liouville frac-
tional differential equations with Hadamard type fractional integral boundary
conditions

P 0] si’(2)  [y@] 1
WD = T h) T Ge+ 2+ pop T3 S0
DY 4y(1) = % cos x(t) + 768 siny(t) + 1, 1€[0,2],
X0 =0, ) = Su"yC/3) + Vau (4 /),
y(0) =0, y(2) = 3ul"*x(1/2) + %HIA‘”x(I) +251"%%(3/2).

(6.28)

Here g = 3/2,p = 5/4.n =2,m = 3,T = 2,0 = 3/2,00 = /2, B1 = /3,
132 = 1/27133 = 2’[)1 = 1/37[)2 = 3/77)/1 = 1/4»)/2 = 4/7»)/3 = 7/107771 =
2/3,7’}2=4/3,91=1/2,92=1,93=3/2,

£t y) = (€ )/ (4 DDA+ D) + (sin? @)y /(Be' + D21+ ) + (1/3)

and
8(t,x,y) = (cos x/25) + (siny)/((t + 6)°) + 1.
Obviously
[f (2, x1,2) = f(£.x2,y2)| = (1/49)|x1 — yi| + (1/16)|x2 — y2l)
and

lg(r, x1,y1) — g, x2, y2)| = ((1/25)|xr = y1| + (1/36)|xz — ya).
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Using the glven data, we find that £2 ~ 28.62075873 # 0, m; = 1/49, m, =
1/16, ny = 1/25, ny = 1/36, M, ~ 2.930183476, M, ~ 0.64772127, M5 =~
0.7389741995, M, ~ 2.829885649, and

(M + M3)(my + my) + (M + Ma)(n1 + n) ~ 0.5399075928 < 1.

Thus all the conditions of Theorem 6.3 are satisfied. Therefore, by the conclusion
of Theorem 6.3, the problem (6.28) has a unique solution on [0, 2].

In the next result, we prove the existence of solutions for the problem (6.13) by
applying Leray-Schauder alternative.

Theorem 6.4 Suppose that (6.1.1) holds. In addition it is assumed that
(M + M3)ky + (M + M)Ay < 1 and (My + Ms)ky + (M + Ma)ds < 1,

where M,-,i = 1,2,3,4 are given by (6.21)—(6.24). Then there exists at least one
solution for the system (6.13) on [0, T).

Proof First, we show that the operator .7 : X x ¥ — X x Y defined by (6.20)
is completely continuous. By continuity of functions f and g, the operator 7 is
continuous.

Let ® C X x Y be bounded. Then there exist positive constants P; and P, such
that

f(@.x(@).y()] = Pr. [g(t.x(0), ()] = Pr. V(x.y) € 6.

Then, for any (x,y) € ®, we have

[BACRIO]|

T [ Jaal”!
S RLIqlf(S,X(S),y(S))KT) + |Q| [; (p — I)Pi

x ( D 1Bl rl?If (5, x(5), Y($)(6) + rel’|g (s, X(s), y(S))I(T)>

J=1

+777! ( D loilul? ket |g(s, x(s), YD) + rl?If (s, x(s), y(S))I(T))]

i=1

Tatp—1 At Ta+p—2 "y
< Z | |77p Z | |7711j P,
QITp+1) 2 (p—Dr QI+ 1) 2 pr

T4 791 n o p—1 |l3|0q T2atp—2
+ + Z""[”,Z’_’Jr P,
rg+n 2i0q+ D)= =Dz q" |21 (g + 1)
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which implies that

[BZERD]|
Ta+pr—1 |al|nﬂ— Ta+p—2 n |Ol,'|7’]€

T4 79! "l O 1816 T24+p=2
+ + Zl |777 Z JVJ + Pl
P+ @G+ D) & (-7 & ¢7 ' 12lG+ D

= M,P, + M, P;.

Similarly, we get

-22(x. )l

7 ! |a,|np 1B;l Qq ! Ta+2p—2
(F<p+1> |9|F(p+1)Z Z(q—l)% e+ )"

Tatr—2

iara 1816/ |ﬂ,|9"
+(|9|F(q+1)z(q—1)w ETrEn P

= M4P2 + M3P1.

Thus, it follows from the above inequalities that the operator .7 is uniformly
bounded.

Next, we show that the operator .7 is equicontinuous. Let #,#, € [0, T] with
t; < t,. Then, we have

| 71 (x(12). ¥(12)) = T1(x(11), y(11))]

131

< % ; (2 — )7 — (81 — )7 Y| (5, x(5), y(5)) |ds
n q o | ‘_1
) 9 ) ol + B {Z !,‘f"_”%pi

X ( Y Bl r?f (5, x(5), Y($)(6) + rel? |2 (s, x(s), y(S))I(T))

J=1

i=1

+777! ( D leilul® vt |g(s, x(s), ()| (i) + rel?If (s, x(s), y(9)))| (T)ﬂ

< T le)[ (— 1)+ |6 —]|]
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tq 1 tq 1 |ai|n‘?_1 m |ﬂ]|9ﬂl TP
] [Z(p—lw F(qr+1)Z T+

— |‘xt|77p T4
T 1(r(p+1)Z TT@+ )}

Analogously, we can obtain

| Z2(x(82), y(2)) — Z2(x(11). y (1))

P
< m[z(fz ny + 18— f’f”

47 & 1810 el T
MRNCTI P iy F<p+1>Z “Tarn

_ Py =~ |16 7
+7177! L+ Py |
(r(q+1)j; ¢ Tp+D’

Therefore, the operator 7 (x,y) is equicontinuous, and hence it is completely
continuous.

Finally, it will be verified that the set & = {(x,y) € X x Y|(x,y) = A.Z(x,y),
0 < A < 1} is bounded. Let (x,y) € &, then (x,y) = A7 (x,y). For any ¢ € [0, 7],
we have

x(1) = AZ1(x.9)(0).  y(0) = AT (x. y)(D).

Then
T4 70! | < 1B16]
| < (ko + ki ||x|| + k ]
(O] < (ko + kil 2"y”)<r(q+1) mqu)Z _l)p,Z 7
T24+p—2 Ta+r— o l.|,71,’_1
| + o+ Aillx] + 4 :
|9|F(q+1)) (Ao + A lx] z||y||)<|9|r(p+l)2(p_l)m
Ta+p—2 Z |a|,71’
IQIF(p+1)
and

v el s 1816
Nl < (ho + A A ’ !
y®| < (Ao + Ar]lx]| + 2||y||)(F(p+l) + |Q|p(p+1)§ i jzzl(q_l)yj
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Ta+2p—2
e —
12|17 (p+1)

Ta+r—2 ilﬁ,lm
IQIF(q+1) qi )

Tt 2L |Bl6T
|9|r(q+1>z<q—1>w

) + (ko + ki |lx|| + k2||y||)(

In consequence, we get
Ixll < (ko + ki llxll + k2lly DMy + (Ao + Adllx]] + A2 [y )Mo
and
Iyl < (ko + killxll + k2 llyDM5 + (Ao + A1 llx]| + Azllyl)Ma,
which imply that

Ixll + Iyl < My + M3k + (Ma + Ma)Ao + [(My + M3)ky + (Ma + Ma)Ai]||x]|
+[(My + M3)ky + (Ma + My)As]|ly]).

Consequently,

(M, + M3)ko + (M + My)Ao
x| < = ,
0

where
M() = mln{l — (Ml + Mg,)k] — (Mz + M4)A1, 1-— (M] + M3)k2 — (Mz + M4)A,2},

ki, A; = 0 (i = 1,2), which shows that & is bounded. Thus, by Theorem 1.3, the
operator .7 has at least one fixed point. Hence the system (6.13) has at least one
solution on [0, T]. The proof is complete. |

Example 6.3 Consider the following system of coupled Riemann-Liouville frac-
tional differential equations supplemented with Hadamard type fractional integral
boundary conditions

LDﬁx(t) =1+ ﬁx(t) cosy(r) + ﬁy(t), t €0, x],
81 36

RLD‘[ (1 = + £ sinx(r) + %y(t) t €0, x],

x(0) =0, x(n) —3H11/2y(n/4)+—7H12/3y(n/3>+—HF/“y(n/z)

y(©0) =0, y(@) = l1113/5)6(71/6) + \/_4§H15/6x(77/3)
(6.29)
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Here ¢ = v2,p = V3.n = 3.m = 2,T = ma, = /3/2,a00 = 2/17,
a3 =4/9, 81 = 1/2,, = V5/14,p1 = 1/2,p = 2/3,p3 = 3/4, y1 =3/5,
Y2 =5/6,m = w/4m = n/3,m3 = n/2,60 = 7/6,0, = n/3, f(t,x,y) =
14 (v/2xcos y)/(81) + (v/3y)/(367) and g(¢, x,y) = (3/2) + (/3 sinx)/(647) +
(v)/(63). By using computer program, we get 2 ~ —1.955428761 # 0. Since
lf(t’x’y)| = kO + k1|X| + k2|y|’ |g(t7x’y)| = A0 + Al|x| + /‘{2|y|’ where kO =
Lkt = V2/81,ky = +/3/36m, Ay = 3/2, A1 = /3/64m, Ay = 1/637, it is
found that M, ~ 12.01088124, M, ~ 8.095664081,M; ~ 5.051706267, M, ~
14.14407333. Furthermore, (M, + M3)k; + (M» + M)A, ~ 0.6297371340 < 1,
and (M, + M3)k, + (M» + M)Ay ~ 0.3736753802 < 1. Thus all the conditions of
Theorem 6.4 hold true and consequently the conclusion of Theorem 6.4, applies to
the problem (6.29) on [0, ].

6.3.2 Uncoupled Integral Boundary Conditions Case

In this subsection, we consider the following coupled system of Riemann-Liouville
fractional differential equations equipped with uncoupled Hadamard type fractional
integral boundary conditions

reDIx(@) = f(1.x(0).y(0), t€[0.T], 1<g=2,
R DPy(0) = g(t.x().y(1). 1€[0.T], 1<p=<2,
x(0) =0, x(T) = apl”x(n). (6.30)

i=1

Y0) =0, y(T) =" Biul"y(6).

J=1

Lemma 6.3 (Auxiliary Lemma) For h € C([0, T], R), the solution of the problem
reDIx(t) = h(t), 1<qg<2, te]0,T],

x(0) =0. x(T) = a;ul”x(n,). (6.31)

is equivalent to the following integral equation

1! -
x(1) = red7h(r) — e reIOR(T) — ;ai(ymkmh)(m) , (6.32)
where

_ o]
A= 1771 Z = l)P' 0. (6.33)
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Similarly, one can find

! “ A
y(t) = RLIphl(t) - 7 RLIphl(T) - Z /SJ-HIV/RLI”hl(Qj) s (634)
Jj=1
where
m ]9[7 1
@ =T7r" — Z . ])yj 0. (6.35)

Next, we define an operator ¥ : X x ¥ — X x Y by
_ (51
=0 = (S0 0):
where
T () () = redf (5, x(5), y(5))(2)
4~ -
- (RLI"f (5,(5), YO)T) = Y €ina” red’f (5, (), y(S))(m)) ;
i=1

and

Lo, y) (1) = rel"g(s, x(s), y(5)) (1)

1
- reIPg(s, x(s), y($))(T) — Zﬂ/HIV’RLI” g(s,x(s), y(s))(6) | ,

j=1

with A and @ respectively given by (6.33) and (6.35).
In the sequel, we set

5 T4 T2~ 7! Z| iln
_ n + L (6.36)
T T+ D) ARG+ T JAITg+ D) & g

v 721 LR o8
8y = + . 6.37
= T eIy RIS 63D

Jj=1

Now, we present the existence and uniqueness result for the problem (6.30). We
do not provide the proof of this result as it is similar to that of Theorem 6.3.
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Theorem 6.5 Assume that f,g : [0,T] x R> — R are continuous functions and
there exist positive constants m;, i;,i = 1,2 such that for all t € [0,T] and x;,y; €
R,i=1,2,

[F (2, x1,x2) = f(t, y1,y2)| < mulxr — yi| + malxy — yo|

and
g(2, x1,x2) — (2, y1.y2)| = nilxy — y1| + na|xz — 2.
In addition, it is assumed that
Si(my + my) + 8r(ny +np) < 1,

where &1 and &, are given by (6.36) and (6.37) respectively. Then the system (6.30)
has a unique solution on [0, T].

Example 6.4 Consider the following system of coupled Riemann-Liouville frac-
tional differential equations with uncoupled Hadamard type fractional integral
boundary conditions

oo n € |x(®)] 1 [y(®)] b
wDT) = G ho 1 T @ bl +1 T 2

NN 4|x(2)| 2siny(1)
wDH0 = i T e gy TV e

x(0) =0, x(3)= 1H1ﬁx(1 /2) — éﬂﬁ/“x(l) + gHIﬁx@/z),

t €[0,3],

1
¥(0) = 0. 3() = July(1/2) + a1 y(3/2) + Tl y(5/3).
(6.38)

Here ¢ = 7/6,p = /5/2.n = 3,m = 3,T = 3,a; = 1/6,00 = —1/5,
a3 = 2/9,81 = 3/4,8 = 1/2,83 = w/2,p1 = V2.p2 = 3/4,p3 = /5,
vio=2/37v =3y =5/4n=1/2.n = 1Ln =3/2,6, =1/2,6, =
3/2,05 =5/3, f(t.x.y) = (e |xD/((5+ 0P (x| + 1) + (Iy) /(€' + 3)*) Iy +
1)) + (r/2) and g(t, x,y) = (4]x])/(33((5+ %)) + 2siny (1)) /(17(e' + 1)) + /3.
Clearly |[f(,x1,y1) — f(t,x2,y2)] < ((1/25)|x1 — x2| + (1/16)|y1 — y2|) and
lg(t, x1,y1) — g(t,x2, y2)| < ((4/33)|x1 — x2| + (1/17)[y1 — y2[). Using the given
values, we find that A &~ —12.96942934 # 0, ® ~ —47.08574657 # 0, m; =
1/25,m = 1/16,7i, = 4/33,71, = 1/17,8; ~ 3.678923396, 8, ~ 3.402792438.
Also,

81(1 + o) + 8>y + iin) ~ 0.9897135986 < 1.

Thus all the conditions of Theorem 6.5 are satisfied. Therefore, by Theorem 6.5,
there exists a unique solution for the problem (6.38) on [0, 3].
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The second result, dealing with the existence of solutions for the problem (6.30),
is analogous to Theorem 6.4 and is stated below.

Theorem 6.6 Assume that there exist real constants k;, v; > 0 (i = 1,2) and
ko > 0,v9 > O such that Vx; e R (i = 1,2),
[f (2, x1,x2)| < Ko + K1|x1| + K2 |x2],

|8 (t, x1,x2)| < vo + vilxi| + v2lxa|.
Further suppose that
811 + 62v1 < 1 and S1ky + 610 < 1,
where 81 and &, are given by (6.36) and (6.37) respectively. Then the system (6.30)

has at least one solution.

Proof Setting
8o = min{l — (51/(1 + 821)1), 1— (51/(2 + 52\)2)}, ki, vi=0(G{=1,2),

the proof runs parallel to that of Theorem 6.4. So, we omit it. O

6.4 Mixed Problems of Coupled Systems of
Riemann-Liouville Differential Equations and Multiple
Hadamard Integral Conditions

The aim of this section is to investigate the existence and uniqueness of solutions
for a coupled system of Riemann-Liouville fractional differential equations supple-
mented with nonlocal multiple Hadamard fractional integral conditions of the form:

rDPx(t) = f(t,x(1), (1)), t€[0,T], 1<p=2,
RLqu(t) = g(tvx(t)vy(t))v te [07 T]’ 1 < q S 27

p1 4

x(0) =0, Z pinl®x(n;) = Z Siuly(&) + K. (6.39)
i=1 =1
$2

P2
Y0) =0, D wul™x(n) = Y oml"y(0) + Ka,
k=1 =1

where gy D4, p.DP are the standard Riemann-Liouville fractional derivative of orders
q,p,f,g : [0,T] x R? — R are given continuous functions, /%, ylPi, 1% and



6.4 Multiple Hadamard Fractional Integral Conditions for Coupled Systems 197

gl"" are the Hadamard fractional integral of orders «;, 8, 0%, v; > 0, K1, K> € R
are given constants, 1;, &, k. 0 € (0,T), and p;,8;, %, € R, for pi, p2, 1,
¢ e Ni=1,2,...,0,j = 1,2,...,¢01,k = 1,2,...,0,1 = 1,2,...,¢
are real constants such that

1 2 —1 91 q-1 P2 -1
par; b 5¢; 23/
(Z )a,) (Z — ])w) 7 ; — Db (; p—-1Dx )"

= (q — (g

Lemma 6.4 Given ¢, ¥ € C([0, T],R), the problem

reDPx(t) = ¢(1), t€[0,T], 1<p=<2,
reDy(t) =y (), te[0,T], 1<qg=2,
Pl 1
x(0) =0, ZM[HIaix(ni) = Z §iulPy(&) + K, (6.40)
i=1 1
j¢2
y(0) =0, Z wnl®x(yi) = Y oml"y(6) + Ko,
=1 =1

is equivalent to the integral equations:

x() = pelPP(2)

p—1 6 g1 . .
+5 { Y2 — ( Py 8P R () — Y01y pand®r I (1) + Kl)

q—1 )
Z (q f D ( > ol r I (6) ~ 21: Tl Rl P (vi) + Kz) §

(6.41)
and

y() = re I ()
—1
"'ﬂ:zfl { 2 Wknok (Z? L 8l PR T (&) — YO0L ) pind® R 1P (1) + Kl)

Z np (Z " g 1Y (0)) — Z Tl ™ R 1P P (i) + Kz)}

i=1

(6.42)
where

Pl p—1 ¢ g—1 s g=1 p—1
im; w0, i€ Yy
2, = E L E — E . E #0. (6.43)

Lp-Dm = (g— )" = (g- DS (-
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Proof As argued before, the equations in (6.40) are equivalent to the integral
equations

x(t) = pPP(0) + a1~ + et 72, (6.44)

y(t) = redY () + dit?™" + dot72, (6.45)

for ¢, ¢z, dy, dy € R. The conditions x(0) = 0, y(0) = 0 imply that ¢, = 0,d, = 0.
Taking the Hadamard fractional integral of order r; > 0, o > 0 of (6.44) and
B; > 0, v; > 0 of (6.45) and using the property of the Hadamard fractional integrals
given in Lemma 1.6, we get the system

_ 1
np é 8 g”
ZM:H’ RL1p¢(m)+c12 (pl e ZSHIﬁJRqu‘//(éj)+d1Z 4 Ty + K1,
i=1
wy? —1 ) $2 wlgq_l
Z Tl R PP (vi) + 1 Z k e Za)ZHI‘”RLI"W(Qz) +d; Z @ _ll)w + K>
i=1 =1 =1

Solving the above system, we have

[y

b2 q—1 1
1 w6,
¢y = E{ E W( E 8P 19 (&) — E wirI® re 1’ @ (n;) +K1)
=1 =1

#1 5 q—1 #
Z (q i 1P ( 2 oml"ul"y ®) - Z wrl™ R’ (ye) + K2)
i=1

and

p—l
“=7g { lz; (- l)ak (Z‘Sfﬂlﬂjm[("/’@]) - Z/‘lﬂla'RLl”ﬁb(m) + Kl)

i=1

- Z » jpl)a (Z ol rL I (6) — Z wnl ™ P (1) + Kz)

i=1

Substituting the values of ¢y, ¢, d; and d in (6.44) and (6.45), we obtain (6.41)
and (6.42). The converse follows by direct computation. This completes the proof.
|

In view of Lemma 6.4, we define an operator T:XxY—>XxY by

5 N ERI0)
T(x,y)(1) = ( Fate ) t)) . (6.46)
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where

T 1(x,y)(1)
p—1

= rel’f (5. x(5). () (1) + ’?

[ 9‘1_
) (qwl—) ( > 8l rL1g(s, x(5), y()) (&)
=1

P1
- Z wirl“ R IPf (5, x(s), y(s)) (n:) + Kl)

i=1

g—1 2
Z (q f 1) (Z oil™ rel?8(s, x(s), y(5)) (01)

P2
= 3wl kI f (5. x(5), y(5) (vi) + Kz)

i=1

and

T 5(x,y)(0)
—1

17
Z o — ) (ZSJHIﬂ,RLqu(S x(s), y(s)) (&)

= R85, 4 O + -

o1
- Z wirl* R If (5, x(5), y(s)) (m:) + Kl)

i=1

Z "p <Z“)1H1 " red?8(s, x(s), y(s))(6))

02
=3 wnl® I (5, 6(), Y() () + Kz)

i=1

For the sake of convenience, we set

: 1 (LR SN i N V71 Ll S AR SN L1

M| = Tr +

: F(p+1)< 1211 & Z q—l)wZ Tl & Z q—l)ﬂfZ
6.47)

701 w07 SN 1818 & 15lET |a)1|9,
M) = 6.48
2= |91|F<q+1>(Z g Y- 1)5,2 (0.48)

wo= T Jerl6”" 1818
M = |Q|(| llz —o 2|Z ~ (6.49)
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1 741 2 |Tk|)/ —1 ¢ |8|Eq Ta—1 Pl |M|77p_1 2 |wl|9
M, = T9 + k : —L
: F(q+1)< |91|; —mé ¢ |91|Z (b — Do - Z
(6.50)

—IP

M/ — TL]—I pzz |Tk|)/k Z |:u“l|np Z |I’Ll Z |rk|yk (6 51)
Salre+ D\ = - & — 1) & ' '

eyl ™ il ™!
Mg = |_Q | <| 1|Z ~ +| 2|Z — 1) (6.52)

The first result is concerned with the existence and uniqueness of solutions for
the problem (6.39) and is based on Banach’s contraction mapping principle.

Theorem 6.7 Assume that (6.1.1) and the following condition hold:
(M} + M3)(my + m2) + (M5 + M) (i + mo) < 1,

where M}, i = 1,2,4,5 are given by (6.47), (6.48), (6.50) and (6.51) respectively.
Then the system (6.39) has a unique solution on [0, T].

Proof Letting sup,¢jo 71/(7,0,0) = Ny < 00 and sup,¢y 71 8(2,0,0) = N> < 00, we
define
. (M; + Mg)Nl + (M; + Mi)Nz + Mg + Mé .
1= (M + M3)(my + mp) — (M5 + M) (ny + na)

where M. and My are defined by (6.49) and (6.52), respectively.
Let us first show that B, C B,, where B, = {(x,y) € X XY : ||(x,y)|| < r} and

7 is defined by (6.46).
For (x,y) € B,, we have

|71, ) ()]

= 1 [ Gq—l
< (755605060 = 150,01 + /(5. 0,0D(T) + T [Z P
=1

1
x < D 181l 1 (|g(5. x(s). y(s)) — g(5.0,0)] + |g(5.0,0)|) (&)

=1

P1
3l R ([f (5, (5), ¥()) = £(5,0,0)] + [f(s,0,0))(m:) + |K1'>

i=l1

$1 a1 )
+ ; (|q |‘§1)ﬂl (Z || g " reI?(|g (s, x(s), y(s)) — g(s,0,0)| + |g(s,0,0)])(6)

P2
+ D [l gt ([f (5. x(5), ¥(5)) = £(5.0,0)] + £ (5.0, 0) ) (i) + |K2|):|

i=1
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< el (il + mallyll + M) + o Z ooy
RLL ML {[X majly 1 2] (G-

¢
X<Z 18161 R d? (n1 [1X]| + na2[ly ]| + N2)(E)

=1

o1
+ D Ll vl (my x| + mallyll + NO (i) + |K1|)
i=1

[ 15 |§-<1 1 2]

J

1 ey ( > Jorlal" g (i llxl] + nallyl + N2)(6)
=1

P2
+ 3 et e Gyl + mallyll + Ny () + |K2|)}
i=1

p—1 ¢ |a)1|04 1 p1

(D) + 15> D (o St w0
i=1

= (mufx]l + malyll + Nv)

pl
121

| 1|9q 1 ¢ , , =1 ¢1 |J|gq I ¢ -
Z " 2 Zw P I (§) + — a2 Z ~F 2 me R ?(1)(8)

TPI lilg " &
a2 Z Z 2 Il (DG

+ (x| + n2llyll + N2)

Tpfl (5] |Q)1|0q_1 Tpfl 1 |8j|%.q—l
+|Ki| L— +|K,| T
21] ; PEDE 20 2 -7

=1

= (miflx]l + malyll + Nv)

L *’Zﬂwzwﬁ‘zmmﬁ
Fp+1)  20Fp+1) &= (q— D" &

Vi |6; |Eq_ EANA i
+ (mllx] + maly) + N) ————
|91|F(p+1)2(q—1)/372 (i [|x[l + n2[lyll + N2) EATRCES)
[ -1 ¢ q — [4 g—1 ¢
ol SN BIE | B e
—(q-D" = ¢h 2l g+ ) & g-1D & g
771 & w08 VNN AT S
+IK
Kilg T 2 Z Kl 3 2 G-

= (mi|lxl| + ma|lyll + NOM{ + (ml|lx]| + n2llyll + N2)M; + M
= (Mymy + Myn)|lxl| + (Mim + Myno) [yl + MiNy + M3N, + M
< (Mimy + Mjny + M{my + Myno)r + M{Ny + MyN, + M.
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Hence

171 )| < M} (my + mp) + My(ny + no)]r + M{Ny + M4N, + M.
In a similar manner, we can obtain
172 < M5 (my + mp) + My(ny + no)]r + M5Ny + MyN> + Mg.

Consequently, ||§ @ =<r.
Now for (x3,¥2), (x1,y1) € X x Y, and for any ¢ € [0, T], we get

|71 (2, y2) (1) — Zi (x1, y1) (0)]

p—1 2 9‘1_1
< RPPIF (5, 2(5), 92(5)) = £, 219), (T + T:zu [Z LZ"_ I
=1

[}
x ( Z 18117 RLI(|8(5. x2(5). y2(5)) — (5. x1(5). y1 ()N ()

=1

i=1

P1
+ D il eI R ([ (s, x2(s), y2(5)) — £ (5, %1 (5), y1 (S))l)(fh‘))

$1 |5j|gjf1*1 2 ;
#3002, 02060) 601 6.1 (DD )

=1 =1

02
+ > |l u I Rt (If (s, x2(5). y2(5)) = £ (. x1(5). 31 (S))|)(Vk)):|
i=1

v & w6

i 2 il
Fo D T RIre D 2 g 2

&i
i=1 P

< (millx2 — x|l + mally2 —y1l)

—1
N 7! §:|5j|§jq ih’khﬁf
2110+ 1) & (g— 1P

Ok
= i=1 P

+ (mllx2 — x1 || + n2lly2 =y lD

— —1
g ¢22|wl|eﬁ1§|8,|sﬁ+ v ¢Zl|5,|sﬁ "’wazw;’
I2M @@+ D) = (@-D" = gf 1100 (q+ 1) & (g— 1P

vy
=1 =1 4

= (myllx2 —x1]l + mally2 = y1 DM} + (n1llx2 — x11| + na2lly2 — y1 )M}
= (Mymy + Mjyny)||lxa — x| + (Mima + Myns)|ly2 — y1ll.

and consequently, we obtain

17 1(e2y2) = T 1 Gy || < (M +Mbny+Mima+ M) [[lx2 =1 ||+ [[y2 =i []-
(6.53)
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Similarly, one can find that

1722, y2) = T 21, y1) | < (Mg +Miymy + My +Mymo)[[lx2 —x1 | 4 ly2 =1 []-
(6.54)
Thus we infer from (6.53) and (6.54) that

17 (2, y2) =7 Gt y)I| < [(M)4+M5) (my +m) (M +M}) (1 +12)] (2= |+ [[y2—=y1 ).

Then, by the condition (M| + M})(my + my) + (M), + My)(n; + ny) < 1, it
follows that .7 is a contraction operator. Hence, by Banach’s fixed point theorem,

we conclude that the operator 7 has a unique fixed point, which is the unique
solution of system (6.39). This completes the proof. |

Example 6.5 Consider the following system of coupled Riemann-Liouville frac-
tional differential equations with Hadamard type fractional integral boundary
conditions

4/3 _ t [x(1)] e’ ly(1)| §
w0 = e a ha) T @ A pop T <02
D¥?y(1) = 8 sinx(r) + 110 cos y(t) + T t €10,2],

x(0) =0, 24I*°x(3/5) + mul"x(1) = v 2417*y(1/3)
+ EulP*y(V3) + 4,

2
y(0) =0, —3u°5x(2/3) + 4ul"/*x(9/7) + §H11/3x(~/§)
e
= Sul"y(8/5) = 21N y(1/4) = 10.

(6.55)

Herep: 4/3,q= 3/2,T=2,K1 =4,K2 = —10,p1 =2,¢1 =2,p2 = 3,¢2 =
2L =2 =m0 =2/3, 00 =7/5, 01 =3/5. 1= 1,8 = 2,8, = ¢,
Bi=3/2,B=5/46=1/3,6=3,1=-3 =41 =2/50 =9/5
o =T7/40=1/3n=2/3n=9Ty=vV2 01 =¢/2, 0, = -2, =
11/6, v, = 12/11, 6; = 8/5, 6, = 1/4, f(t.x,y) = (t]x])/(((z + 6)*)(1 + |x])) +
(€yD/((( + 3)*)(1 + |y])) + (3/4) and g(.x,y) = (sinx/18) + (cos y)/(2* +
19) + (5/4). Then |f(#, x1, y1) — f(t,x2,y2)| < ((1/18)|x1 — x2| + (1/27)|y1 — y2l)
and [g(z,x1.y1) — g(t. x2.y2)| = ((1/18)]x; — x| + (1/20)[y1 — y2|). By using
computer program, we can find £2; ~ —218.9954766 # 0. With the given values, it
is found that m; = 1/18, mp, = 1/27, ny = 1/18, n, = 1/20, M| ~ 2.847852451,
M} ~ 0.5295490231, M}, ~ 1.276954854, M} ~ 4.723846069 and

(M) + M5)(my + m2) + (M, + M) (ny + ny) ~ 0.9364516398 < 1.

Thus all the conditions of Theorem 6.7 are satisfied. Therefore, by the conclusion
of Theorem 6.7, the problem (6.55) has a unique solution on [0, 2].

In the next result, we prove the existence of solutions for the problem (6.39) by
means of Leray-Schauder alternative.
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Theorem 6.8 Suppose that (6.1.1) holds. In addition it is assumed that
(M} + MYk + (M + M)Ay <1 and (M} + M3k, + (M5, + MyAs < 1,

where M, M, M, M}, are given by (6.47), (6.48), (6.49) and (6.50) respectively.
Then there exists at least one solution for the system (6.39) on [0, T.

Proof In the first step, we show that the operator 7 :XxY — X x Y defined
by (6.46) is completely continuous. By continuity of functions f and g, the operator
7 is continuous.

Let ©® C X x Y be bounded. Then there exist positive constants P; and P}, such
that

f.x@®).yO) =Py, gt x(0).y0))| < Py, V(x.y) € 6.

Then, for any (x,y) € ©®, we have

i@l < oy b o) O
172G = kel 529D + 7 ;(q_l)w

[
X(Z 181117 Rl g (5, x(5), Y(s))| (&)

=1

p1
3 palul R |f 5,6(5), Y(s)| () + K |)

i=1

Il (&
- (Z il ke 1185, x(5), Y (5| (6)
=1

=1

P2
37 el el |f 5.2(5). () | (v0) + |K2|)}

i=1

v 0! ¢22|w1|9q12|uz|?7,
T+ 2T p+ D & q-17 &

gl L |k|y !
MEATRERTP Srmep) Z 217 g+ 1)

=1

Xim,wf‘l ¢Zl|8,»|s;’ L Z 818" Zwe‘f
—(g-D" = gh a0 g+ 1) = (-1 &
1 & o~ T”1¢] 181€" "

K
Rl 2 (ot Rl 2 T

= M|P| + M,P} + M.
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Similarly, we get

- T4 Y eyl ™" < 15115/
T a(x, <
|72 ) (F(q + ]) |21 (q + 1) Z (p— 1) ; qﬁ/

T4~ ™" 2 a6 797!
|szl|r<q+1>z —1)%Z ) (|sz IT(p+ 1)

me i|ui|n€+ ! ”ZlmAni’“”Zﬂrkw,f P,
D% = p |91|r(p+1>i=l<p—1>af P

i=1

q1P7 qlpl

lTelye il
K
+ 1'|9|Z m*' 2||_Q|Z o

= M,P, + MLP| + Mj.

Thus, it follows from the above inequalities that the operator T is uniformly
bounded.

Next, we show that .7 is equicontinuous. Let 1,#, € [0, T] with #; < t,. Then,
we have

@l(x(rz) ¥(1)) — T1(x(11), y(11)))|
< o [ = = s 6l

-1 _

) A il ™"
I_,(p) / (tz _s)p lf(S X(S) y(S))|dS + |Q | |:Z (q_ 1)U1

1
x ( D 181t et g(s. x(s), y(5))] (§)

=1

P1
3 il w5, x(). YD) () + [y |)

i=1

21 (&
i ; (q=DP ( 2 lenll” rut?lg (s, x(5), y(s)1(6)

P2
+ 3 [l wud? (5. x(5). Y (5D | () + M)]
i=1

—r(p+1)

Lh - o077 (e 1518 il
@) [Z I)VI(ZZqﬂ/r(qH)” ‘Z Pl (p+1)

18187 |6 ltely?
HK]) Z 1>ﬂ/< Z ¢+ Zw(p:l)ﬂlﬁl |

—— (=) + |5 — ]
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Analogously, we can obtain

|7 2(x(t2), ¥(12)) — T2 (x(11), y(11))]

/

< m[z(h )+ |5 — 1]
4 - ey (S 1s1E] il
TN Z — Zqﬂfr(qm IZ T+ 1)

| i |'7p |w1|9 I k|)/k
+|K |) + Z 1)%( Z v11"(q+ 1) Z JkF(P‘i‘ 1) + |K2|)i|

i=1

Therefore, the operator T (x,y) is equicontinuous, and thus the operator T (x,y) is
completely continuous.

Finally, it will be verified that the set & = {(x,y) € Xx Y|(x,y) = Aﬂ(x y),0 <
A < 1} is bounded. Let (x,y) € &, then (x,y) = )Lf(x y). For any r € [0, T], we
have

X(0) = AT 1)@, (1) = AT 2(x, ).

Then
L SN 7/ T
| < (ko + killx|| +
()] < (ko + ki l|x]] zIIyII)(F(pH) |.Q]|F(p—|—l)z(q_1)w;
TP ! 1618 : |rk|yk . ,
e+ 2 Z =17 > Z Gy + Il + B
— [ —1 ¢
y =1 XZ: || 6] X':|8_,-|§]f1
20+ 1) & - D)" & gP
77! Z 18157 Z |w,|9q
|~QI|F(Q+ 1) &~ (g — 1)/9/
! K a6 (g I 1
K
+| 1| |-Ql| Z 1)\)1 |.Q | Z l)ﬂ/
and

T4 Tq—l Z | k| p—1 i |8]|§;’
F+D @Ilg+ D & (p— 7 22 gh

@I = (Ro + Aillx]l + lz||y||)<

p—1 ¢

e il |wz|
+ (ko + k + k
TR +1)Z —1)%2 (ko + ki [lx]| + k2 [ly])
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T eyl Imlm
<|91|F(p+ D& Z — D £ Z

p—1

T | il Irklyk
|91|F(1D+1)Z )”’Z )

q—l P2 T4~ 1 Pl

lzelyp ™! il
K 15
+I 1||_Q|Z 1)m+| 2||_Q|Z "

Hence, we have
x| < (ko + kallxl| + KallylDM] + (Ao + Aullxll + Aallyl)M5 + Mj
and
Iyl < o + Aillxll + A5 llyDMy + (ko + ki [l + ka[ly )M + Mg,
which imply that

Ixll + Iyl = (M} + M3ko + (M5 + M)A + [(M] + M)ky + (M5 + M)A ]|x|
+[(M] + Myky + (M + M)Ayl + M- + M.

Consequently,

(M} + Myko + (M}, + M) Ao + M5 + M/

eyl < T

for any ¢ € [0, T], where
My = min{1 — (M} + My)ky — (M} + M)Ay, 1 — (M} + My)ky — (M} + M)A},

ki, A; > 0 (i = 1,2), which establishes that & is bounded. Thus, by Theorem 1.3,
the operator .7 has at least one fixed point. In consequence, the problem (6.39) has
at least one solution on [0, T']. The proof is complete. |

Example 6.6 Consider the following system of coupled Riemann-Liouville frac-
tional differential equations with multiple Hadamard type fractional integral bound-
ary conditions



208 6 Hadamard Type Coupled Systems of Fractional Differential Equations

2 1 1
D™ %x(1) = f/i_ TERGE tan~! x(r) + 2—Oey(t), t €[0,3],
ey YL
rLDy(1) 5 + o sinx(7) + o 2Oy(t) cosx(r), t€[0,3],
x(0) = 0, 350"*x(5/2) + V3uIV?x(7/8) + tan(4)y1¥3x(9/4)
= @HIS”y(SM) — 241" y(/3) + 2.

V2

y(0) = 0, —%H12/3x(11/2) + 31%°x(5/3) + 7HP/%C(JE)

+ §H1“/9x<ﬁ) = eyl”'®y(1/6) —10g(9)ul**y(7/4) — 1.
(6.56)

HCI'CP = 7'[/2,6] = 7/4,T = 3,K1 = 2,K2 = —1,,01 = 3,¢1 = 2,p2 = 4,
¢2 = 2, M1 = 3, MH2 = ‘/g’ M3 = tan(4)’ )y = 1/47052 = \/5,063 = \/3’
mo=5/2m="7/8n =9/468 = 8r/3,8 = =2, p1 = 5/3, f» = 6/11,
£l =5/4 6 =n/3,11 = =2/3, 10 =3, 13 = 2/, 15 =7/9, 01 = 2/3,
0y = 6/5,03 = 1/3,04 = 11/9, 91 = 7/2, v, = 5/3, 13 = V2, y4 = /5,
w = e, w = —1og(9), vy =7/6,v, = 3/4,0, = /6,0, = T/4, f(t,x,y) =
(2/5) + (tan™" %)/ ((t + 6)*) + (¥)/(20e) and g(t, x,y) = (v/7/2) + (sinx)/(42) +
(ycosx)/(t + 20). By using computer program, we get £2; &~ —59.01857601 # 0.
Clearly [f(t,x,y)| < ko + ki|x| + kz2|y| and |g(z,x,¥)| < Ao + A1|x|] + Az|y|, with
ko = 2/5, ki = 1/36,ky = 1/(20e), Ao = /7/2, A1 = 1/42, 1, = 1/20.
With the given data, we find that M| ~ 7.406711671, M/, ~ 1.110132269, M} ~
7.790182643, Mg ~ 6.802999724. Furthermore, we have

(M{ + Mg)kl + (M; + Mf‘)/h ~ 0.6105438577 < 1,
and
(Mi + Mg)kz + (Mg + Mg))tz ~ 0.6751878489 < 1.

Thus all the conditions of Theorem 6.8 hold true and consequently the conclusion
of Theorem 6.8 applies to the problem (6.56) on [0, 3].

6.5 Notes and Remarks

In this chapter, we have discussed the existence and uniqueness of solutions for
coupled systems of nonlinear Riemann-Liouville fractional differential equations
equipped with nonlocal coupled and uncoupled Hadamard fractional integral bound-
ary conditions. The contents of in this chapter are adapted from the papers [20, 156]
and [129].



Chapter 7

Nonlinear Langevin Equation and Inclusions
Involving Hadamard-Caputo Type Fractional
Derivatives

7.1 Introduction

In this chapter, we investigate the existence of solutions for nonlinear Langevin
equations and inclusions involving Hadamard-Caputo type fractional derivatives
equipped with nonlocal fractional integral conditions. We also study a coupled
system of nonlinear Langevin equations with uncoupled boundary conditions.

The Langevin equation (first formulated by Langevin in 1908) is found to be
an effective tool to describe the evolution of physical phenomena in fluctuating
environments [62]. For some recent development on the fractional Langevin
equation, see, for example, [5, 7, 71, 83, 111, 112, 115, 116, 166].

7.2 Nonlinear Langevin Equation Case

In this section, we study the existence and uniqueness of solutions for nonlinear
Langevin equation involving Hadamard-Caputo type fractional derivatives with
nonlocal fractional integral conditions:

DY(DP + Mx(t) = f(t.x(1)), 1<t<e,

0" x(ni) = ) il x(w)),
; ; S (7.1)

14 q
Z gk]fka(wk) = Z l)llrlx(gﬂl),

k=1 =1

where DP denotes the Caputo-type Hadamard fractional derivative of order
o, p={a,B}withO < a,8 <1,f:[l,e] x R — R is a continuous function,
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I is the Hadamard fractional integral of order k > 0, k = {u;, ¥}, 0k, T}, NMis
i, Y, 1 € (1,e) and 0;,¢j, &1, € R, foralli = 1,2,....m,j = 1,2,....n,
k=12,....,p,1=1,2,...,¢q

The significance of investigating nonlocal problem (7.1) is that the nonlocal
Hadamard fractional integral conditions do not contain boundary values of unknown
function x, which is a novel idea for studying non-boundary problems. In particular,
if m = n = p = g = 1, then the conditions in (7.1) take the form

6 [ =1 x(s) gy 1y
F@o[ (1og )" s rwo/ s

V1 o1—1 @1 71—1
& 1\~ x(s) v / 1 x(s)
log - —ds = log - —d
F(Ul)/l (Og5> s I'(w) )i (ogs) s

Several new existence and uniqueness results are proved by using a variety of
fixed point theorems (such as Banach contraction principle, Krasnoselskii fixed
point theorem, Leray-Schauder nonlinear alternative and Leray-Schauder degree
theory).

For convenience, we set

(log n)* (log ;)%
Zef(ul Z’1"()/4;1)

“\ . (log m)f'“”" (logwp)f 7
2= O 5" Z ¢

and

= "T(B+ i+ rB+y+1)
(log Y)%* aogw)ﬂ 72
k 1
Z T+ 1) IZI:WF(T+1)’
Z (log ¥ Fox Z (log )P+
“TB+o+) Z"TE+u+1)
and
2 = 21824 — §2,823. (7.3)

Lemma7.1 Let 2 # 0,0 < o, 8 < 1, ui,yj, 00,1 > 0, ni, ), ¥, 1 € (1, €)
and 0, ¢;. e, v € R, fori = 1,2,....m j = 1,2,...,n, k = 1,2,...,p,
[=1,2,...,q9,and h € C([1, e], R). Then the following problem

D¥(D? + Mx(t) = h(r),  te(l,e), (7.4)

m n 14 q
Do 6dtix(n) =Y glixw), Y ad®x(yn) = Y vl"x(@), (7.5)

i=1 j=1 k=1 =1
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is equivalent to the integral equation

1 log r)? - _ .
x(1) = 5[ (94 - %93) (Z@ [ 4P+ h(wy) — AP ix(wy)]

J=1

_ Z 0; [Ia+ﬂ+uih(m,) _ )L[ﬂ+uix(m)] ) (7.6)

i=1

B q
+ (_Ifz)ggj_) 1—) £ — .Qz) (; v [Ia+ﬁ+”h(g01) _ AI'B+UX(§DZ)]

P
— Z ex [ TP () — AP (y) | )} + 19T h(r) — AP x(2).

k=1

Proof By Lemma 1.5, the equation (7.4) can be expressed as
(DP + V)x(t) = I*h(7) + co,
which implies that

log 1)#
xt=1“+‘3ht—)klﬁxt+c(—+c, 7.7
(0 () (1) TR+ O (1.7)
for some ¢y, c; € R.

Applying the Hadamard fractional integral of order « > 0 on (7.7), we have

(log r)P++ (log)*

I« — Iot-i-ﬂ-i—lch _A’Iﬂ"r‘K )
x(7) () x(7) +COF(,3 TR C Tkt 1)

(7.8)

Substituting k = w;, ¥, 0%, 7, t = 1, w;, Y, @ in (7.8), respectively, and using
conditions (7.5), we get

§£21c1 + §22¢0 = Z o [Ia+ﬂ+yjh(a’j) - Alﬂ—i_ij(wj)]

j=1
m

- Z 0; [1° TP Hih(n) — AP Hix(ny) ]

i=1
and

14
23¢1 + Ruco = Y _ v [I°PH () — AP Tx(g))]

=1
14

- Z e [I7TP T n(y) — AP x(y)] -

k=1
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Solving the above system for ¢y, c;, we find that

1 14
0=z |:91 (Z v [T h(gr) — AP ()]

=1

14
_ Z & [IOI'HSJF(Tkh(Wk) _ Alﬂ‘f‘ckx(wk)] )

k=1

—§2; ( 2": & [1°TP Y h(wy) — AP Tix(w)) |

j=1

=70 [ ) — AP ()] )]

i=1

¢ = %[m ( > [ () — AP x(e)]

j=1

m

- Z O; [1° TP ih(n;) — AP Hix(n;) ]

i=1

P
-2, ( 3o [ () — AP+ x(p))]

=1

— Z & [Ia+ﬁ+0kh(wk) _ )LI’B"""‘x(l//k)] ):|

k=1

Substituting the values of ¢y and ¢ into (7.7), we get (7.6). The converse follows by

direct computation. This completes the proof.

Let & = C([1, ], R) denotes the Banach space of all continuous functions from

[1,e] to R endowed with the norm defined by ||x|| = sup |x(¢)|. Throughout this
]

t€ll.e
section, for convenience, we use the notations:

P )

N N

1 y
Fx0)0) = 75 [ (e
and

Fx(s)(y) = % /;y <log ?)Z_] @ds,

where z > O and y € {t, n;, 0, ¥, @1}.
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In view of Lemma 7.1, we introduce the operator 2 : & — &) by

(29 (t)zé[(m ol )(qu,[l“*ﬁ*”f(s X(5)(@)

—AIPHVix(s) (wj)] - Z O [1°FPH1if (s, x(5)) (03) — AP HHix(s) ()] )

N ( (logn?

q
I+ 1) ) (l; v [IFPHTE (5, x() (1) — AP+ () (@) |

- Z e [I°FPHOf (s, x(5)) (Y) — AP x(s) (Ye) | )}
k=1
+IFPE(s, x(5)) (1) — APx(s)(¢).
(7.9)
Thus the nonlocal problem (7.1) will have solutions if and only if the operator 2
has fixed points.
In the sequel, we set

1 (log ;)" A+
Aw) = |Q|[(|94|+ F(ﬁ+1)) (Zl@ TEY
| (log ) tFm
+§|9’|F(u+ﬂ+m+1))
|£21] - (log ) *+F+m
* (r(ﬁ Iy |92|) (;|W|F(u+ﬁ Fn+)

P (log Wk)u+ﬂ+gk 1
+Z|8k|F(u+ﬂ+ak+ AR TET S

k=1

(7.10)

where u € {0, a}.

7.2.1 Existence and Uniqueness Result via Banach’s Fixed
Point Theorem

Theorem 7.1 Letf : [1,e] Xx R — R be a continuous function. Assume that:

(7.1.1) there exists a constant L > 0 such that |f(t,x) —f(t,y)| < L|x—y|, for each
te[l,e]and x,y € R.

If
LA(e) + |1|A(0) < 1, (7.11)

where A(.) is defined by (7.10), then the nonlocal problem (7.1) has a unique
solution on [1, e].
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Proof By transforming the nonlocal problem (7.1) into a fixed point problem, x =
9x, where the operator 2 is defined by (7.9), the existence of the fixed points of
the operator 2 will imply the existence of solutions for problem (7.1). Applying the
Banach’s contraction mapping principle, we shall show that 2 has a unique fixed
point.

Setting sup |f(z,0)] = M < and choosing R > MA(@)
1 u s = o0 1 = , Wi
r€[l.e] 1 — LA(a) — |A]A(0)

show that 2Bg C Bg, where Bg = {x € & : ||x|| < R} and the operator 2 is
defined by (7.9). For any x € By, we have

(&

[(2x)()]

1 1 B n A |
- 5[ (o710 (_,.;d’f (147407, () @) = A0 x(5) )]

=Y O[T (s, x(5)) (1i) — AP HHix(s) () ] )

i=1

+

B q
(r(z;gf ¥~ 2) (; v [IFPHf (s, x(5) (1) — AP Hx(s) (1)

= e [P (s, x(5) (W) — AP Fx(s) ()] )}

k=1

I Pf (s, x()) (1) = AP x(s) (1)

n

1 log £)P |
2] [(Ifhl " 1“(((;%4? 1) '93|) (Z | [(LIIXII + M) (1) ()

J=1

IA

m

FAI (P511) (@) + D7 181 il + M) (=42 541) ()

i=1

B
Al (17 +1) (m)]) +(Farp i+ i)

q
X ( D vl [@llxll + ) (12FPF91) (@) + (ALl (FPF71) ()]

=1

14
+ 3 lexl [l + M) (1°FPF940) () + (AL (FPH41) (9] )}

k=1

LI+ M) (1P 1) @) + A Ix) (1) (@)
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1 (log1)? o (loga)j)awﬂ’
< @Kmm F(ﬂ+1)|93|)(FZII¢J|[(LR+M)F(a+ﬁ+yj+l)

B+vi m

] + ,;Wi [(LR+M)

(log n;)* TFHH

Fl@+p+mw+1

(log ;)
reé+y+1

(log )P+ (log1)?
*'*'Rm]) +(rg el + 1)

q 1 at+p+y 1 B+u
X(Z"’” [(LR+M) (log ¢1) + AR (log ¢1)

+|A|R

=1 Fla+p+u+l) rg+u+1
: (log ‘//k)a+ﬂ+ak (log 1//k)ﬂ +ok
+ k; lex| |:(LR + M)F(a Aot IAlR—F(IB pa——
(log)*** (log )P
R +M)F(a Py VI MlRF(ﬁ +1)

< (LR + M)A(x) + |A|RA(0)
= [LA(«@) 4+ |A|A(O)]R + MA(x) < R.
This implies that || 2x|| < R for x € Bg. Therefore, 2 maps bounded subsets of Bg

into bounded subsets of Bg.
Next, we let x, y € &]. Then, for ¢ € [1, e], we have

[(22)(1) = (2y) ()]

B
< 1 lg (log 1)
|£2]

ST+
HAF(x(s) = () @) | +

l

23

4

(Z 5] [P (1 (5. 25) = £ 5. D (@)
j=1

04 [ 1P (15, 3(5) = (5, 6D ()
=1

(log 1)
rB+1)

21— 52

A (o) —y(s)|>(ni)]) +

q
x(Z il [FPH (If (s, x(5)) = £ (5, ()] (91) + [AIPF(x(s) = y(s)]) (@)

=1
14

+ ) lel [IFPH0 (If (s, x(5)) — £ (s, y(s)]) (Y1)

k=1



216 7 Nonlinear Langevin Equation and Inclusions Involving Hadamard-Caputo Type. . .

+ [APH(x(s) = v D) )]

P (If (5.x(9)) = (s, y(D]) (1) + AP (1x(5) = ¥(5)) (0)
] B n 1 Noet+B+y
< L[(Iml +M|93|)<Z|¢j| [l (log )

2 rg+n @\ & Fa+p+7r+1
Al =] %] + 2:: 104 Wl = 1D F(Sof_ :’3):5: 5
A (A i)

x(g v [(Lllx—yll) UL i '*'”x—y”r(:;gf—%}

+ ; e [(Lnx—yn) L i |A|||x—y||;;§i’”—%} )}
+<L||x—y||)% ¥ |A|||x—y||%

< LA@)lx =yl + [Alllx — ¥l A(0)
= [LA() + [A[AO)] [lx = ylI.

which implies that || Zx—2y| < [LA(«) + |A|A0)] |x—y||. As LA(@)+|A|A(0) <
1, 2 is a contraction. Therefore, by the Banach’s contraction mapping principle, 2
has a fixed point which is the unique solution of nonlocal problem (7.1). The proof
is completed. O

Example 7.1 Consider the following nonlinear Langevin equation of Hadamard-
Caputo type fractional derivatives with nonlocal fractional integral conditions

1 log ¢t 3 3
p'2 (p23 4 § x(t) = 03_3 ) 2“& b
t + |x(r)] 2
Elz/3x e+7 n 213/4x 2e +7 n 214/5x 3e+7
4 7 3 7 2 7
= 111/6x ﬂ + 111/2)( ﬂ ,
3 4 4 2

25, (k) + 3y (ﬁ) = 31"5x (%) .

t, l<t<e,
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Herea = 1/2,8=2/3,A=1/9,m=3,n=2,p=2,q= 1,0, = 13/4,6, =
13/3,0, = 13/2, w1 = 2/3, o = 3/4, u3 = 4/5,m = (e + 7)/7, n2 = 2e +
7)/7’ n; = (3€+7)/7,¢1 = 1/3’¢2 = 1/4’ Y11= 1/6’ Y2 = 1/2,(01 = (e+2)/4’
Wy = (€+1)/2,81 = 2/3,82 = 3/7, o] = 1/5,02 = 1/4, Y = 36/4, Yy = 46/5,
vi = 3,11 = 1/5, 91 = 2¢/5, and f(t,x) = (logt|x(¥)])/(Bt(2 + |x(2)|)) + 3t/2.
Since |f (¢, x)—f(z,y)| < (1/6)|x—y|, (7.1.1) is satisfied with L = 1/6. We can show
that A(x) ~ 2.527538367, and A(0) ~ 4.083246365. Thus LA(«) + |A|A(0) =~
0.8749504351 < 1. Hence, by Theorem 7.1, the nonlocal problem (7.12) has a
unique solution on [1, e].

7.2.2 Existence Result via Krasnoselskii’s Fixed Point Theorem

Theorem 7.2 Letf : [1,e] x R — R be a continuous function satisfying (7.1.1). In
addition, we assume that:

(7.2.1) [f(t.x)| < p(t), Y(t,x) €[l,e] xR, and p € C([1,¢],RT).
If
|A[A(0) < 1, (7.13)

where A(0) is defined by (7.10), then the nonlocal problem (7.1) has at least one
solution on [1, e].

Ao
Proof Setting sup |o(f)] = ||p| and choosing R > loll A@) we consider

re[l.e] 1= [IA1A0)
Br = {x € & : ||x|| < R}. Let us define the operators 2, and 2, on Bg by

ﬂ n
(@00 = é[ (- 7545) (Z A RO
j=1

m 1 ﬁ
_ Z 0; [1“+/3+Hif(s,x(s))(7’],')] ) + (%91 - 92)

i=1

q p
x ( 3w [ (s x ) @)] — 3k [0 G5, x() ()] )}
=1 k=1
+HIHP (5, x(5) (1),
1 ﬂ n
(22) (1) = é[ (94 - %93) (Z gy [MPx()(@)]

J=1



218 7 Nonlinear Langevin Equation and Inclusions Involving Hadamard-Caputo Type. . .

0 DL+ (logn)? )
+;9,[M “x(s)(nz)])+(r(ﬁ+l)91 2

q 14
X ( Y —u[APFx(s) ()] + Y e [MPTx(s) (9] )}

=1 k=1

—AMPx(s)(t), t€[l,e].
Note that 2 = 2, + 2,. For any x, y € Bg, we have

|21x(1) + 22y (1)

1 (log1)#
= ﬁ“g“ re+n*

(Zm [l (+71) (@)

m

HAR (P71) (@p)] + 32100 loll (1 #41) Gy

i=1

B
+|AIR (1ﬂ+m1) (m)D + MQI -2

x(Z il [Npll (1°TPF71) () + [AIR (1PF71) ()]

=1

k=1

p

+ 3 lel [l (P 1) () + [AIR (1°71) (9] )}
+loll (1*F1) (1) + IAIRI (I°1) (1)

=< llpllA() + RA[A0) < R,

which implies that | 2,x + 2,y| < R. It follows that 2,x + 2,y € Bg.
For x,y € & and for each t € [1, e], we have

[ 22x — 2oy < [A[AO)[|lx — yll.

Hence, by (7.13), 2, is a contraction mapping. Continuity of f implies that the
operator 2, is continuous. Also, 2; is uniformly bounded on By as

[2x]| < llpll Ale).

Now, we prove the compactness of the operator 2.
We define sup If(t,x)] = f < oo. Let 1,1, € [1,¢] with#; < £, and
(t.x)€[(1.e)xBR]
x € Bg. Then, we have
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[(21%)(12) — (210)(11)]

1 1 F— (1 B - .
ol () (Sotr oo

- +B4u; (log t2)ﬂ (log ltl)/j
_ [ retBtp . Q
IE 1 0; [I H f(s,x(s))(m)]) + §21 ( rB+1) )

=

q p
x ( D o[ (s x() (@] = Y ek [IP O (5, x(9) (V)] )} |
k=1

=1

+ [IFPf (s, x(9)) (12) — I FPf (5, x(5)) (1) |

<L (log 12)” — (log 11)F (log wj)* B+
|9|[|9| R ‘(Zm P

g (ogyp)* Pt (log 1) — (log 11)F
+Z|9’|F(a+ﬁ+m+l))+|g| rp+1 ‘

(log )7+ (log yp)“ HF+ox
(Z| "F(a+ﬁ+r +1) +Z| k|F(a+ﬂ+0k+l))]

+m [[og 1)**F — (log ll)aﬂj} + 2(logtr/1)* 7],

which is independent of x, and tends to zero as t, — t; — 0. Thus, 2 is
equicontinuous. So 2 is relatively compact on Bg. Hence, by the Arzeld-Ascoli
Theorem, 2 is compact on Bg. Thus all the assumptions of Theorem 1.2 are
satisfied. So the conclusion of Theorem 1.2 implies that the nonlocal problem (7.1)
has at least one solution on [1, e]. This completes the proof. |

Example 7.2 Consider the following nonlinear Langevin equation involving
Hadamard-Caputo type fractional derivatives with nonlocal fractional integral
conditions

1 tlogt t x(z
p (25 4 L) gy = o8t areeotxh) L <<
12 t+sinmgt 14 |x(1)]

4723 (%) + 33/5 (? — %12/3x (i

5 3
1 e+2 2 e+3
Ve Zpi (2
+2 3 +5 3

2 sy (36) + Sy (4 ) = Ly, (3—6) + 2prsy (ﬁ) .
7 7 7 7 5 5 7 5 (7.14)
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Here« = 2/3,8 =2/5,A = 1/12,m =2,n =3,p = 2,9 = 2,0, = 4,
bh =3, 1 =2/3, up =3/5,m =2e/3,m = 2e+1)/3,p1 =2/5, ¢ =1/2,
¢ =2/5n =2/3vn=1/2,y3 =3/2, 01 = (e + 1)/3, 2 = (e + 2)/3,

= (€+3)/3,8] = 5/7,82 = 6/7,0] = 2/5, Oy = 3/4, W[ = 36/7, W2 = 46/7,
vi =1/5v, =2/7, 11 = 1/5, 15 = 2/5, 91 = 3e/5, ¢ = 4e/5, and f(t,x) =
(tlog tarccot x(¢)) / ((t+sin 7£) (14 |x()|)) +#2 sin 7r¢. Since |[f(, x)| < (tlog?)/(t+
sin t)+% sin 7rt, (7.2.1) is satisfied. We find that A(0) ~ 10.69222877, |A|A(0) ~
0.8910190640 < 1. Hence, by Theorem 7.2, the nonlocal problem (7.14) has at least
one solution on [1, e].

7.2.3 Existence Result via Leray-Schauder’s Nonlinear
Alternative

Theorem 7.3 Letf : [1,e] Xx R — R be a continuous function. Assume that:

(7.3.1) there exists a continuous nondecreasing function T : [0, 00) — (0, co) and
a function p € C([1, e], R") such that

Ift.w)| = pY ([|ull) foreach (1.u) € [1.e] xR;

(7.3.2) there exists a constant M > 0 such that

M
I,
P17 (M) Aa) + [AMA©)

where A(.) is defined by (7.10).
Then, the nonlocal problem (7.1) has at least one solution on [1, e].

Proof Firstly, we shall show that 2 maps bounded sets (balls) into bounded sets
in &. For anumber R > 0, let Bg = {x € & : ||x|| < R} be a bounded ball in &}.
Then, for z € [1, ¢], we have

(L))

- 5[ (94 - % ) (D [P+ (5, x(9) @) = AP x(s) (@)]

=D O [1FF (5, x(9)) (1) — AP Hix(s) () ] )

i=1

B q
+ (-F(Z;g_:_) 1—) £ — .Qz) (; v, I“+ﬁ+”f(s, x(s)) (1) — A]ﬂ—i_rlx(s)((pl)]
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p
= e [P (s, x() (W) — AP Hx(s) () )]

k=1

P (5, x() (1) = MPx(5) (1)

= : (logt)ﬂ - || jet+B+y;
- @[('94' TTE+ 1)|93l)(,»=21 5| [ 1T () ()

AP @) ] + 3 181 T () ()
i=1

1 B
+|x|1ﬂ+”f||x||<m>]) +(rrs i+ i)

q
X(Z il [P pl 7 (D) (00) + AP (¢l ()]

=1

+ D el [P Y (el () + AP ] (9] )}
k=1
I (D) () + A el )
= P17 (xll) A(e) + [AIRA(0)
= IPI7 (R) A@) + AIRA(0),

and consequently,

12x] < IpIIT (R) A(e) + |A|RA(0).

221

Next, it will be shown that 2 maps bounded sets into equicontinuous sets of &7.

Lett, 1, € [1,e] with #; < 1, and x € Bg. Then, we have

[(2x)(12) — (2x)(11)]

2

rg+1

J=1

= O [I P (5, x(9)) (1) — AP FHix(s) () ] )

i=1

B _ B n
- l|:(log 12) log tl) Q3(Z¢j [Ia+ﬁ+y,~f(s, x(s))(a)j) _ Alﬂ+yf'x(s)(a)j)]
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F@+D 3w [ 16 ) — A1) )]

log1;)? — (log1))# !
(log12)” — (log11) Q](
=1

p
=Y e [IPEOf (s, x(9) (Yi) — AP x(s) () ] )} ‘

k=1

+ [P f (5, x(9) (82) — AP x(s) (1) — I TP £ (s, x(5)) (1) + AIPx(s) (1)
1
12|

APl (@] + Y 16 [P T () (o) + IXIIH""IIXII(m)])

i=1

(log 1) —log 1;)?
rg+1

IA

' |93|<Z [T () ()
j=1

(log 1)’ — (log 1)’ AN
S 7 ‘lfm(;w[l P17 (el (1)

p
APl (@] + Y lel [P IpIT el (W) + AP x| (9] )}

k=1

Pl ()
F'a+pB+1)

[ ALl
re+1

B _ B n Nat+B+y
ﬁl| [ (log ;)P —log 1) 'IszI(ZI ¢j|[||p||r<R>(logw,> y
j=1

P +1 F@+B+y+D)
M] 6 [HpuT(R) (log n)*
reg+y+1 +Z|9’| Fe+B+m+l)

|(log 1) TP — (log tl)“+ﬂ|

B
15
(log)? — (log12)? + 2 (log ﬁ) '

A

|A|R(log m)’““"]
r+uwp+1

(logh)? — (log )" = TpIY (R) (log @) A+
rg+1) ‘ '9”(;'”1'[ Fe+pf+u+1)

r+vu+1) F'e+B+oc+1)

n |A|R(log %)ﬂﬁk}
rB+o,+1)

A|R(1 B+u P T (R A a+p+or
|A|R(log ¢;) }+Z|Ek|[llpll (R) (log ¥z
k=1
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T .
Fa+pB+1) + 2(log12/11)

_ AR B 8 t_z)f‘
FB+0D) (logt)” — (log2)” + 2 (IOg o) |

As tp — t; — 0, the right-hand side of the above inequality tends to zero,
independently of x € Bpg. Therefore, by the Arzeld-Ascoli Theorem, the operator
2 : & — & is completely continuous.

Finally, we show that there exists an open set U C & with x # 0 2x for 6 €
(0,1) and x € dU.
Let x be a solution. Then, for ¢ € [1, ¢], as in the first step, we have

@[ = lpI7 (lxl) Ale) + [A][lx]A0)

which leads to

I <1
PIT (XD At@) + RTT1A0) =

In view of (7.3.2), there exists M such that ||x|| # M. Let us set
U={xeé& : x| <M}

We see that the operator 2 : U — &) is continuous and completely continuous.
From the choice of U, there is no x € dU such that x = 6 2x for some 6 € (0, 1).
Consequently, by the nonlinear alternative of Leray-Schauder type, we deduce that
2 has a fixed point x € U, which is a solution of the boundary value problem (7.1).
This completes the proof. |

Example 7.3 Consider the following nonlinear Langevin equation involving
Hadamard-Caputo type fractional derivatives with nonlocal fractional integral
conditions

1 sin x(z) 2+ logt
D2 D*5 & 2\ x(r) =
+ 7 *@) 572 + cos? wx(t) 2

T
2]3/2x(#) 31“%(#) 4[5/4x(#)

+ 51%/5% ﬂ :§]2/3x # ,

Lo (29) 4 Lo (22) = sprse (22) + Lpise (22))
3 5 6 5 5 2 5
(7.15)

Here o = 1/2, 8 = 4/5,A = 1/Tl,m=4n=1,p=2,q =2,0, =2,
92 = 3, 93 = 4, 94 = 5, M1 = 3/2, M2 = 4/3, Mn3 = 5/4, e = 6/5,

, l<t<e,
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m=(+1/3,m=>+2)/3n=(>€+3)/3 1 =(€+4)/3 ¢ =2/3,
Y1 = 2/3, w = (e + 3)/4, £ = 1/3, &) = 1/6, o] = 3/5, 0y = 3/4, v = 26/5,
Wz = 36/5, v =51, = 1/2, T = 3/5, T = 2/5, 01 = 26/5, O = 36/5,
and f(t,x) = (sinx(¢))/(57% + cos®> wx(t)) + (2 + logt)/m>. Then, we get that
A(e) ~ 2.675517413 and A(0) ~ 5.058796431. Clearly,

sin x(t) 2 4+ logt
572 + cos? wx(r) 2

<

If (2.0 =

2+ logt
52

) ()] +5).

Choosing p(f) = (2 + log#)/(57?%) and T(Jx|]) = |x| + 5, we can show that
M > 7.092618387. Hence, by Theorem 7.3, the nonlocal problem (7.15) has at
least one solution on [1, ¢].

7.2.4 Existence Result via Leray-Schauder’s Degree Theory

Theorem 7.4 Let f : [l,e] x R — R be a continuous function. In addition, we
assume that:

(7.4.1) there exist constants 0 < u < [1 — |A|A0)] [A()]™! and K > 0 such that
If(t,x)| < ulx| + K forall (t,x) €[l,e] xR,

where A(.) is given by (7.10).
Then, the nonlocal problem (7.1) has at least one solution on [1, e].

Proof Let us consider the fixed point problem
x = 9x, (7.16)

where the operator 2 : & — & is defined by (7.9) and show that there exists
a fixed point x € & satisfying (7.16). It is sufficient to show that 2 : By — &)
satisfies

X # k2x, Vx € 0Bpg, Yk € [0, 1], (7.17)
where Bg = {x € &) : ||x|]| < R, R > 0}. We define

H(k,x) = k2x, X € &, kK €[0,1].
As shown in Theorem 7.3, the operator 2 is continuous, uniformly bounded and

equicontinuous. Then, by the Arzeld-Ascoli Theorem, a continuous map 4, defined
by h.(x) = x — H(k,x) = x — kZx is completely continuous. If (7.17) is true,
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then the following Leray-Schauder degrees are well defined and by the homotopy

invariance of topological degree,

deg(h, Bg,0) = deg(l — k2, Bg,0) = deg(h;, Bg,0)

= deg(h()’BR’O) = deg(l5 BR’O) =1 7é 07 0e BRy

where I denotes the identity operator. By the nonzero property of Leray-Schauder
degree, 1 (x) = x — Zx = 0 for at least one x € Bg. In order to establish (7.17), we

assume that x = k Zx for some « € [0, 1]. Then

x(@)]

rg+1

— Z 0 [1F 70 (5, x(5)) (13) = AP FHix(s) (mi)] )

< %[(94——(1°gt) )(Z¢ 1P (5. x(9) (@) = AP Vx(s) ()]

8 q
+ (Mgl = 92) (Z o [I2 P (5. x() (9) — AP Hx(s) ()]

=1

P
Z e [ TP (5, x(5)) () — AP x(s) (Y | ):|

k=1

+1%TP 1 (s, x(5)) (£) — AIP x(5) (1)

IA

1 (log1)? .
@K'Q“' “TE+ )(Z 93] [ 142017 5. (5D | )

HAPI @) | + Y 161 s x) n)

i=1

1 B
+|A|1ﬂ+’“|x(S)l(ni)]) + (el + 1))

q
X(Z il [1*FPH21f (s, () [ (@n) + AP () ()]

=1

p
3 el [P0 | (s x()) | (W) + AT x(9)] (90 ] )]
k=1

P (s, X)) + AT 1x(9) (1)
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< (lixll + K) A@) + [Af]lx]] A(0)
= [nA(@) + [A[AO)] [|x]| + K A(a),

which, on solving for ||x|| = sup,e; o [X(2)], yields

KA(x)
llxll = :
1 —pA(w) —[A]A(0)
IfR KA + 1, the inequality (7.16) hold. This completes the
= s uality (7. .
1 — pA(er) — [A]A(0)
proof. |

7.3 Langevin Inclusions Case

In this section, we study of existence of solutions for the following nonlinear
Caputo-Hadamard fractional Langevin inclusion with nonlocal Hadamard fractional
integral conditions:

DY(DP + M)x(t) € F(t,x(t)), t€[l,el,

Oil"ix(n;) = ) $il"x(w)),
i; ’ ,; R (7.19)

p q
Z el x(Y) = Z vl x(¢1),

k=1 =1

where F : [l,e] x R - Z(R) is a multivalued map, & (R) is the family of all
nonempty subsets of R, while the rest of the quantities are the same as defined in
problem (7.1).

Definition 7.1 A function x € €2([1, ¢], R) is called a solution of problem (7.19)

if there exists a function v € L'([1, ¢], R) with v(¢) € F(t,x(f)), a.e. on [1, ¢] such

that D*(DP + A)x(t) = v(1), a.e. on [1,e] and Y7, O:1%ix(n;) = > i Bilix(w;),
1 e x(Yn) = Y1 vil " x(gy).

7.3.1 The Lipschitz Case

In this section, we prove the existence of solutions for the problem (7.19) when the
right hand side of the inclusion is not necessarily nonconvex valued by applying a
fixed point theorem for multivalued maps due to Covitz and Nadler (Theorem 1.18).
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Theorem 7.5 Assume that:

(7.5.1) F : [l,e] x R — P, (R) is such that F(-,x) : [l,e] — Z,R) is
measurable for each x € R;

(7.5.2) Hy(F(t,x), F(t, X)) < m(t)|x — x| for almost all t € [1, e] and x,x € R with
m e C([1,e], RY) and d(0, F(t,0)) < m(t) for almost all t € [1, e].

Then, the problem (7.19) has at least one solution on [1, e] if
l[ml]| Afer) <1,

where A(.) is defined in (7.10).
Proof Define an operator .% : & — (&) by

F(x)
he (pﬁl :
1By (s) (1) — AP x(s) (1)
1 (log?) o ;

b (o ) (Sl
B AP0 @)] = 306 [0 (1) — 28 >])
) Ko = (log t)ﬁ =

atp+n
H(Fa e - =) (;w [+ 0y
- Mﬁﬂx(s)(w,)]
p
=Y s [T = AP () () | )}
k=1
forv € Sp,.

Observe that the set Sg, is nonempty for each x € & by the assumption (7.5.1),
so F has a measurable selection (see Theorem III.6 [57]). Now, we show that
the operator .% satisfies the assumptions of Theorem 1.18. To show that .#(x) €
(&) for each x € &, let {u,},>0 € F (x) be such that u, — u (n — 00) in &7.
Then u € & and there exists v, € Sp,, such that, for each ¢ € [1, ¢],

un(t) = 1P, (5)(1) — AP x(5) (1)
1 (log1)? atBty;
sl ) (Eolroons

A1) ()] - 3 0, [P () () — AP ()] )
i=1
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1 B q
+ (_F(((I;gj_) 1—) 21 — .Qz) (Z v [Ia+ﬂ+rzvn(s)((pl) _ llﬂ“’x(s)(gol)]

=1

14
= e [IHP () (W) — AP Fx(s) () )} :
k=1

As F has compact values, we pass onto a subsequence (if necessary) to obtain
that v, converges to v in L' ([1, e], R). Thus, v € Sy and for each ¢ € [1, e],

va(t) = (1) = I*TPu(s) (1) — AP x(s)(r)
1 (logr) o ;
(- ) (Solr o

AP @)] 32 6 [ 6) ) — AP a(5) ) )

i=1

B q
+ (-[fz(/;g_:_) 1—) 21— .Qz) (; v [Ia+ﬂ+”1)(s)((p1) _ Alﬁ_i_nx(s)((pl)]

p
=3 e [T (s) () — AP Ox(s) (9] )}
k=1

Hence, u € .%.
Next, we show that there exists y < 1 (y := ||m||A(«)) such that

H (% (x), Z (%)) < y|lx — x| foreach x,x € &.

Letx,x € &1 and hy € % (x). Then there exists v (z) € F(¢, x(z)) such that, for each
tell,e],

hy(6) = I* TPy (s)(1) — AP x(5) (1)
1 (log?) o
3] (e ) (Sl

— AP TVix(s) (Cl)j)] = 6 [P (5) () — AP x(s) ()] )

i=1

B q
+ (_F(?I;gj_) 1—) 2, — .Qz) (; v [Ia+ﬂ+rzvl (5)(@) — Alﬂ+11x(s)(¢l)]

P
= e [P () () — PR x(s) (v )} :
k=1
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By (7.5.2), we have
Hq(F(1,x), F(t,X)) < m(1)|x(1) — X(1)].
So, there exists w € F(t, x(¢)) such that
[v1(D) —w| = m@)x(@) —x(1)]. 1€[l.e].
Define U : [1,¢] - Z(R) by
U@0) ={w e R:|vi(1) —w| = m@)|x(r) — x(0)]}.

Since the multivalued operator U(t) N F(¢,x(¢)) is measurable (Proposition II1.4
[57]), there exists a function v,(z) which is a measurable selection for U. So v, (1) €
F(t,x(¢)) and for each ¢ € [1, e], we have |v;(f) — v2(£)| < m(?)|x(¢) — X(¥)|.

For each t € [1, e], let us define

ho(1) = I**Pus () (1) — AP x(5) (1)

1 (log 1)’ . [atpty

—AIPHYix(s) (wj)] - Z 0; [1% TP Hivy(s) () — AP Hix(s) (i) ] )

i=1

B
+ ([F;;gj_) 1) 2 — .Qz) (; v [[a+ﬁ+”vz(s)((p1) _ Alﬁ-i_”x(s)(gpl)]

=3 e [y () (Y) — AP (s) (9] )} .
k=1
Thus,

(1) = o (D] < 1P lui(s) = va(9)| (1)

/3 n
vl (o ym) (Zor oo

+ Y Iy () — vz(S)I(l)m))

i=1

N ( (log1)?

q
T 92) (1; vl TP oy (5) = 02 (9] () )
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+ ) el TP () — vz(S)I(t)(Wk))]

k=1

1
Fla+p+1)

1 |93| n 10g wj)a‘i‘ﬂ‘H/j
Lile
+m{0 ol + F@+&)(Z§ N T@sp+y+1)
m , (log n; )Ot+ﬁ+/h
+;?mrw+ﬂ+m+n

! 5 (log ) HF ™
* (F(ﬁ Tl |92|) (;'V’|F(a+ﬁ +u+1)

p (log y)* HAtox i
+1;|8k|r(a+,3+ak+1) flx — x|

< [mllAe)lx — X|.

< [lml|

Hence,
[ = ha|| < [Im]| A(e) [lx — x]|.
Analogously, interchanging the roles of x and X, we obtain

Hy(F(x),.7 (X)) < [[m]| A(e)lx — X]|.

In view of the given condition (||m||A(x) < 1) we conclude that % is a
contraction. Thus it follows by Theorem 1.18 that .% has a fixed point x which

is a solution of (7.19). This completes the proof.

7.3.2 The Carathéodory Case

In this section, we consider the case when F has convex values and prove an
existence result based on nonlinear alternative of Leray-Schauder type, assuming

that F is Carathéodory.
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Theorem 7.6 Assume that (7.3.2) holds. In addition we suppose that:

(7.6.1) F:[1,e] xR = P(R) is L'-Carathéodory and has nonempty compact and
convex values;

(7.6.2) there exist a continuous nondecreasing function T : [0, 00) — (0, 00) and
a function p € C([1, ], R") such that

1@ )| 2 == supily| : y € F(t. %)} < p(T (||x]]) for each (1,x) € [1,e] xR,

Then the problem (7.19) has at least one solution on [1, e].

Proof Consider the operator % : & — Z(&)) defined in the begin of the proof of
Theorem 7.5, and show that . satisfies the assumptions of the nonlinear alternative
of Leray-Schauder type. The proof consists of several steps. As a first step, we show
that .7 is convex for each x € &. This step is obvious since Sr is convex (F has
convex values), and therefore, we omit the proof.

In the second step, we show that . maps bounded sets (balls) into bounded sets
in &). For a positive number p, let B, = {x € &} : ||x|| < p} be a bounded ball in &7.
Then, for each & € % (x), x € B,, there exists v € Sy such that

h(r) = I°TPo(s) (1) — AP x(s) (1)
1 (logt)? = Tratpty _
+§|:(94— m(%) (;d’j[l "o (s)(w;)

—)Llﬂ“’fx(s)(wj)] - Z 0; [1* P v (s) (i) — AP Hix(s) () | )

i=1

B
+ (-[Fz;gj_) 1—) 21— 92) (; v, [Ia+ﬁ+”v(s)((p1) _ /\Iﬂ+rlx(s)(g01)]

14
= e [P () (Yi) — AP x(s) (V)] )}

k=1

Then, for ¢t € [1, e], we have

(D] < |1 Pu(s) (1) = AP x(s)(1)

1 log 1)? . : .
+5 [ (94 — %93) (; & [1° TPt (s) (@) — AP TVx(s) ()]

=D O [P (s(mi) — AP Hx(s) ()] )

i=1
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B q
+ (_F(i(’;g—:_) 1) ) (; " Iot+/3+flv(s((pl) _ ll’g“’x(s)(go,)]

14
= e [P u(s(Y) — AP x(s) (V) ] )} ‘

k=1

< IPp| Y (Il @) + A1 x| (0)
1 (log )* wipir
HE] [('Q TG )(Z 9ol [ 11T ) (@)

HAP B el @) ] + D181l () o)

i=1

1 B
+|)L|]ﬁ+ui||XI|(77i)]) + (%mq + |.(22|)

q
X(Z il [I*HPHpl T () (00) + AP ¢l ()]

=1

p
+ > le [P pl Y (el () + (AP e (9] )}

k=1
= lpI7 (lxl)) Ae) + [A]pA(0)
= lpIT (p) Al@) + |A[pA(0),

which implies that
2]l < 1Pl (p) Ala) + |A[pA(0).

Next, we will show that .% maps bounded sets into equicontinuous sets of &. Let
t1, 1 € [1,e] with t; < 1, and x € B,. Then, we have

|h(t2) — h(t1)]

< 1P (s)(t2) — MPx(s) (1) — I*FPu(s) (1) + AP x(s) (1)

1| (logno)? —logn)f _ - '
+§|:( : ?)(ﬁ +(f);tl) 93(j=21¢j [194 P70 (5) (@) = ATPHVix(s) ()]

=D O [ (5) (i) — AP FHix(s) ()] )

i=1
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D [ () (@) — AP x(s) (1))

=1

(logr2)? — (log )
r'B+1) :

p
=Y e [P0 (s) () — AP x(s) ()] )] ‘

k=1

Pl (<l Y
< F@+B LD |(log 1) (log1)*+F|
|A ][l s 8 t_z)ﬂ
FB+ D) (logt) (logt)” +2 (log ”

(log 1) —log 1;)?
r@g+1i

L
|$2]

APl (@] + Y 16 [P T () (o) + IXIIH""IIXII(m)])

i=1

‘ |£23] ( S I[Pl T (2] (o)
j=1

(log 12)” — (log 1)/ e
S ‘iw(;w[l IPIT (i) ()

p
APl (@] + Y lel [P IpIT (el (W) + APl (9] )}

k=1

Il (o g et

< L ogn)*+ — g )™
T IOV AN,
e |toen” = dogn)” +2 10z 2)

L
|$2]

|Alp(log w;)f t7 ]
rg+y+1

m T 1 etBtu Alo(l LA
+Z|9,-|[””” (p) Gog )P+ |A|o(log ;) D
i=1

Gogn)? ~logt? || (< FlpIY (p) o)+
r@E+1) "93'<,_Zl'¢"[ Fa+p+y+D

Fa+p+p+1) I+ w+1)

(log tz)ﬁ — (log tl)ﬂ q ||p||T (p) (log (pl)a+/3+r1
rE. ml'(;'”'[ Fla+p+a+D
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|A|p(log g)P+ }

F(,B + 17+ 1)
z Pl Y (p) (log Yi)* PFo |A]p(log yr) P +x
+;|gk|[ Fa+p+or+1) +F(ﬁ+ok+l)} ’

As t, — 1 — 0, the right-hand side of the above inequality tends to zero,
independently of x € B,. Therefore, by the Arzeld-Ascoli Theorem, the operator
F 1 & — P (&) is completely continuous.

By Lemma 1.1, .# will be upper semi-continuous (u.s.c.) if, we prove that it has
a closed graph since .# is already shown to be completely continuous.

Thus, in our next step, we show that .# has a closed graph. Let x, — x4, h, €
Z (x,) and h, — hy. Then, we need to show that i, € F (x«). Associated with
h, € Z(x,), there exists v, € Sp, such that for each r € [1, ¢],

ha(1) = "0, (5) (1) = AP x(5) (1)

1 (log1)” - « i
+5[ (- r40®) (,;‘f’f'[' @)

AP () (@) | = D 0 [, (5) () — AP HR() () )

i=1

p
+ ( gD 2, - 92) (Z v [P+ 0,(5) (1) — AP x(5) ()]

=1

p
= e [P0, () (W) — AP x(s) (v )} :

k=1

Thus it suffices to show that there exists vx € Sp, such that for each ¢ € [1, ¢],

hy (£) = I°Pu, () (1) — AP x(s)(2)

1 (log1)? ‘ o ;
+5{ (9 TTETD ‘2) (;d’j[’ 0 (5)(@)

—M“yfx(s)(wj)] = G [P () (i) — A1ﬁ+“ix(s)('7i)]>

i=1
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B q
(log 1) 2, - Qz) (Z v [P0, (s) (1) = AP HTx(s) ()]
=1

14
= e [P () (W) — AP x(s) (Y] )} :

k=1

Let us consider the linear operator @ : L'([1, ], R) — & defined by

= 0W)(0) = I"TPus) () — APx(s)(1)
1 log £)? " _

AP (@) | = 0 6 [ () () — AP () )] )

i=1

(IOg t)ﬂ d a+B+1
+(F(ﬁ+1) )(;w [1 v(9)(¢)
— MPTx(s) ()]

p
= e [ () () — AP Ox(s) ()] )]
k=1

Observe that

17, (2) = hae D] = [ 1*TP (0a(5) — v (5))(2)

1 log1)? ‘
e [ (94 a F(((/;gjr) 1) 93) (Z GI*TPE (W (s) — v (5)) (@)

=1

=3 B, ) v*(S))(m))

i=1

B q
’ (F( Zzgi) Do 92) (; AN CIORERONC)

14
= el TP, (s) - v*(s))(w))} H -0,

k=1

asn — Q.
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Thus, it follows by Lemma 1.2 that ® o Sg, is a closed graph operator. Further,
we have h,(f) € ©(SF.,). Since x, — x4, therefore, we have

he (1) = I*TPu, (5) (1) — AP x(s)(2)

1 (log r)# ‘ at Bty
+5[ (‘2 - mg) (;%[' . (5)(@)
AP @) = 3 6 [P0, (5) () — A1 (s) 1) )
i=1

B
+ (Mm - :22) (Z v [14PH 0, () (gn) — AP 7x(s) ()]

=1

P
— Z & [Ia+ﬁ+0kv*(s)(wk) _ /\Iﬂ+”"x(s)(wk)] )i|’

k=1

for some vx € Spy, .

Finally, we show there exists an open set U C & with x ¢ 6.%(x) for any
0 € (0,1) and all x € dU. Let # € (0,1) and x € 6.7 (x). Then there exists
v E Ll([l, e],R) with v € Sg, such that, for 7 € [1, ¢], we have

x(1) = 01°Pu(s) (1) — A0IP x(s)(¢)

1 (log1)? ‘ o ;
+95|: (94 - mgs) (;d’/[l ity v(s)(w))

—AP(s) @] = D2 0 [0 (5) () = AL x(s) () )

i=1

B q
+0 (% 2 - Qz) (; w [P0 () (1) — AP x(s) )]

= e [P () (Yi) — AP Hx(s) (Y] )} ~
k=1

As in the second step above, we have
@ = llpll7 (llx]) Aler) + [A]]lx]| A(0)

which leads to

I -
P17 (D) At@) + AT AQ©) =
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In view of (7.6.3), there exists M such that |x|| # M. Let us set
U={xe & : x| <M}

Note that the operator .% : U — Z2(&)}) is upper semicontinuous and completely
continuous. From the choice of U, there is no x € dU such that x € 6.% (x) for
some 6 € (0, 1). Consequently, by the nonlinear alternative of Leray-Schauder type
(Theorem 1.15), we deduce that .% has a fixed point x € U which is a solution of
the problem (7.19). This completes the proof. |

7.3.3 The Lower Semicontinuous Case

In the next result, F' is not necessarily convex valued. We use the nonlinear
alternative of Leray Schauder type together with the selection theorem of Bressan
and Colombo (Lemma 1.3) for lower semi-continuous maps with decomposable
values, to establish the next existence result.

Theorem 7.7 Assume that (7.3.2), (7.6.2) and the following condition holds:

(7.7.1) F : [l,e] x R - Z(R) is a nonempty compact-valued multivalued map
such that

(a) (t,x) —> F(t,x) is £ ® P measurable,
(b) xv+— F(t,x) is lower semicontinuous for each t € [1, ¢].

Then, the problem (7.19) has at least one solution on [1, e].

Proof 1t follows from (7.6.2) and (7.7.1) that F is of l.s.c. type. Then, from
Lemma 1.3, there exists a continuous function f : & — L!([1,e],R) such that
f(x) € Z(x) forallx € &.

Consider the problem

D(DP + Mx(t) = f(x(), 1<t<e,

Oil"x(n;) = ) il x(wy),
; g ,; R (7.20)

p q
D e x(Yr) = Y vl x(g),

k=1 =1

Observe that if x € €%([1, €], R) is a solution of (7.20), then x is a solution to the
problem (7.19). In order to transform the problem (7.20) into a fixed point problem,
we define an operator .% as
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Fx(t) = I"*Pf(x(9)) (1) — AP x(5)(0)

1 (log1)? ‘ N _
—Mﬂﬂjx(s)(wj)] - Z 6; [1°FPHf (x(s)) (i) — AP HHix(s) (i) | )
i=1

B q
* (F(g;gj-) 1) $h - 92) (Z v [IHPHAf (x(s)) (@r) — AP+ x(s) (@) ]

=1

p
= [P () (W) — AP ox(s) () )] :

k=1

It can easily be shown that .Z is continuous and completely continuous. The
remaining part of the proof is similar to that of Theorem 7.6. So, we omit it. This
completes the proof. |

7.3.4 Examples

We illustrate our results with the help of some examples. Let us consider the
following boundary value problem for Caputo-Hadamard fractional differential
Langevin inclusion with nonlocal fractional integral boundary conditions

1
D'? [ D*° + = x(7) € F(t,x(7)), l<t<e,

213/2x(# +3I4/3x #)4_4]5/4)5(% +5]6/5x(#)

=212/3x ﬂ + 413 % + 37%/5% ﬂ ,
3 4 3 3

Lprsy (%) + Lpray (%) = 51/ (%) + Lpssy (%) .
3 5 6 5 5)72 5 7.21)

Herea = 1/2, 8 =4/5A=1/15m=4,n=3,p=2,g=2,0, =2,0, =
3,60 =4,00 =5, 1 =3/2, up = 4/3, u3 = 5/4, ua = 6/5,m = (e +1)/3,
m=(e+2)/3n=_(€+3)/3n=(+4)/3 ¢ =2/3, ¢ =4 ¢35 =3,
1 =2/3,n=2/3y3 =3/5, 01 =(e+3)/4, w2 = (2¢)/3, w3 = 2e + 1)/3,
& = 1/3, &y = 1/6, o1 = 3/5, Oy = 3/4, WI = 26/5, Wz = 36/5, Vv = 5,
v, = 1/2, 1y = 3/5, 15 = 2/5, o1 = 2e/5, ¢» = 3e/5. Using the given data,
we find that £2; = 0.210907130, £2, = —0.537266438, 23 = —1.496430446,
£2, = —0.269076088, 2 = —0.860731921, A (1/2) ~ 7.786402339, and A(0) ~
14.19541525.
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(a)

(b)
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Let F: [1,e¢] x R — Z(R) be a multivalued map given by

Flrx) = |0, -S> 2 (1.22)
— = s = 1. .
* . 41+1) 3
Then, we have
(4l : xe F(t ) < 12
su N N = P
P - & V=01 "3

and

1
Ha(F (), F(09) = 70—

|x — x|
Let m(r) = 1/(4(1 + 1)). Then Hy(F(¢,x), F(t,X)) < m(t)|x —X|, and ||m| =
1/8. Further ||m] A(1/2) ~ 0.973300292 < 1.
By Theorem 7.5, the problem (7.21) with F(t, x) given by (7.22) has at least
one solution on [1, ¢].
Let F: [l,e] x R - Z(R) be a multivalued map given by

+ -

, — 7.23
x| +logt+ 1 ex+coszx+2e2 3 ( )
g

e 3 2
x—>F(t,x):|: il ]

For f € F, we have

| < |x| e +3t2 +2 _ 1 R
max , —+-)=<—, x .
- |x| +logt+ 1" e +cos2x 2e2 3 6

Thus,

19
IF (.0l 2= sup{ly| = y € F(t.0)} = = = pOT(Ix]). xeR.

withp(r) = 1/6, T (||x||) = 19. Further, using the condition (7.6.3), we find that
M > 459.683223057. Therefore, all the conditions of Theorem 7.6 are satisfied.
So, the problem (7.21) with F(t, x) given by (7.23) has at least one solution on
[1,e].

7.4 Langevin Equations with Fractional Coupled Integral

Conditions

In this section, we study the existence and uniqueness of solutions for a coupled
system of Riemann-Liouville and Hadamard fractional Langevin equations with
fractional coupled integral conditions of the form
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RLD? (ReDP' + A1) x(2) = f(t,x(1),y(7)), a<t<T,
aD®? (uD” + A2) y(1) = g(t.x(1),y(1)), a=<t=<T,
x(@) =0,  owx(m) =Y ainl”y(n). (7.24)

i=1

Ya)=0,  oy(m) =Y Birlx(E),

J=1

where gy DY, yDP are the Riemann-Liouville and Hadamard fractional derivatives of
orders g, p, respectively, with ¢ € {q1,p1},p € {q2, P2}, 0 < qi, px < 1, A}, are given
constants, k = 1,2, g1, gIP are the Riemann-Liouville and Hadamard fractional
integral of orders y;, p; > 0, respectively, ;, & € (a,T) and «;, fj, 01,02 € R for
alli = 1,2,....,m,j = 1,2,....n, 11,05 € (a,T), f.g : [a,T] x R? — R are
continuous functions.

In the following analysis, we set

)

m i +p2+ i_l n O
o=y “l@) (log )", _ 3o Bl @) E - oyt
& I'(q2 + p2 + pi) ? P (g1 +p1+ )
, . 0al(g2) (log 2)qz+pz—l o — o1l (q1)

— , — (1’ _a)q1+p]—1,
I'(g2 + p2) a (g +p)

and
Q' = .Q{.Qg — .QQ.QQ

Lemma 7.2 Let 2 # 0,0 < qu,px < 1, k = 1,2,p,y; > 0, a;, Bj. 01,00 €
R 7§ € (a.7), i = 1,2,...,m,j = 1,2,...,n, 1,72 € (a,.T) and ¢, ¢ €
C([a, T],R),a > 0. Then, the following problem

rDT (D' + A) x(t) = (1), a=<t=T,
uD? (yD”* + X)) y(t) =y (), a<t=<T,

x(a) = 0, o1x(t)) = Zaml‘”y(m), (7.25)
i=1

Ya)=0,  oy(m) =Y Birlx(E),

J=1

is equivalent to the integral equations

x(1)

= rd" PG (1) — Mgl x(1) — |:(t — a)41+p1—11~(q1)1|

£2'T" (g1 + p1)
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x |:( Z Birc I TP T (&) — Ay ZﬂjRqul+wx(§i) (7.26)
=1 =1
+A200n1"y(12) — 02H142+p21/f(72)) 21+ (Z il PPy ()
i=1

m
—A Z gl TPiy(n;) + Aoire P x(t) — UlRLIql+pl¢(Tl)) -Qéi|

i=1

and

y(®)

(log L)@+~ F(Qz)]

= H1q2+pZW(Z) - A2Hlpzy([) - |: Q/F(qZ _,’_p2)

x [( D nl =Y () — Ao ) @l Py(ny) (7.27)

i=1 i=1

+A101re I x(11) — UlRLIql+pl¢(Tl)) 2, + (Z,BjRqul+pl+yj¢(§j)

j=1
A Z Bird" V1x(§) + Aao2ul™y(r2) — 02H1q2+p21/f(1’2)) 92:|
j=1

Proof Using Lemmas 1.4 and 1.5, the first two equations in (7.25) can be expressed
into equivalent integral equations as

(g1t —a)ntr-!
I (g1 + p1)

x(t) = I G (O) Ay ped” (1) —c —c(t—a)y” ™, (7.28)

and

I'(g2) (log 1) —dz( t)Pz—l

1) = gl P20 (1) — dopl”y(i) — d log —
yt) =g Y (t) — Aol y(t) — di T+ po) g

’

(7.29)

for ¢y, ¢z, dy, dy € R. The conditions x(a) = y(a) = 0 imply that ¢c; = d, = 0.

Applying the Riemann-Liouville and Hadamard fractional integrals of order
¥j» pi > 0on (7.28)—(7.29), respectively, and using the property given in Lemma 1.6,
we obtain
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O’zqu2 +p2 I// (Tz)—)\zO'zHIpzy(‘L'z) — d] .Qé

=" Bircd " TTIGE) — A1 Y B TVx(E) — 1525,

J=1 j=1

O'lRLIql+p1¢(1’1)—k10’1RL1p1X(T1) — Clgi

= Z gl PPy () — A, Z aipl*Piy(n;) — di 2.

i=1 i=1

Solving the above system for constants c¢; and d;, we get

£ -
€ = (Z Birc 1" i (&) — Ay Z Bire I TVx(&) + A202m1"y (1)

j=1

.Q/ m
_02H]¢12+172w(.[ )) + _(Za qu+pz+pil//(,] ) — Ay Za H]qz-i-piy(n)

i=1

+A101R I X(T1) — 01RL1‘1‘+”1¢(T1)),

.Q/ m
di = (ZO( Iq2+‘”2+p‘1//(7] D) — Ay ZO[ H1q2+p1y(n) + Aorre P x(1y)

i=1 i=1

~o1R " (1 >) + E(Z BireI” 71 p () — A Z BireI” V(&)

j=1
+A200517y(15) — 02H142+p21ﬂ(f2)) .

Substituting the values of ¢y, c>,d; and dp in (7.28) and (7.29), we obtain the
solution (7.26) and (7.27). The converse follows by direct computation. This
completes the proof O

For the sake of convenience, we use the following notations throughout this
section:

Rl 15, 1(5). y(5)) (v) = %W) /0 (v — " (s, x(5). y(s))ds.
and
1 v u—
l"h(s. (6. 56)0) = 7 [ (tog %) ™ s 300 o),

where u € {q2,p2, ¥}, w = {q1,p1, 01}, v € {t,T1,72,7m:,§} and h = {f, g},
i=12,....mj=12,...,n
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Let us introduce the space X = {x(¢)|x(r) € C([a,T],R)} endowed with the
norm ||x|| = sup{|x(?)|, € [a, T]}. Obviously (X, | - ||) is a Banach space. Likewise,
Y = {y(®|y(®) € C([a.T])} equipped with the norm ||y|| = sup{ly(®)|.z € [a.T]}
is a Banach space. Thus the product space (X x Y, ||(x, y)||) is a Banach space with
norm || (x, y)[| = [lx[| + [ly[l-

In view of Lemma 7.2, we define an operator £ : X x Y — X x Y by

_ 2, (x,)’)(t)
2, y)(1) = (Qz(x,y)(t)) ’

where

21(x,y)(1)
= TP (5, x(5), () (1) — A ge P x(2)

(t—a)n "1 (g))
Q' (q1 +p1)

[( Z Birc I TP £ (s, x(s), y(5)) (€)
j=1

—A Z ﬂjRLIq]+WX(Ej) + 202017y (12) — 02H1qz+p28(5»x(s)’)’(S))(Tz)) 2]

j=1

+ ( D It rig(s, x(5), () (0) — Ao Y il Py(m) + Aroi el x(T)

i=1 i=1
—o1 R I TP (s, X(S)»)’(S))(TI)) Q§:|’

and

22(x, y)(0)
= ul?72g(s, x(5), y()) (1) — Aaul™y(0)

1 I3 g2+p2—1 r m
B ( og a) (612) [(ZaiHqu"I‘PZ"I‘)Oig(S’)C(S)7 y(s))(r]l)

' (g2 + p2)

i=1

—A; ZaiHquer[)’(??i) + Aore P x(Ty) — U]RLIq]erf(S,x(S),Y(S))(Tl)) £2;

i=1

+ ( > BiredPIf (5, x(5) () (E) — A1 Y B x(E)

J=1 J=1

+ 2025 1P2y(12) — G211 g (s, x(s), )’(S))(Tz)) 92:| .
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For convenience, we introduce the notations:

— I'(g)(T - a)‘“"‘l’l—l

F(CI2) (log E)Qzﬂ’z—l

A A =
: I'(gq1 +p1) ? I'(g2 + p2)
T —a)”! T — q)41tp1
Ay = (T—a Ay = (T —a) ’
T(pr+1) I'gi+p+1)
)\l — )11
As = (i —a , Ag = (t1 —a) ’
T(pi+1) I'(gi+p1+1)
A (log 5) 2 A (log %)tiz+pz
T Tt 1) ST T@mtp+ 1)
. (logta_,)m o (log )q1+p1
AED) T @)
log 2 P2 log 2 @2+p2
Ay = —( a) , Ap = —( ) ,
I'(p+1) I'(gx+p2+1)
4 B Z |Ol | (log )QZ+P1 4 B Z |Ol | (log )5]2+P2+Pt
BT Tt ) YT Tttt )

1Bl —a)n
Z I'(q: + Y + 1)

A = Xn: |/3j|(§j—a)‘11+p1+y,

“T'(qi+pi+y+1)

Now we present our first result, which is concerned with the existence and
uniqueness of solutions for the problem (7.24) and is based on Banach’s fixed point
theorem.

Theorem 7.8 Assume that f,g : [a,T] x R* — R are continuous functions and
there exist positive constants m;, n;,i = 1,2 such that for all t € [a,T],a > 0 and x;,
yi € R,l =1,2,

[F (2, x1,x2) = f(t, y1,y2)| < milxr —x2| + ma|y1 —y2|
and

lg(t, x1,x2) — g(t. y1,y2)| < ni|x1 — x2| + nalyr — ya|.

In addition, suppose that

Bl+C1<1,
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where
= (m; + my)M; + (n1 + np)My + M3 + My,
Ci = (m; + ma)Mg + (ny + n2)Ms + M7 + M,
and
A
Ml |Q | (|O—1||S2 |A6 + |~{2 |Al6 +A4)
Ay
M, = |Q | (|O-2||“{2 |A12 + |Q3|A14)
A, /
M; = |12/] (lo1118251As + 1£2]1A15) + |A1]As,
[A,]A
My = |;2/|1 (|o‘2||.Qi|A11 —+ |.Q§|A13)
Ay
Ms = |_Q | (|62||‘Q4|A12 + |92|A14 +A8)
As
M6 ’ (|01||92|A6 + |Q4|A16)
12|
|A2|As
M; = |Q/| (l 2||Q4|A11 + |92|A13) + |A2]A7,
[A1]A2 , ,
My = fed (|01||92|A5 + |~Q4|A15) .

Then, the problem (7.24) has a unique solution on [a, T].

Proof Define sup,e(, 71./(2,0,0) = Ni < 0o and sup,¢(, 71 8(1,0,0) =

consider the set B, = {(x,y) € X x Y : ||(x,y)|| < r}, where

. (M| + Mg)Ny + (M, + M5)N,
- 1-B,—C '

Let us first show that 2B, C B,. For (x,y) € B,, we have

|21 (x. ) ()]

245

N, < oo and

= sup {RLI‘“J”" If (s, x(5). y($))[(@) + [A1|red” [x(9)] (2) +|:

t€[a,T]

(t— a)111+p1—1[‘(q1)
|2/ (q1 + p1)

x {( D 1Bilre I I (s, x(s), y(DIE) + A1) D 1B lred T 1x(9)|(5)
Jj=1 j=1
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+Azllo2|u I |y(9)|(2) + IUzIHI‘”J”’ZIg(s,X(S),y(S))I(fz)) |21l

+ ( D Ll ud =P g (s, x(s), y()| (i) + [Aa] Y el ad 7 y(s)|(mi)

i=1 i=1
+ A1 [[o1 [t 1x(s)|(T1) + |0 [ TP lf(s,x(s),y(s))l(n)) |~Q§|:|§

< RLIq‘+”‘([f(s,x(s),y(s)) —f(5,0,0)| + |f(s,0,0))(T) + |A1|relP |x(s)|(T)

N (T —a)" 7~ (gy)
|$2'| T (g1 + p1)

M(Z B lre I TP ([ (5. x(5), ¥(5)) — f(5.0,0)]
j=1
HF(s.0.0DE) + A1) Y 1BilreI" T 1x()I(E) + |Aalloa]al” [y(s)] (2)

=1

ozl a1 72 (|g(s, x(), ¥(5)) — g(s.0,0)| + [g(s, 0,0)|>(r2)> 2]
+(Z ol P2 (g5, x(5). Y(5)) — (5.0, 0)| + [(s5. 0.0)))(my)
i=1

+Aal D Lol ul 2 |y() | () + [Aallon [re” 1x(s)] (1)

i=1

ot |red P (If (s, x(s), ¥(5)) = £(5,0,0)] + [f (s, 0, 0)|)(f1)> Iﬂél}

< (mi|lx]l + mallyll + NI P A)(T) + |2l e d” (1)(T)
LT —a () [(

(m[lxll + mallyll + N0 Y Bled TP (1) ()

2| (q1 + p1) =

Al Y 1Bl T (1)) + [Ralloalllyll sl (1) (z2)

=1

+loa| (i [|x[| + naflyll + NZ)HIq2+p2(1)(T2)> 2]
m
+ ((m el + nallyll + N2) D lel 720 (1) (i)
i=1

Al el 22 P (1) ()

i=1
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+ Ao xllre?” (D) () + lon [ om 13|+ mally ]| + Nged "7 (1)(r1)) |9§|}

247

[£2|1"(q1 + p1) I'igi+pi+1)

(T — a)Ql+Pl
I'(gi+pi+1)

+
N |o2182]| (log 2)*7"
F'(g+p2+1)

L(g)(T —a)tte!
|2'| (g1 + p1)

)(ml Ixll + ma Iyl + Nv) +

m 2 tp2+pi
Z |824]]et;| (log L) 7
F(g+p2+pi+1)

i=1

)(”l Xl + n2llyll 4 N2)

+(|11I(T—a)‘” L Ml @)@ — gyt (mgnon(n )y

F(pr+1) |2/ (g1 + p1) T(pi+1)
2111815 — ayn
+; g +y+1) )) I

ol D (g)(T — ay+71 =1 (192{]]0a] (log 2 )™
[$2/|T" (g1 + p1) I'(pa+1)

m \q2+pi
|82}/ |evi| (log !
¢y |l (oe )" 7Y,

F(g+pi+1)

i=1

Ay
= (|Q/| (lo111£235]A6 + [£2{A16) +A4) (my || x| + ma|lyll + N1)
Ay

2

(lo2] 1821112 + 1825]A1a) (ua [lx[| + malyll + N2)

A]A
o (B8 oioias + g + a1

[A2]Aq

|£27]
= My (my||x]| + mally|l + N1) + Ma(ni||x|| + n2|lyll + N2) + Ms||x|| + Mallyll
= (miM, + niM, + M3)||x|| + (maMy + noM, + M4)||y|| + M Ny + M)N,

+ (loa 121411 + |$25]A13) [

< ((my +m)M; + (ny + no)Ms + M3 + My)r + M Ny + M)N,
= B]}’+M1N1 +M2N2.

Cg)(T —a) = (125]jo|(n —a) 7 G- 1211815 —a)t 1y
3 _,’_Z y
= F@+pi+y+1)
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Hence

21 (e, )| < Bir + MiN1 + MaN».
In the same way, we can obtain

220, y)|| < Cir + MNy + M5N,.

Consequently, || 2(x,y)|| < r.
Now for (x2,¥2), (x1,y1) € X x Y, and for any ¢ € [a, T], we get
|21 (2, y2) (1) — 21 (x1, y1) (1)
< R (5, x2(9), y2(8)) = f (5, %1 (), Y1 () D(T)
A g™ (1x2(s) — x1 () D(T)
(T —a) ™7 (q1)
82| (g1 + p1)

—f (s, x1(8). y1 () (§))

[( S B (s, 30(5), (5))
=1

1Y Bileed (1o (5) = 51 (ID(E) + [A2lloalal™ (1y2(s) = yi ()] (z2)

Jj=1

Hloa |l P2 (|g (s, x2(5). y2(s)) — g(s,m(S),yl(S))l)(fz)) |21l
+ ( D lealul P (g (s, xa(s), 2(5) — g(s,x1(s), yi1 () (i)
i=1

HlAal D Ll (1ya(s) = i &)D0) + [Allon e (1xa(s) = xi(s)])(z1)

i=1
ot [Re I (I (5, x2(5), y2(5)) _f(svxl(s)v)’l(s))l)(fl)) IQQI}

|2{|T (g )(T — a)yntr—!
[$2'|I"(q1 + p1)

IA

(mylxy —x1 || + mally2 — y1 ||)|:

ZTa+p+y+D

o1 |[25(T — @) 71T (gy) (71 — @)+ (T — a)ntr
12| (q1 + p) (g1 +p1+ 1) L(gi+p1+1)
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1021182{ |7 (1)(T — @) 71! (log 2)*+7?
[2'| (g1 + p) (g2 +p2+ 1)

+(nllxy — xi|| + n2lly2 — yi ||)|:

1417 (g)(T — @)1= & o] (log 2 )q’ﬂ’”"l]

12N (g +p1) I T@a+p2tpi+1)
(T —a
+ 22 — x| A1 =——
[lx2 1II[I 1|F(p1+1)
[Ailloi ][5 7 (g)(T =)™+ N (w —ap M2 T (g)(T —a) 77!
|2'|[I"(q1 + p) T (p1 + 1) |21 (q1 + p1)

|Bil(§ — ) _ MZHQQU—'(C]I)(T_a)ql+pl_l) %
ZF(QIHJH)}HM yln[( T

8 Z joi] (log )™ Aa]]0] |82} | (1) (T — &)+~ (log 2"
— I'(@2+pi+1) 121l (g1 +p) (2 + 1)

= (myllxa — x1|| + mally2 — y1l) [|9 q (lo111825146 + 1£211A16 +A4)}

Ay
+(nllxz = x1 || + nally2 = y1l) [|~Q 0 (lo21182{|1A12 + 1824 |A14)}

|A1|A1
[$2']

+lx2 — x1] |: (lo1]1£25145 + 827 |A1s) + |/\1|A3]

|A2]Ay
€2/
= Mi(mi||x2 — x1[| + mally2 — 1) + Ma(ni[|x2 — x1[| + nally2 — y1 )
+M;|x2 — x1l| + Mally2 — w1l
= (M + mMy + M3)||xa — x| + (maMy + oMy 4 My)|ly2 — i,

S [ (Ioal|2]]A11 + |9;|A13)}

and consequently, we obtain

[21(x2,y2) — 21(x1, yO)l < Billlxz —x1 [l + ly2 = y1ll]- (7.30)
Similarly,

[ 22(x2, y2) = 2o (x1. y)|l = Cilllxez — x|l + [ly2 =yl (7.31)
It follows from (7.30) and (7.31) that

|20x2,y2) — 201, y)l < [Br + Cil(llx2 — x( || + lly2 — »1])-
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Since (B + Cy) < 1, 2 is a contraction. So, by Banach’s fixed point theorem,
the operator 2 has a unique fixed point, which is the unique solution of the
problem (7.24). This completes the proof. O

Example 7.4 Consider the system of Riemann-Liouville and Hadamard fractional
Langevin equations supplemented with fractional coupled integral conditions

D5 (RLD3/4 " %) x(f) = |x|(SSiff(3;U) (|}2€||):|_ >+ 1) + G |i|t)2 — %
(10 =)0 = s+ T (e
X % =0, V2x(1) = %HI“[ 3 HI4/Sy % ,

Bon BE ) bl oo

(7.32)

Here q1 = 2/5, ¢ = 5/6, p1 = 3/4, pp = 3/7, A1 = 1/7, &, =
—1/1l, n =2, m=2,a=1/4T =20 =2, 00 =1/2, 11 =
I, o =3/2,m =1/3,mp=3/2,§ =2/5 & =5/3, a1 =1/2, ap =
—1/3, B1 = 1/6, Br = 1/8, p1 = /3, p» = 4/5, y1 = 7/2, y» = /5, and
f(t,x,y) = ((sin® ) /(5= 02) (1x]/(1x] +2) + D(xD + (Iy]/ (6 =) = (1/2)
and g(, x,y) = (Ix|/((7 + 1)%)) + (cos’ (1) /(T = D) (Iyl/(Iy] +3) + Dyl + 1.
Obviously

4
[f (¢, x1,x2) = f(t.y1,y2)] < ﬁlm — x|+ — B —yi =l

and

16
g (t, x1,x2) — g(t, y1,32)| < ﬁ| 1 — x|+ ﬁm .

Using the given values, we find that 2’ ~ —2.490241444 # 0. Further, the
assumptions of Theorem 7.8 are satisfied with m; = 2/27, my, = 4/121, n; =
4/225, n, = 16/507, M; =~ 2.584592457, M, ~ 1.020410145, M; =~
0.176932454, M, ~ 0.134734178, M5 ~ 3.202563777, Ms ~ 0.210181316,
My >~ 0.143988733, Mg ~ 0.030190073, B; = 0.638901916, C; ~ 0.354697504
and B; + C; ~ 0.99359942 < 1.

Hence, by Theorem 7.8, the problem (7.32) has a unique solution on [1/4, 2].

In the next result, we prove the existence of solutions for the problem (7.24) by
applying Leray-Schauder alternative.
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Let us set the constants

Ey = (M + M5)P; + (M3 + Mg)R, + M3 + M5,
Ey = (My + M5)Py + (M3 + Mg)Ry + My + Mg,

and
E* = max{l — E;,1—E}. (7.33)

Theorem 7.9 Assume that there exist real constants P;, R; > 0 (i = 1,2) and
Py > 0,Ry > O suchthat Vx; e R (i = 1,2),

[f(z,x1,x2)| < Po + Pi|x1| + P2|x2],

lg(t,x1,x2)| < Ro+ Ri|x1] + Ra|x2].

Further, it is assumed that
E1<1 andE2<l,

where E| and E; are given by (7.33). Then, there exists at least one solution for the
problem (7.24) on [a, T).

Proof First, we show that the operator 2 : XxY — X xY is completely continuous.
Notice that the operator 2 is continuous in view of the continuity of f and g.

Let U C X x Y be bounded. Then there exist positive constants L; and L, such
that

If@.x(@).y))] = L1, |8, x(1).y(0)] = Lo, V(x.y) € U.

Then, for any (x,y) € U, we have

21 e )l
(T— )"~ (q))
[2|T (g1 + p1)

< R (s, x(5), YO)T) + 1A [ 7 () |(T) +

x [( > 1Bt | (s x(5). v )E) + 1] Y 1Bl i 1x(5)] &)

J=1 j=1

A2l |72 [y(5) | (z2) + |oa| 1272 | g (s, X(S)s)’(sm(fz)) |21

+< D lenl a2 g (s x(5). ()| (i) + A2l D letil I 7 [y(s)] ()
i=1

i=1
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+A1 o1 [ 2 1x($)] (1) + |0y [re I T lf(wa(S),Y(S))KTl))|9§|}

Ay
< (|Q/| (lo1115251A6 + 12]1A16) +A4)L1 02112/ 1A12 + |251A14) L

|9/| (
[A2]4,
[£2]

AlA
+ (T oz + 421ais) + Paabas +

= MlLl +M2L2 + (Mz +M4) r.

(o2l 2] 11 + |9;|A13)) ]

In the same way, we can obtain
”92 (X, Y) ”

Ay
= (|Q,| (loal18251A12 + |£25|A14) +A8) L+ (lo1118251A6 + 1£2;]A16) Lo

|-Q'|
[A1]A,
[£2']

A|A
+ (T2 oalizians + 1221ai) + Vil +

= M5L| +M()L2 + (M7 +Mg) r.

(o 123145 + 12} |A15))

Thus, it follows from the above inequalities that the operator 2 is uniformly
bounded.

Next, we show that 2 is equicontinuous. Let #;,#, € [a, T] with t; < t,. Then,
we have

|21 (x,y)(t2) — 21 (x,y)(11)]
<RI P (s, x(5), () (12) — Re TP (s, x(5), y(5)) (11)]

FAllre I (1) = ol x(0)| + |2 = @) = (1 — @7

— I'(q1) S . 1+p1+y )
X [|9/| T +p1)] [(;w]w PV (5. x(5). y(5) I 6)

LD IBilrd T () 1(§) + loalul 72| g(s, x(5), y(5))|(72)

=1

+|/\zIIUz|H1”2|y(S)|(fz)) 1271+ (Z et 720 g (s, x(s), y()| (i)

i=1

+Aal D lealad Ty ()| (i) + o1 = I P (5, x(5), y(s) | (71)
i=1

+A1[lo1|ret”" |X(S)|(T1)) Iﬂﬁl}
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L, (/” [ +p1—1 +pi—1 " +pi—1
E (t2 _ s)‘ll P1 _ (tl _ s)‘ll P1 ]ds + (t2 _ s)fll P1 dS
I'(q1 +p1) \Ua 1

+1|}(;)|lr) (/a ! [(tz —S)Pl—l — (1 —s)Pl_l] ds +/t12(11 _s)pl_lds)

I'(q1) ]
|2 (q1 + p1)

+ ‘(,2 _ s)ql-i-m—l —(t — S)QI“I‘P]_I‘ |:
X[ (111182{1A15 + |A2]|0a[12{ A1 + [A2]18231A13 + |A1]|oy]1$251A5)

+ (12{1A16 + |01118231A6) L1 + (lo2]|2]|A12 + |$25]A14) Lz]-

Analogously, we can obtain

|25 (x,y)(t2) — 22(x, y) ()]
< |l P2 g (s, x(5), () (12) — I P2 g (s, x(s), y(5)) (11)]

t @Fp2—1 f @+p2—1
(log f) - (log f)
a a

& - X 2 +p2+pi )
| i pz)][( 47556056 1)

Al aPy(t2) — ulPy(t)| +

=

ALY Tl a2 ()| 0) + Lo o7 (s, (). ¥ () (1)

i=1

+A o g™ |x(s)|(r1)) 12, + (Z | BjlRed TP (s, x(5), y(5)) | (§7)

=1

LD 1B keI 1) + ol 72 g5, x(5). ()| (22)

Jj=1

+A2llo2]n 1™ Iy(S)I(rz)) IQQI}

L n P @t+p2—1 ¢ @t+p—1
< —= [ <1og —2) - (log i) ds

I'(q2+p2) \ Ja a a

n I a2+p2—1 AL f P @+p—1 f @+pa—1
+[ (lo 7) ds | + / (lo 7> — (10 7) ds

w P roo\J. |4 4

I f @Fpr—1 f @tp—1 f @+p2—1
+/ (log 7) ds | + (log 7) — (log 7)

f a a a

X[(|A1||U|||Q§|A5 + 1011124415 + [Aalloal1251A1 + [Aa]825]A15)

[ I'(q2) ]
|2|" (g2 + p2)

+ (1011125146 + 1241416) Lt + (1251414 + |0 ]| 24141) Lo |.
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Therefore, the operator 2(x,y) is equicontinuous, and hence it is completely
continuous.
Finally, it will be verified that the set & = {(x,y) € Xx Y|(x,y) = k2(x,y),0 <
k < 1}is bounded. Let (x,y) € &, (x,y) = k2(x,y). For any t € [a, T], we have

x(1) = k216, )(0),  y(@) = k22 (x, y)(2).

Then

x(®)]
= k21 (x. )|
< (Po + Prllxll + PallylDect® ¥71 (1)(T) + [|xl|[ 21| (1)(T)

(T —a)t =11 (q)
|2’ (q1 + p1)

(Po + Pyl + P2y Y Blect® T (1) (&)
j=1

FIlA LY Bl (DE) + Ro + Rillxl + RellyDloalual 72 (1)(z2)
j=1

+||y||I)tzIIOzIHI”Z(l)(fz))IQfI + ((Ro + Ri[x] + Rollyll) Y loul ul 4724 (1) ()

i=1

m
FlylAal Y el P (1) (1) + (Po + Py llx]l + PallylDlor et 7' (1)(xr)

i=1
+x[l|A1[|o et (1)(71)) |9§I]
< (Po + Pillx]l + P2llylDM1 + (Ro + Ryllx|| + R2llylDM> + ||Ix[|M3 + [|y[|Ma,
and

ly(@)]
= |k 22(x. ) (0]
< (Ro + Rulxll + RallylD et P2 (1)(T) + Iy l[|A2] > (1)(T)

(102 2)"™ I moo
R R R |y [927TP2TPI(] .
+ 2@+ 7) (Ro + Rillx]| + RallylD > letilas M)

i=1

m
FlylAal D leal a2 TP (i) + (Po + Py x| + PallylDlot [re” 7 (1)(x1)

i=1

n
+llxll| A1 (o1 | R ||x||(n>) 23] + ((Po + Prlxl + Pallyl) Y BRI (1) (&)
j=1
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n
FlllA] D 18RI (1)) + (Ro + Rillx]| + RallylDloa |l 72 (1)(x2)
j=1
+Az]lo2| 17 |y(S)|(f2)) |9f;|:|
< (Po + Pilxll + P2llylDMs + (Ro + Ri x|l + Rz2llyl)Me + [|x[|M7 + ||y[|Ms.
In consequence, we get
lxll < (Po + Pillxll + PallylDM1 + (Ro + Rullx|| + Rally DM + [lx]| M5 + ||y M4,
and
I¥Il = (Po + Prllxll + P2llyl)Ms + (Ro + Rillx[l + RollylDMs + [|x[|M7 + [|y]|Ms.
which imply that

lxll + lIyll < (M1 4+ Ms)Po + (M> + Ms)Ro
+[(M1 4+ Ms5)Py + (M> + Me)R1 + M3 + My]| x|
+[(My + Ms5)P, + (M + Mg)Ry + My + Mg]|ly]|.

Thus,

(M1 + Ms)Po + (M> + Mg)Ry
Gy < VT .

where E* is defined by (7.33). This proves that & is bounded. Thus, by Theorem 1.3,
the operator 2 has at least one fixed point. Hence the problem (7.24) has at least
one solution. The proof is complete. |

Example 7.5 Consider the system of Langevin equations with fractional coupled
integral conditions

1 V2 mlcos?(2mi)
23 (D89 — L) gy = Y2 TcosTEenl)
RL RL 9 x(7) > + 477 — 1) |x]
72|yl Iyl
t}sj—;)z ' (|y|+4 + 1)’ i
1 3 x| |x] 72 sin® y(f)
D7/8 D9/10 - ) = — . 1 -7
& & 10)0 =5 Yo 2 7Y T @
1 1 4
(3) =0 () = V2l Py (1) = Sl (5) + Zul Py @),
2 5l 2 2) 75
b4 2 (3w 3
“)=0, Sy =) =3k x =) =gt :
)’<2) 2)’(2) RLL X 5 Rl x (1)

3 st=2n (7.34)
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Here q = 2/3, q = 7/8, P11 = 8/9, p2 = 9/10, )t] = —1/9,
Ay = —-1/10,0, n = 2, m = 3, a = #/2, T = 2n, o = 1/5,
oy, = ﬁ/Z, 1 =7 1 = 3n/2, n = nw, i, = 7/2, g3 = 2m,

E[ = 3]‘[/2, %'2 =T, 0 = \/5, Oy = —1/2, o3 = 4/5, ,31 = 3, ,322—1,
P = 1/3’ P2 = 1/47 p3 = 1/5’ Y1 = 1/27 Y2 = 1/3’f(t’x’y) =
(v/2/2) + (x| 7? cos? 2m1)) / (4(T = 1)) + (72|31 / (57 —=)*) Iyl /(Iy|+4) + 1) and
g(t.x,y) = (V3/2)+ (@2 [x|/ Gr =) (1x|/ (x| +2) + 1) + (7 sin® y(1)) / (47 —1)?).
Obviously

V21 5
t9 5 E A T A o 5
If (2, x1, x2)| 5t 169|3€1| + 81|x2|

and

V3.6 4
lg(t, x1,x2)| < - + 2—5|X1| + 8—1|x2|~

With the given data, we find that 2’ ~ 24.06826232 # 0. Also, the assumptions
of Theorem 7.9 are satisfied with Py = \/5/2, P, = 1/169, P, = 5/81, Ry =
V3/2, R = 6/25, R, = 4/81, M, ~ 6.576589777, M, ~ 0.310859135, M; ~
0.452982744, M, ~ 0.577264904, Ms ~ 0.837414324, My >~ 0.606939903,
M; ~ 0.13791283, Mg ~ 0.051821087, E; ~ 0.85503718 < 1, E;, =~
0.61252556 < 1 and E* = 0.387474439. Thus all the conditions of Theorem 7.9
hold true and consequently by the conclusion of Theorem 7.9, the problem (7.34)
has at least one solution on [/2, 27].

7.5 Langevin Equations with Fractional Uncoupled Integral
Conditions

In this section, we study the following system

RLDT (R D 4 M) x(0) = f(1.x(0),¥(1), a=<t=<T,
uD® (yD” + Ao) y(1) = g(t,x(1),y(1)), a=<t=T,
x(a) =0, o1x(t1) = ZaiRLIpix(ni)a (7.35)

i=1

y(a) =0, 02y(12) = Y Binl"y(&).

j=1

Note that the parameters in (7.35) are the same as considered in (7.24).
Now we present an auxiliary lemma to define the solutions for the prob-
lem (7.35). We do not provide the proof as it is similar to that of Lemma 7.2.
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Lemma 7.3 (Auxiliary Lemma) For h € C([a,T],R), the solution of the
boundary value problem

LD (e DPY + M) x(t) = h(t), 0 <gqi,p1 <1,

-x(a) = Ov Ul-x(tl) = ZaiRLIpix(ni)v re [as T],

i=1

(7.36)

is equivalent to the integral equation

— 1+p1—1 m
xX(t) = gl R(E) = AireI” x(1) — W (

; JOTPrPip .
I (g1 + p1) ;am @)
—A1 ZaiRL1p1+pix(77i) + Morged? x(T1) — o1 TP A(T) |,
i=1
(7.37)
where

¥ = i ail"(g)(n: =) P70y gy (m — @)

0. 7.38
I 40140 Fatpm 70 0¥

i=1
7.5.1 Existence Results for Uncoupled Case
In view of Lemma 7.3, we define an operator #" : X x Y — X x Y by

H () (@) = (Ji/l(x,y)(t)) ’

o (x,y)(1)

where

(l‘ — a)‘]l+P]_11"(ql))

() O =RLIqlﬂ"f(s,x(s),y(s»(t)—AIRLIP'x(r)—( e

X ( Z aire PP (5, x(5), y(5)) (07) — Ag Z iR I” HPix(n;)

i=1 i=1

+A101p " x(11) — UlRL1q1+mf(S7x(s)»)’(s))(fl)),
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and

(log )" I'(q2)
I'(g2 + p2)

o, )(1) = gl tPg(s, x(5). y(8)) (1) — AonI”y(1) — <

x ( 3 Bl g (s, x(), ¥ () (E) — A2 3 Bl (&)

J=1 J=1

+ 202517y (12) — G212 (s, X(s), y(s))(rz)) ,

where
£ q@2+p2+y—1 _
= Z Bl (loe ) 021"(g2) (log 2)" "™ £0. (7.39)
h 1= — . .
= I'(g2+p2+ ) I'(g2 + p2)
For the sake of convenience, we set
A Xm: |oti| (i — @) +e A Xm: || (m; — @)t FPrte
= —’ 8 = 9
e I N Ty BT S T@tp et
NP2t N\ 22ty
pposo (102 %) L (log %)
19 = _ 20 = ,
o T2ty + 1) S l@t+pt+y+D)
and
A A1lA
My = == (|o1|Ag + Ag) + As, My = A1/, (lo1|As 4+ A17) + |A1]A3,
[¥1] ']
As |A2]A>
My = %] (loz2]A12 + Azo) + As, My = T (loa2|A11 4+ Aro) + [A2]|A7.
) )

Now, we state the existence and uniqueness result for the problem (7.35). The
proof of this result is similar to that of Theorem 7.8.

Theorem 7.10 Assume that f,g : [a,T] x R*> — R are continuous functions and
there exist positive constants im;, n;,i = 1,2 such that for allt € [a, T) and x;, y; € R,
i=1,2,

[ (2, x1,x0) = f(t.y1,2)| < mulxy = yi| + ma|x2 — y2

and

lg(t, x1,x2) — g(t,y1,¥2)| < nylxr — y1| + nalxa — yal.
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Then, the problem (7.35) has a unique solution on [a, T] if 61 + 8, < 1, where

81 = miMo + myMo + Mo,
8 = mMi + noMy + M.

Example 7.6 Consider the system of Langevin equation with fractional integral
conditions

1 iny(z
D!/ (RLD4/7 _ —)x(t) _ M ( |x| n 1) n sin y(7) ).

5(t+ 12)2 [x] +3 , 4t + 3)?
in"(wt) | |y|sin”(371) |yl 1
Do ( D3 4 ) _ |x| sin” (7 N . c1)+ L
e Y@ (5 +1)° 824102 \[yl+3 3

25
1 (1 1 1 V2 1
“x( =) = et (=) = X202 =),
5 (4) 2R x(s) 3 R 6

1 (1N V3 55 (1) 1 1 1 1
vz )= =ulVBy (<) = zulPPy (=), —<t=<-.
37 (3) 6 M\g) 3" M\9) 10="=2

(1) =>
(1) =0

(7.40)
Here g1 = 1/2, g = 7/9, p1 = 4/7, po = 1/3, Ay = —1/36, A, = 1/25,
n=2m=2a=1/10, T = 1/2, 0y = 1/5 o = 1/3, 1, = 1/4,
Ty, = 1/3, m = 1/5, N = 1/6, S] = 1/8, Ez = 1/9, o) = 1/2,

0 =—2/3, B =3/6. r=—1/3 pi = /4. pr = 1/2. n = V2/5. o =
3/5, f(t.x,y) = (Ix]/5(t + D*)(|x]/(|x] + 3) + 1) + (siny(1))/4(r + 3)*) — 2 and
g(t,x,y) = (x| sin®(70)/((5 + *) + (Iyl sin*(371))/ (82 + ) (Iyl/ Iy + 3) +
1) + (1/3). Clearly

[F (& x1,x2) = f(t, y1,y2)| < —|x1 — x| + —|y1 yal,

~ 135
and
2
lg(t, x1.x2) — g(t, y1.y2)| = mm 0|+ =y =yl
Then, the assumptions of Theorem 7.8 are satisfied with m; = 16/135,

my = 1/49, ny = 4/121 and n, = 2/75. Using the given values, we find that
¥, &~ —0.482501053 # 0, My ~ 2.160475289, M}y ~ 0.220957062, M|, ~
3.472362774, M, ~ 0.152255571, §; ~ 0.48152272, and 6, =~ 0.359640764.
Therefore, we have

81 + 6, ~ 0.841163484 < 1.
Hence, by Theorem 7.10, the problem (7.40) has a unique solution on [1/10, 1/2].

The second result, dealing with the existence of solutions for the problem (7.35),
is analogous to Theorem 7.9 and is stated below.
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Theorem 7.11 Assume that there exist real constants u;, v; > 0 (i = 1,2) and
uy > 0,v9 > 0 such that Vx; € R, (i = 1,2), we have

[f(t, x1,%2)| < uo + uylxi| + uz|xz],

lg(t, x1,x2)| < vo + vi|x1] + va]xz].
Further, it is assumed that
Lh<1and <1,
where
Ii = miMy + viMy + My and Iy = uyMg + vuoMyy + M)».

Then, the problem (7.35) has at least one solution on [a, T].

Proof Setting
lo = max{l — 1,1 — L},

the proof is similar to that of Theorem 7.9. So, we omit it. O

Example 7.7 Consider the system of Langevin equation with fractional integral
conditions

IXI sin(rt) Iyl Iyl
4/11 o/ 4
wb (’“D )x(” 2Tt Taay (lyl +4 y 1)’

5/8 7/8 . 1 _ 1 |x| ( |x| ) cos” y(?)
#D (”D + 15)y(t) =3t e+ M+s T Tty
x<\lf =0, %x (f ; If/z (ﬁ) %RLﬂ/“ \gi)

V2 _ 1 (~2)_2 o, V2 V2

<10 = ﬁY<3 —§H1 N7 ) 10 == <2

(7.41)

Here q; = 4/11, ¢o = 5/8, p1 = 9/11, p, = 7/8, A,y = 1/13,
Ay = 1/15, n = 2, m = 2, a = 2/10, T = 2, o1 = 1//5,
oo = YV 1 = V2/2, v = V2/3, m = V2/9. m = V2/5,

= V2/4. & = V2/7. a1 = 1/5, ay = —=1/7. B1 = 2/9. B = —1/6,
pr=~3/2, p2 =T/11, y1 = 4/9, y2 = 1/9, (1/2) + (|| sin' 7)) /(1 + 1)*) +
(Iyl/0(1 + )(Iyl/(ly| +4) + 1) and (1/3) + (|xI/((4 + ) (|xl /(|x] + 5) +
1) + (cos? y(£))/(9(2 + £)?). It is easy to obtain

100

25
If(t,x1,x)| < \/—)2 X1 10_|_«/§)2|xz|,
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120 100
lg(t. x1, %) < = + [xi| + 2],
3 (40 + V2)? 9(20 + +/2)?

and ¥, ~ —0.513415653 # 0. The assumptions of Theorem 7.9 are satisfied
with ug = 1/2, u; = 100/(30 4+ v2)%, uy, = 25/(10 + +/2)%, vy = 1/3,
v; = 120/(40 + v/2)2, v, = 100/(9(20 + ~/2)?), My =~ 1.733533545, My ~
0.160164397, M, ~ 5.002175405, My, ~ 0.366634632, [} ~ 0.685805692 <
1, L, ~ 0.820481732 < 1 and Iy = 0.314194309. Thus all the conditions of
Theorem 7.11 holds true and consequently there exists at least one solution on

[v/2/10, v/2].

7.6 Notes and Remarks

In this chapter, we have developed the existence theory for nonlinear Langevin
equations and inclusions involving Hadamard-Caputo type fractional derivatives
with nonlocal fractional integral conditions. Moreover, the existence and uniqueness
results for coupled systems of Riemann-Liouville and Hadamard type fractional
Langevin equations with fractional coupled and uncoupled integral conditions are
also obtained.

The results in this chapter are adapted from the papers [128, 155] and [149].



Chapter 8

Boundary Value Problems for Impulsive
Multi-Order Hadamard Fractional Differential
Equations

8.1 Introduction

Impulsive differential equations describe observed evolution processes of several
real world phenomena in a natural manner, and exhibit several new phenomena such
as noncontinuability and merging of solutions, rhythmical beating, etc. Dynamic
processes associated with sudden changes in their states are governed by impulsive
differential equations. The dynamical behavior of impulsive differential systems is
much more complex than the one concerning dynamical systems without impulse
effects. Many applied problems arising in control theory, population dynamics and
medicines have stimulated the recent development in this field. Dynamic systems
involving some continuous variable dynamic characteristics and certain reset maps
that generate impulsive switching among them are termed as impulsive hybrid
systems. Such systems are classified as impulsive differential systems [47, 105, 146],
sampled data or digital control systems [103, 167] and impulsive switched systems
[76, 79]. Hybrid systems find their applications in embedded control systems
interacting with the physical situation. Time and event-based behaviors are more
accurately described by hybrid models as such models help to face challenging
design requirements in the design of control systems. Examples include automotive
control [31, 42], mobile robotics [43], process industry [80], real-time software
verification [32], transportation systems [117, 168], manufacturing [138].

Fractional differential equations with impulse effects have also received consid-
erable attention as these equations are found to be of great importance to model
the physical problems experiencing abrupt/sudden changes at different instants.
Recently, a class of nonlinear fractional-order differential impulsive systems with
Hadamard derivative was discussed in [170, 171].

In this chapter, we concentrate on the study of boundary value problems of
impulsive multi-order Hadamard fractional differential equations equipped with
Hadamard type integral boundary conditions.

© Springer International Publishing AG 2017 263
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8.2 Boundary Value Problems for First Order Impulsive
Multi-Order Hadamard Fractional Differential
Equations

In this section, we are concerned with the existence of solutions for boundary value
problems of impulsive Hadamard fractional differential equations of the form

CEx() = f(1.x(1)), 1€ T Clto. T]. t # 1,
Ax([k) = (pk(x(tk)), k= 1, 2, e, My (81)
ax(to) + px(T) = ;) Vi 2 x(tig1).

where € 2!* is the Hadamard fractional derivative of Caputo type of order 0 < p; <
1 on intervals J; 1= (4, ti+1], k = 1,2,....m with Jy = [to,11], 0 <ty < 11 <
h < -+ <t < o0 <ty < tyy1 = T are the impulse points, J := [ty, T],
f:J xR — Ris a continuous function, ¢, € C(R,R), _# denote the Hadamard
fractional integral of order ¢; > 0,i = 0, 1, ..., m. The jump conditions are defined
by Ax(t;) = x(t,j') —x(t), x(t,j') =lim,_ o+ x(t%x + €), k= 1,2,3,...,m.

m .

i(log (fit1/1:))%

Lemma 8.1 Assume that ® = a+p— E M
pry (gi+1)

of the problem (8.1) is equivalent to the}ollowing integral equation:

= 0. Then the solution

k—1

x(t) = Z2F(e,x(1) + Z (/t,- Ftipr, x(ti1)) + <.0i+1(x(fi+1)))

i=0

1| & .
+5 |: Z Vi z?’+p'f(fi+1 L x(tipr)) — B I (T, x(T))

i=0
m—1

—B Z (ZVf (tp1. x(1i01)) + Qi1 (x(1i11))) (8.2)
i=0
m . ] : . i i—1 .

+ ; (%) ; (0 f 41, x(t41)) + @41 (X(t41))) i|

Proof The solution of first equation (8.1) on interval Jy can be written as

x(t) = Fi f(t.x(1) + xo,

where xy € R. For t € J;, by using the impulse condition Ax(t;) = ¢1(x(t1)), we
obtain
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x(t) = I x(0) + x(t)
= _Zi'ft.x(0) + F'f(t1,x(11)) + @1 (x(t1)) + xo.

Again for t € J,, we have
x(0) = FEf(tx(1) + x(5)
= JLftx(t) + 737 f (12, x(82)) + ¢2(x(t))
+ 0 f (11, x(1)) + ¢1(x(1) + Xo.
Repeating above process, for ¢ € J, we obtain

k—1

x(t) = _ZRf(x() + Z (A f (i1, x(tix1)) + Qi1 x(ti1)) + xo. (8.3)

i=0
Applying the boundary condition of (8.1), it follows that
ax(ty) + Bx(T) = (a + B)xo + B_7,,"f(T.x(T))

m—1

+B Z (A0 f (i1, x(ti11) + i1 (x(1i11)))

i=0
and

m
> v flx(tin)

i=0

” pitas — yillog (ti+1/1)
=3y I (i1 (1)) +xg Y T
2 ViZi (g1, x(tig1)) + Xo 2" T+

 (yi(log (ti11 /ti))qi) — i1
i (— I G x(640) + g ) ) |
; I'(gi+1) (Z( 1, x(t41 1 (x4 ))

which leads to

1| < .
Y=g |: > Vi J P (b1 x(t40)) — BIEF(T. X(T))
i=0

m—1

-p Z (S0 f (i1, x(141)) + @i (x(1i41)))

i=0
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i—1

m il : : o B
+§ (%) ; (/,j Y1, x(t41)) +(pj+1(x(tj+1))) ]

Replacing the constant xj in the Eq. (8.3) by its above value, we obtain (8.2). The
converse follows by direct computation. This completes the proof. O

Let PC(J, R) = {x : J - R; x(¢) is continuous everywhere except for some
t, at which x(tk ) and x(f;") exist and x(#,) = x(#%), k = 1,2,...,m}. Obviously,
PC(J,R) is a Banach space with the norm ||x|| = sup{|x(#)| : ¢ € J}. A function
x € PC(J,R) is called a solution of problem (8.1) if it satisfies (8.1).

We define an operator %" : PC(J,R) — PC(J,R) as

JHx(t)

k=1
= IPf(t,x(1) + Z (VP (tigr, x(ti1)) + @ig1 (x(1i51)))

i=0

—i—é |: Z yiftii+pif(ti+lvx(ti+1)) =B (T X))
i=0

m—1

—B Y (ATt x(ti41)) + Qi1 (X(ti41)))

i=0
" yvillog (ti1/t)" | { = ,
+ ; (%) (; (jtf"f(tj+lyx(l‘j+1)) + Qi+1 (x(tj+1))) >:|

Clearly, the problem (8.1) transforms to a fixed point problem x = % x.
Let us set the notations:

A = Xm: (log(ti1 /1))

—o (pi+1)

- Iy,I(log(t,+1/t, )q,+pz (10g(t,+1/t, )m
|@|%Z F(QH—P: 1) |IB|Z F(P:

Al

0T/ | N o (ot )|
Fpn+ 1) +Z}X£( iy + Fouth )

Ap=m+ = |:|/3| + Z |yl|(l](f'ig[:_11/)ti))qi:|~
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Theorem 8.1 Letf :J xR — Rand ¢ : R — R,k = 1,2,...,m be continuous
functions satisfying the following conditions:

(8.1.1) |f(t,x) —f(t,y)| < Li|lx—y|, Vteld, L; >0, x,yeR;
(8.1.2) |ox(w) — (V)| < Lplu—wv|, L, > 0, forallu,v e R, Vk=1,2,...,m

If LiAy + LyAy < 1, then the problem (8.1) has a unique solution on J.

Proof We define a closed ball B, = {x € PC(J,R) : ||x| < r}, where r > (M A +
M2A2)(1 — LA — L2A2)_1, with M = Sup;¢; If(t, 0)|, M, = Sup;¢; lf(ti-l-l’ O)l
and M, = sup,¢; |pir1(0)],i =1,2,...,m— 1.

We will show that %" : B, — B,. For any x € B,, we have

| x(1)]
k=1
< I (1, x(0)] + Z (P (tigr, x(tig1)) | + |‘/’i+1(x(fi+1))|)
i=0

g [Z W2 i (60| + 11 22 (T x(D))]

m—1

+B] Z (/tfilf(ti-i-lvx(li-i-l)” + |(pi+1(x(ti+1))|)

i=0

i—1

< i|(log (fi41/1:))% ;
+Z('V'(°g“+‘/’”) S (AP (s x| + Lo (510 ]) ]
i=1 Jj=0

I'gi+1)

PF (1, x(0) = £, 0] + (2 0
+ 2 (AU i1, XC5.1) = Fa41,0)] + [ 11, 0)])
g1 (x(141)) = 41 O)] + g1 0)])
g [Z Vil Z8 A i 3(05210) = F 1, 0)] + f 1, 0]
HBIZL(F (T K(T) = F(T.0)] + (T, 0)])
+16] io (A2 i1 x(040) = F G311, 0)] + (a1, 0)])

g1 (CE511)) = 0141 0)] + 19141 0)])
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m

. i—1
+Z(|%|(log(tz+1/t,))q)(Z(/ (If tig1, x(ti+1)) — f(ti1,0)]
i=1

I(gi+1) =

Hf 41, 0 + @j+1 (x(t+1)) — 941 (0)] + |‘Pj+l(0)|))j|

(log(t/t)y"* (log(ti1/1;))"
< (Lir+M)—=LE ot D + XO: %(Llr +M1)W + (Lor +M2)%

= . )\ tpi -
|;||:Z|Vz|( M M+|ﬂ|(Llr+M1)w

i= F(qt+pt+1) F(Pm‘f‘l)
m—1 pi
+|l3|; (L1F+M1)% +(L2V+M2)}

" il Gog(ig /)% [ (log(tj41/1))
+Z{( g+ )(J;@MM” o+ D

)

< (LA + LyAy)r + (M AL+ My Ap) < r.

Thus £ B, C B,. Next, we will show that ¢ is a contraction mapping. For x,y €
B,, we get

| x(1) — A y(0)]
k—1

szlf(f, x(0) —f(t,y@®)| + Z (/zf’i [f (tir 1, x(tik ) — i1, Y(xi1))]

5
1 (1)) = g1 01)] )

o [Zw% G 2000 = 1, 3)
HBLAL YT HD) ~FT (D)
B (A 01,3000 1.5

i=0
+ |@it1(x(tit1)) — Qi1 OV (ti1))])
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" ( lyil(log (ti-i-l/ti))q[) ( — Pj
+ ( P\t 5(01)) — f (G0 351)]
; I'gi+1) p ( 1, X(t41 +1, Yt

=0
H@jt1 (x(t+1)) — 91 (E+1))] )]
< (LA + Ly Ay)|x —y].

Since (L1 Ay + L, A;) < 1, the operator JZ is a contraction. Hence % has a unique
fixed point on B,. Therefore the problem (8.1) has a unique solution on J. O

Example 8.1 Consider the following boundary value problem for impulsive multi-
order Hadamard fractional differential equation of the form

k41 _ 2 2
£+%@_ 10— ¢ (WW+”),reﬁ§§q\ML

| 8(t|2+24) lx(®)] + 3

sin |x(#) ke + 1

Ax(t) = —————, = L k=1,2,...,7,
) = 5078 T T

245i42
%x(l) + gx (88—;_1) Z(l _ e—l)j( 2+4r+3)x(t+1)

i=0

(8.4)

Here o = 3/2,8 = 4/5m = T,pr = (k+ 1)/(k+2), % = 1 —e7*,

= (k> + 5k +2)/(k* 4+ 4k + 3) for k = 0, 1, ..., 7. From the given information,

we ﬁnd that @ ~ 2.0961081, A; ~ 3.280445 and Az 13.552466. The functions
f and ¢y given by

o 10-72 (x| +2)? _ sin|x|
109 = 5aram (s ) 49 Kiog

satisfy the conditions:

If(t.x) —f(t.y)| < —|x—y| and |gi(x) — @i(y)] = 2—0|x ylo Ve=1.2,....7.
Thus, we get Ly = 2/25,L, = 1/20and Lj A; + L, A & 0.940059 < 1. Therefore
the problem (8.1) has a unique solution on [1, (8¢ + 1)/9] due to Theorem 8.1.

Theorem 8.2 Let f and ¢, k = 1,2, ..., m, be continuous functions. Assume that
there are two positive real numbers Ny and N such that:

(8.2.1) |f(t,x)| <N, and |pr(x)] <No,forteJ, xeRandk=1,2,...,m

Then, the problem (8.1) has at least one solution on J.
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Proof Define a ball B, = {x € PC(J,R) : ||x| < w}. The proof is divided into
three steps.

Step 1. We will show that the operator .#  (introduced after Lemma 8.1) is
continuous. To prove this, we let {x,} be a sequence in PC(J, R) such that x,, — x
as n — oo. Then we have

| xa (1) — A x(1)]
i [t xa(0) — £ (2.x(1))]

k—1

+ Z (I (i1, %0 (ti1)) = f(Ei1, X(ti1) |

i=0

+ |@it1 (G (ti1) — Qi1 (x(tir-1))])

|:Z |yl|jt,l+p' [f i1, X0 (ti1)) — f (i1, X(ti1))|

|45|
+IBl 20" (T, xu(T)) — £ (T, x(T))]
m—1
FIBIY (AT i1 xa(ti1)) = f (i1, x(10)|
i=0

+|§0z+l(xn(tl+l)) (Pz+1(x(fz+l))|)
1

- 1 ] 1 1 ai = i
+y (Iy l(ﬁfq(tﬂ/t i ) < ( D Gns X (G41)) = f G X(@40) |
i=1 g

=0
H@j1 (n(tjr1)) — ‘/’j+1(x(tj+1))|)):|'

Using the continuity of f and ¢ for k = 1,2, ..., m, we have [f(t, x,) — f(t, x)|
and |¢i(x,) — @r(x)| vanish as n — oo. Therefore ||.# x, — 2Zx|| — 0 which
yields the continuity of the operator ¢ .

Step 2. The operator .#" maps bounded set into bounded set. For each x € B,,
we have

[l x|

k—1

(2, x ()] + Z (/tiilf(ti+lvx(ti+l))| + i1 (x(ti41))])

i=0
W [Z Vil A G x| + 1817 (T (T)|

m—1

+IBI Z (A0 i1 x(tig )] + Qi1 (x(ti1))])

i=0
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i |y,-|<1og(ri+1/ri>>qf)("‘1 ”
+ ( (AP (1)
; (g +1) Z +1 +1

J=0

+|<P_/‘+1(x(fj+1))|))]
< A|N; + AN,

which yields boundedness of .# B,,.
Step 3.  The operator .#” maps bounded set into equicontinuous set. Let 7y, 7, €
(tx, tx+1) foreach k = 0,1,2, ..., m. Then we have

| (1) = A x(@)| < 27 (0, x(1) = (12, x(2) .

Continuity of x and f imply that # x(7;) — # x(1,) as t; — 1. Consequently
 is completely continuous by Azeld-Ascoli’s Theorem.

LetV={x€eB, : u¥x=xforu € (0,1)}. Forallx € V, x = ux, we
have

|x| < [L|<%/X| < ANy + AsN,.

Hence V is bounded. By Theorem 1.3, the problem (8.1) has at least one solution
onlJ. a

Example 8.2 Consider the following boundary value problem for impulsive multi-
order Hadamard fractional differential equations of the form

. —t
c g Cioasatny o Q= Dlog(x@l+1) T,
x(1) ol 2 . te [2, rc] \ ().
Ax(ty) = e %% cos(kx(ty)) + ek/4 sin(kx(7)). =29 k=1,2,..8,

[5i—4]
—e 7% () + e Fxi2m) = Z( 2)/(2 +1)/t( i )x(t,+1)
(85)

Herear = —¢ 2, = e m = 8, pi = log(LiZ) (1/(+ D). yi = (~2) (K +
1), gx = |5k—4|/(k+1) fork =0,1,...,8 Wefind that ® ~ —1.422922 # 0. The
functions f(z,x) = (2 —e™") log(|x| + 1)/(|x| +2) —2and g (x) = e */* cos(kx) +
e*/* sin(kx) are bounded as

[F(t,x)] < 4and |ge(x)] < Ve + et

Hence the assumption (8.2.1) of Theorem 8.2 holds. Therefore the problem (8.2)
has at least one solution on [7/2, 27].
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Theorem 8.3 Assume that:
. (%)
m —_—

‘
83.0) im " —0 ana i

x—>0 X x—>0 X

=0 fork=12,....m

Then, the problem (8.1) has at least one solution on J.
Proof From (8.3.1), choosing € = 1/(A; + A,), there exist constants §;,8, € RT
such that

If (¢, x)| < €|x| where |x| < §; and |p(x)| < €|x| where |x| < §,.

Next, we define an open ball 2 = {u € PC(J,R) : |[lul| < max{é,é}}. By
Theorem 8.2, the operator J#" : 2 — PC(J,R) is completely continuous. For any
x € 052, we have

|2 x|
k=1
< ZXf(e.x(0)] + Z (A i1 x(@ig )] + Qi1 (x(ti1))])
i=0

1|« .
+@[Z il 2 g x ()| + [BLZE (T, x(T))
i=0

m—1
+|BI Z (A0 G, @ ))] 4 @i 1 (x(ti1))])

i=0

- i|(log (ti41/1:)" - ;
+§Xm?§ffw)ZXﬁwmmmmHmmmmm]
i=1 !

j=0
< (Are + Are)lx|| = [|x].

It follows from Theorem 1.5 case (ii) that the problem (8.1) has at least one solution

onlJ. O

Example 8.3 Consider the following boundary value problem for impulsive multi-
order Hadamard fractional differential equations:

2k+-2 x(t) (3 ) — x(t 4
co\FHa) i = ¢ @gﬁﬂxo{ e ?ﬂ\ML
k3 k+8
Ax(ty) = (%) = L, k=1,2,...,9, (8.6)

log(|x(t)| + 23’ 6
4 3 L D
V3x (5) + 3 3) = Z (i2 T 2) e X (fi41),

i=0
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Herea = V3,8 =3/5,m=9,px =2k + 1)/(,k2 + 1), ye = (k> + 1)/ (K> + 2),
qr = arctan(k) fork =0, 1,...,9. We find that @ =~ 2.003684 # 0. The functions
f(t,x) = e*(sinx —x)/(2t + 1) and @i (x) = kx?/ log(|x| + 2) satisfy

1, ev i
lim ) _ gim (w—l)zo

=0 X x—02t+ 1 X
and
kx2
im &Y i B o vk=1.2.....9,
>0 X x—0 log(|x| + 2)

Thus the condition (8.3.1) of Theorem 8.3 holds. Therefore, we conclude that the
problem (8.3) has at least one solution on [4/3, 3].

Theorem 8.4 Let f and ¢ fork = 1,2,...,m, be continuous functions satisfying
the inequalities:

(8.4.1) |[f(t,x)| < alx|+b, Y(t,x) e JIXR and |g(x)| < c|x|+d, Vxe Rk =
1,...,m, where constants a,c > 0 and b,d > 0.

Then the problem (8.1) has at least one solution on J.

Proof Define a unit ball as & = {x € PC(J,R) : |lx| < 1}. It is straightforward
to show that the operator % : & — PC(J,R) is completely continuous. Suppose
that there is x* € 00. Then we choose A = (a + ¢)A; + (b + d)A; + 1 such
that Z x* = Ax*. By taking the norm of both sides: ||.Z'x*|| = [|Ax*||, we obtain
I 1Ix* || = Allx*||. Then, we have

[ = sup [ x|

llxll=1

k=1
= sup { P (2, x(0)] + Z (PN tier o x(tip )| + |@ig1 (e(ti41))])

llxll=1 i=0

g [Z Vil ZE P G x|+ 1BLZL (T ()

m—1

+18] Z (PN tier o ()| + |@ig1 (x(ti41)))

i=0

i—1

- |yl (lOg (tz+l/tz))q )
+3 IVl s1x(40)]
Z I'gi+1) 12; +1 +1

i=1

+ |(pj+l (X(tj+l))|)) ]

<@+o)Ai+b+d)A, =1 -1,
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which contradicts ||J£7|| > A. Hence the assumptions of Theorem 1.4 hold.
Therefore the problem (8.1) has at least one solution on J.

Example 8.4 Consider the following boundary value problem for impulsive multi-
order Hadamard fractional differential equations:

/1—sin? 3
7 fosin (kH)x(t) = P sinx(f) + tx(f) cosx(t) + 2, t¢€ |:§ 3] \ {#},

3
Ax(ty) = kx(t;) — log (|x(tk)| + g) , =320 =12, ..., 10,
10

4 (3\ 3 - (5
g.x (E) — Zx(3) = ; E-{-_)ljti(_ * )x(ti-i-l)'

8.7)

Herea = 4/3,8 = =3/4,m = 10, py = /1 —sin*(k + 1), e = (=D)*/(k + 1),
qr = 3k +2)/(2k + 3), for k = 0,1,...,10. Using the given data, we find that
@ ~ 0.605503 # 0. The functions f(¢,x) = ¢*/sinx + txcosx + 2 and ¢(x) =
kx —log(|x| 4+ (3/5)) satisfy the inequalities

f(t.0)] < tlx] + 2+ 77) < 3x| + 2 + &),

and

3 3
)] = ik + 1)+ = 11 + 5.

Therefore (8.4.1) holds. According to Theorem 8.4, the problem (8.7) has at least
one solution on [3/2, 3].

8.3 On Caputo-Hadamard Type Fractional Impulsive
Boundary Value Problems with Nonlinear Fractional
Integral Conditions

In this section, we investigate a nonlinear boundary value problem of impulsive
hybrid multi-orders Caputo-Hadamard fractional differential equation with nonlin-
ear integral boundary conditions given by

COEx(t) = F@6.x(0), 1€ [0, TIN At 12},
Ax(lk) =(pk(x(tk)), k=1,2,...,m,

ASx(tk) = (p,f(x(tk)), k= 1,2,...,m,

x(t0) = Zy e x),  x(T) = _7"h(n,x(n)),

(8.8)
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where C@gk is the Caputo-Hadamard fractional derivative of order 1 < o < 2 on
intervals J; := ([k,lk_H],k =1,2,...,mwithJy = [[(),tl],o <lh<h<ph<---<
ty < -+ <ty < tyy1 = T are the impulse points, J := [ty, T], f, g, h : J xR —
R are continuous functions, ¢, (p,f € C(R,R), /Jf is the Hadamard fractional
integral of order ¢ > 0, ¢ € {u,v}, ¢ € {ty, 1}, € € Jopand n € J,,. The jump
conditions are defined by Ax(t;) = x(tk )—x(tk) Abx(ty) = Sx(t,j') 8x(ty), x(tk )=
lim, o+ x(tx +€), k= 1,2,3,...,m,and § := t(d/dt) is the delta derivative.

LetJ™ = J\{t1,t2, ..., tm} and PC(J, R) = {x:J — R : x(¢) is continuous
everywhere except for some f; at which x(t ) and x(z,) exist and x(7;7) = x(),
k = 1,2,...,m}, and PC'(J,R) = {x € PC(UJ,R) : X\(¢) is continuous
everywhere except for some #; at which x (tk ) and x(r;7) exist and x'(f;) = x'(#),
k = 1,2,...,m}. PC(J,R) and PC'(J,R) are Banach spaces with the norms
lxllpc = sup{|x(t)|; t € J} and ||x||per = max{||x|pc, ||[X]|pc} respectively. Let
E = PC'(J,R) N C*>(J~,R). A function x € E is called a solution of problem (8.8)
if it satisfies (8.8).

Lemma 8.2 The solution x € E of the problem (8.8) is equivalent to the integral
equation:

0 = ) + Y (102 2) (™ o) + 47 )

j=1

Og (t/10)
0g(T/10)

~ 70 8E.x(€) — Ff (T, x(T)) (8.9)

tm

—Z(log )( UG x0) + ¢ (x(5))

k
+ (I @ X)) + 0i((@) + [/,m (n,x(m))
j=1

j=1
=2 (A5 Gx(@) + ‘Pj(x(tj))):| + i 8(E.x(§)).

j=1

Proof Applying the Hadamard fractional integral of order oy on the fractional
differential equation in (8.8) and using Lemma 1.2, we get

x(1) = Z.°f(t,x(1)) + c1 log (é) + ¢, t € Jp, (8.10)

where ¢; = 6x(#p) and ¢; = x(#p). From (8.10), it follows that

x(t) = _FOf(,x(1) + e 1og( ) te
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and
8x(t) = Z27 f (11, x(01)) + ci.

Now, applying the Hadamard fractional integral of order o; on the Hadamard
equation in (8.8) for ¢ € J; and using the jump conditions at the point #;, we get

X)) = FEf(1x() + 5x(r+>log( ) +x(eF)
= (D)
+ [fgo—lf(n,x(tl)) + ¢ (x(n)) + c1] log (i) (8.11)

1t
+| o+ o) + o (1) 4.
0
which, on taking delta-derivative, yields

8x(r) = 57 f(e.x(1) + Z507 f(t.x(t) + of (1) + 1.

Next, for ¢t € J,, by direct computation and using the property log a+log b = log ab
for a, b > 0, we obtain

x(1) = Z2f(t.x() + 8x(3) log ( ) + x(t)

= Ep(0) + log (é)

x [ Z207 f(t,x(0) + of () + 2307 f (12, x(12)) + 95 (6(12)) + 1]
+ I (2.x(12)) + 9a(x(12)) + _ZEf (01, x(1)) + 1 (x(11))

+ log (%) [ om 1f(t1,x(t|)) + ¢, (x(l‘1))] + ¢y log ( ) + o
= I f(t.x®) + (F 7 f (.x(12)) + 93 (x(12)) log (é)

+ ( Dt() 1f(tl,x(t1))+(p1 (x(t])))log( ) + ¢ log (%)
+ I (10.x(0) + 02(x(02) + F5°f (t1.x(1) + @1 (x(11) + €.
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Repeating the above process, for each ¢ € J;, we get

x(1) = 7, (1. x(0)

k
+3 (102 (£)) (A Gt + 47 0)
j=1 /

k
+ 3 U050 + o)+ 1og( ) fo.  ®12)
Using the given integral boundary conditions in (8.12), we find that

1
log(T/t )

S D) s )
=1 !

[/zm (. x(n)) — 786, x(§)) — Zmf (T.x(T))

= (A G xw) + go,(x(r,)))}
j=1
 8(E.x(£)).

Substituting the above values of ¢; and ¢, in (8.12), we obtain the solution (8.9).
Conversely, it can easily be shown by direct computation that the integral equa-
tion (8.9) satisfies the problem (8.8). This completes the proof. |

In view of Lemma 8.2, we define an operator .2 : E — E by

Hx0 = FEICA0) + Y (102 £) (A 1053000 + 7 0)

j=1

Z ik . x(1) + ¢x(1)))

log (t/1)) [,
+W[f;mh(fhx(n)) (8.13)

@) -3 (1o ) (A5 0500 + 70

Jj=1

m v lo
—;( i f(t,,X(tJ))Jr(ﬂ,(X(tj)))} g((T//t))/to 8(&. x(£)).
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8.3.1 Existence Result via Krasnoselskii-Zabreiko’s Fixed
Point Theorem

In this section, we present our first existence result for the problem (8.8) which relies
on Krasnoselskii-Zabreiko’s fixed point theorem (Theorem 1.10).

Theorem 8.5 Assume that:

(8.5.1) the function f : J x R — R is continuous such that f(t,0) # 0 for some
t € J and that

fim 2% .

x| >0 X

(8.5.2) the functions g,h : J x R — R and qu,qu* R—>R,j=1,2,...,m, are
continuous and there exist positive constants A, B, C and D such that

(. x())] = Alx(D)]. [~ x(0)| < Blx(@)].
o x| = Clx(®].  |gi(x()| = Dlx()]. ¥j = 1.2,....m.
Then, the problem (8.8) has at least one solution on J if

. 1— 4,
Amar 1= max |AO] < ——, (8.14)

where

_ (log(T/1)))% (log(T /1)) *"
A _j=1s,LzlP.,m{ (o + 1) } * I'(ay+1)

= [ (og(/5-)) =~ - (T/g) !
+2j:1 (F(Olj—l +1) ° li-1/1 )
_ Uog(n/tm)" (log(§/1))" "
A=A T +1) +BF(M+1) +2C10g(]_[;"=1tj)+2ml)'

Proof Let {x,} be a sequence converging to x. For ¢ € J, we have

|- A x (1) = x(0)|
= (6 xn(0) — f(2.x(2)) ]

k
+y (log °) ( S Ga) — £l 3] + 197 () — o (x(tj)>|)
=1 !
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k
iy (/;*51 550 5)) — X0 + s () — g5 x(5) |)
=1

log(t/to)
log(T /1)

279

[/f,ilh(n»xn(n)) — h(n,x(mM)| + 25" If (T, xu(T)) = f(T, x(T))|

Y (log ,Z) (/,,‘.’:1‘1 (550 0)) — £t 20 + L9 (5 (1)) — (x(t,->>|)
=1 !

3 (A 000 =056 + o6~ w6 |
=1

log(T/1)
log(T'/10)

185, xa(8)) — g(§.x(§)).

As n — oo, by continuity of functions in hypotheses (8.5.1) and (8.5.2), the right
hand side of the above inequality converges to zero. Hence, we deduce that the

operator ¥  is continuous.

Given r > 0, we define N = {x € E : ||x|| < r}, |If]| := IIlnllax If (, x(z))]. Then
x| <r

we have

| x(0)]
< J ke x(0)]

k
3 (102 2) (A wx) + 1o )
=1 !

k
Y ( S x()] + |<p,-(x(r,»>)|)
=1

IOg(t/t())
log(T' /1)

+ 3 (e ) (A 2001+ b o)
= j

[/ZZIh(n,x(n))l + 2 (T, x(T))|

m

+ ( o @ x(@6)] + ij(x(tj))|)} + log(T/1)
=1

log(T'/1)

_[wo/mp T (log(rj/t,--l))"‘"“)
JECHIC S

J=1

o 18, x(©))]
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+i ( (log(t;/ti-1)) %~ ) . Gog(T/t,))*

=1 F(a]—l + 1) F(am + 1)

d (log(s/5-1) 5™ | ¢ [ og(i/-) ™
+;( r)( e )+ ;(r(a,j#l) )]”f”

(log(n/tm))” log(§/10) "
ot Al + XY I3 ||+2Z(1og )||¢j ||+2]21:||(p/||

< Af|If|| + Aar,

which yields |Zx|| < Ai|f|| + Aar. Therefore, 2 (N) is uniformly bounded.
Next, we claim that £ (N) is equicontinuous. Let 71, 7, € J, with 1, < 7y. Then,
we obtain
| x(11) — H ()]
(T x(1) — f(r2, x(12)) |
k
+2
j=1

log(71 /1)  log(r2/1o)
log(T/t))  log(T/ty)

log——
lj

4 () + ] (x(rj»‘

U/z:,h(n,xw)) + 2 (T, x(T))

+ Z (log ) ' B (. x() + (pj*(x(tj))‘

m

2

log(T/ n)  log(T/m)
log(T/t))  log(T/to)

It is clear that |Zx(t;) — Zx(1;)] — 0 as 1y — 1. Consequently 2 (N) is
relatively compact in E.

Next, we consider the problem (8.8) as a linear problem by setting f(z, x(¢t)) =
A(t)x(t). Using Lemma 8.2, we define the operator .Z by

Syl (@G x(1) + 9i(x(t) H

‘ S0 8(6.x(6)) ‘

k
230 = Fgtiono + Y (10g7 ) (A5 4000 + 47 0)
=1 !
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log (¢/t0)
log(T'/1)

k
3 (A5 M) + ) + | ks
=1

— FEADXT) =Y (log ) (A5 20)x0) + 7 (x(5)
=1

-SSR + <p,-(x<r,»>))] +

Jj=1

log(T'/1)
log(T'/1o)

8. x(§)).

We claim that 1 is not an eigenvalue of the operator .Z. If 1 is an eigenvalue of .Z,
then we get

x|l = sup |- Zx(®)]
teJ

k
< Su?{ RYONGIESY (logﬁ) (2™ )] + g (1))
te j=1 ]

k
o st .
I + o s
+; fj— [A@)x(5)| + |g;( (lj))|) + log(T/1) /m| (n,x(m)]
# NI (1on ) (A5 <) + o7 )
=1 j
m aj—1 10g(T/t) u
I + o eteux
# L A R0+ i) | + s Al (s)>|}

(log(T/0:)*™ | log(tj/tj—1 )) aj—1—1
= [HTJH) * ;( t.) (Tl—l) )

(log(/6 )™\ . (log(T /1))
+Z(F(a, D) )+ Flam+ 1)

= (log(;/1;—1)) =~
;( t') ( F((j)‘l Jl) )

((1og(tj/tj 1))~ l):|l llxll + (og(n/t))”

+ I + 1) r(v+1)

J

k k
log(£/19) ( T)
+ B|x|| + 2 log — ) C||x|| + 2 D||x
Foerny P22 (e ) et 23201

Allx]

= (Amax A1 + A2 [lx]| < [|x]].
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which is a contradiction. Therefore, 1 is not an eigenvalue of the operator .. Next,
we will show that | J#'x — Zx|/||x|| vanish as ||x|| — oco. For t € J, we have

|2 x(0) — ZLx(@)] = F*If (1. x(1)) — A(D)x(1)]

+Z(log D) (. e = 201

Z( S (3(0) — A(r,-)x(rm)

log(t/19)
log(T/ 1)

+Z(log o) (7 i o = 21

[/:Z’” (T, (x(T)) = A(T)x(T)]

+ Z (/ G (1 () — x(r,»)x(rm)]
F(t.x(0)

a ( X0
3 () (5

aj—1 f(t" (x(t))
* Z ( ( )

log(t/10) [ g (f(T’ (7))
log(T/10) L7 ™ x(T)

o2 (o) (2

IA

- x(r)' |x(r)|)

f(@, (x(5))
x(7)

— A1)

1) )

- m)' |x(T)|)

1) )

)

— A1)

[, (1))
x(1)

—AMy)

o (P82 )]
j=1 gy
This means that
| #x— Lol _ [0
TR “’)‘
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k t 04'_1—1 )
+ log — P
X (e ) (4
+ Z (i [P =20

10g(t/fo) [ an [T ((T))
log(T /1) x(T)

= T aj—1—1
5 (o) (s
Jj=1

i (/a, 1 'f(t]v (x(t,)) —A(lj)

x(1;)

[, (x())

x(4)

A(T)‘

—A)

tm

f(@, (x(5))

)}

— M)

)

f("-x)
X

Letting ||lx]] — oo implies

— )&‘ — 0. Thus, we obtain

|2 x— Lx||
Ill—>oo [lx]
Consequently, by Theorem 1.10, the problem (8.8) has at least one nontrivial
solution on J. |

Example 8.5 Consider the following impulsive Caputo-Hadamard fractional differ-
ential equations

u () (k0 + 2\ 1
C@ .X(t) - 7(1+[)3 (|X(l)|+l) +§7 te[lve]\{tk}’
a2 sin f 8.15
Ax(ty) 4x* (1) log WA ( )
Abx(n) = klx(#)] ( cos(x(e))  sin(x(%)) )
¢ 5720+ 1) \5(xt)| + 1) 2/5(x(t)] + 1)

subject to nonlinear fractional integral conditions

x(1) = g7 (I+e 2 x(1+e7?) with g(t,x) = 5t2 il
v ’ § 20 + 1

and

5/ T(e+1) [T(e+1) _ 11 sin(2x+e~2)-3
, th h(t,x)= ,
x(e)=7, | oen ( o\ 0 with A(z, x) 22144
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where o = 3/(19— k)(21+k/70+4,/(25 027+ k)/91, t = 1+

((e — Dk/10) fork = 1,2,

Herem =9, =1,T=e,u=7/3,E =1 +e 2= 5/2,n="7(e+ 1)/10, the
functions f(t, x(¢)) is defined by

x|
fo) = st (B +ge relid\in,

and the impulse functions ¢ (x), ¢/ (x) at impulse moments # for k = 1,2,...,9,
are given by

sin(1 + ((e — 1)k/10))
9/ Ix| + 1

*() = — KA (cosx _ sinx )
= S A+ G+ D 25+ 1))

or(x) = 4x? log (

It is clear that the function f (¢, x) is continuous and f(¢,0) = 1/2. Dividing f (¢, x)

by x, we have
t,x t 1 W
f@.x) = 1+ + —.
X 7(1 +1)3 x| + 1 2x

Hence
f(t,x) et
lim = .
lx|—o0 X 7(1 + )3
t
Setting A(t) = —7(11 PR we get Apax = 0.057530. Furthermore, we have

lg(, X)I<—IXI |h(z, X)|<—IXI (7 (X)I< x|, lei ()| = —IXI j=12,....9.

—50

Letting A = 15/4,B = 22/7,C = 3/50 and D = 2/81, we obtain A; = 1.584506
and A; = 0.896396. Since (1 — Aj)/A; = 0.065385 > A, therefore, by
theorem 8.5, the problem (8.15) has at least one solution on [1, e].

8.3.2 Existence Result via Sadovskii’s Fixed Point Theorem

Here, we establish an existence result for the problem (8.8) by using Sadovskii’s
fixed point theorem (Theorem 1.13).
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To apply Theorem 1.13, we decompose the operator .2 (defined by (8.13)) into
the sum of two operators as

Jx(t) = Hx(t) + Jox(t), teld,
where
k
Jax(t) = Z0f (8 x(@) + Z (log ;) ( /f’f " 1 @, x(1)) + ¢ (x(tj)))
=1 !

k

# 20 (0D + )~ el sy
+ i: (10% %) ( TG w) + o (x(t;)))
Z
+i( v f (W(f;))+¢,(x(t/)))} (8.16)
Z
and
Aarlt) = 12 )+ oS Al ) @)

Theorem 8.6 Letf,g,h:J xR — Rand ¢, ¢* : R — R be continuous functions.
Further, it is assumed that:

(8.6.1) there exist positive constants Ly, L,, L3 such that

lf(t’x) _f(t»y)l = L1|x_y|v V(t7x)’(t»y) € JXR7
loj() — ;| < Lalx—yl,  VxyeR, Vj=12,....m
|(pj*(x) — (pj*(y)l < Lz|lx —y|, Vx,yeR, Vj=12,....,m

(8.6.2) there are functions ki, k, € C(J,R), and nondecreasing functions Y1, V, :
RT — RY such that

lg(t. 0| = ki)Y (lx). [ 0] < k@Y (llxlD),  V(.x) € JxR.

Then the problem (8.8) has at least one solution on J, provided that $21 < 1, where

2, =

ol s {(Iog(T/rj))“f§ . (og(T/t,)™
Woiciaom | T+ 1) T(cm+1)

(log(t;/1;—1)) ™" (T/1;) %™ m
+ ZZ ( F@o+1) -logm ) i|+2L2 log (m) +2mlL;.
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Proof Define the ball B, = {x € E; |x| < p} and set M = sup|f(z,0)|, N =

teJ

max [¢;"(0)|, P = max |¢;(0)| foreachj = 1,2,...,m,

_ (log(T/r,-»“f% (1og(T/1,)) ™
QZ‘M[, f‘ipm{ Fe+1) | " Tn+1)

(log(t;/ti—1)) '~ ! (T/1;) %
+2Z <F(af 1+ o 1/t ) }

Tm
2N log [ = | + 2mP,
g(n,:ltj)

and

||k1||w(p)(o 1) ||kz||w<p)( g)“
g + og .

ST T+ 1) TF(u+1)

m

§25 4+ §23

— W84

Letx € B, with p > . Then, we have

A0
k
< strasoy+ 3 (1oe L) (A5 G0 + lof o))
=1 !
k

+ Y (A5 G xm)] + e @))]) +

Jj=1

log (#/t0)
log(T'/1)

[ o (T (1))

m

+ 3 (e ) (2 o] + 1o} )
7

J=1

3 (A <o)+ o)) ]
=1
< ZOH(FEx0) —£2.0)] + [ O))

+Z(log )( SN xw) = £ 6,001 + £ (5,0

+lg (1) — ¢ O] + |} (0)])
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k
+ 37 (A5 U ) — £33, 0] + 1 (5. 00D
j=1

+g () — 91(0)] + I O)])

log (t/1)
log(T /1)

[/tf,”‘(lf(T,x(T)) —f(T,0)| + [/(T.0)])
+ ; (10g g) ( TN x(@) —£(5.0)] + (5. 0)])
+|A<p,-* (1) — ¢ (O] + lgf (O)I)
+ Zmlz ( o (@, X)) — £(5,0)] + 1 (5, 0)])
p

o) — 50 + I 01 |

_ | (og(T/5))™ n (log(T /1)) “"
T+ 1) T+ 1)

log(;/ti—1)) ™"~
+22( t)(T]_l) (L1p+M)+(L2,O+N))

+2 Z ((log(tj/tj_l))% ](Llp +M) + (Lsp + P))}

I'aj—1 +1)
= 91,0 + §2,,
and
1 1
520 = O A O+ oo A6 X))

_lklve) (o 0\, el (o EV'
S To+0 (10%) MVTES), (IOgE) =&

From the preceding inequalities, it follows that

| x(@)| = [Ax(1) + Aox(1)] < [Ax(@)| + |Hx(@)] < $1p + 22 + $23,

which leads to 2" (B,) C B,.

287
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Now, we will show that %] is contractive and .%; is compact. Let {x,} be a
sequence in B,. For t € J, we have

[ Hixa(t) = Hix(O] = 13 (0) = £0x(0)])
+ Zkl: (IOg é) (%ﬁ?'_l(lf(tj,xfz(fj)) — [ (G, x(1))I)
o
g} (1)) = 07 (x(1)])
+ Z (A2 @3 6) = £ X6

gy (8)) — @i (x(6))])

log (#/10)
log(T' /1)

'y (log ;) (™ U 0) — £ )
=1 !

[ n(|F(T, x,(T)) — £(T, x(T))))

g Gn6)) — ¢} (1))

+ Z (A2 (.35 = £, 35D D 1)

gy (5)) — wj(X(tj))l)}
< 2%, — .

As x, — x, we get || #x, — #1x|| = 0. Therefore, /7] is continuous. Moreover %]
is also contractive, since for x,y € B,, we get

[#1x = Jy| < $21x—yl.

with 2, < 1.

Next, we claim that J%; is compact. By the hypothesis (8.6.2), we deduce that
5 is uniformly bounded. To show that .#; is equicontinuous, let t;, 7, € J. For
X € B, we have

log(t1/12)
log(7'/10)

[ 5a(e2) — Hantr)] = | X + T (6|
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which tends to zero as 1y — 1. Thus, by Arzeld-Ascoli Theorem, it follows that
¥, is compact. Hence the operator 7~ satisfies the hypotheses of Theorem 1.13.
Therefore #" is a condensing operator on B,. Thus, by Theorem 1.13, the
problem (8.8) has at least one solution on J. O

Example 8.6 Consider the impulsive Caputo-Hadamard fractional differential
equations:

Cx() = o (xz(t)ﬂx(t)uogezt), re [ e]\ fad,

SO;e’ |x(1)| + log ¢
Ax(ty) =W, k=1.2... .8 (8.18)
k
M) = @0,

30 lx(®)| + 9
supplemented with the nonlinear fractional integral conditions:

t|.x| + eCOSI

i — |x|zsin’z,

) = () it 500 =

and

e'(|x]+1) cost .
x(e) /11(1)//132 (14/15,)6(614/15)) with h(t ) 5 +|x|+]+\/§smt,

where o = (10k + 16)/(6k + 9) and 1 = e®+9/12 fork =1,2,...,8.
Herem =8,tg =e'/*, T=e,u=9/56 =" v =10/3, 5 = ¥/,

cost (x> + |x|loge*t cos?(kx/9)
ft.x) = , s pr(x) = ——,
—e |x| + log ¢ 9%k
(—1)k 2+ 10]x]
* -~ 7 = -
%) = S e

2
= b8 Cleary [0 — 6] < Sl @ — O] = b

yl, |<pj () — ¢; ) < —|x yl|, and function g, & satisfy the inequalities

¢ 1
(9] < e(xll + 1) and |G, x| < X2 ( )

llxll +
2 [lxl

Choosing k; = e, kp = (+/€¢ + 4)/2 and setting ¥ (x) = e(x + 1) and ¥, (7) =
x + (1/x), we have that ¥ and v, are nondecreasing positive functions on R™.
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Therefore, the hypothesis (8.6.2) is satisfied. With L; = 3/20, L, =2/81 and L3 =
1/27, we find that £2; &~ 0.982119 < 1. Thus, all the conditions of Theorem 1.13
hold and hence the problem (8.18) has at least one solution on [¢!/4, e].

8.3.3 Existence Result via O’Regan’s Fixed Point Theorem

This section is devoted to the third existence result for the problem (8.8), which is

based on a fixed point theorem due to O’Regan (Theorem 1.6).
For the sake of convenience, we introduce the notations:

m

r _ (log(n/tm))" | (log(&/10))*
Hjm=1 I

+ 2mdy, W3 = .
) 2= e ) T(u+1)

Y1 = |[bl| Ay, ¥ = 24, 10g<

Theorem 8.7 Letf,g.h:J xR — Rand ¢, ¢f R —> Rfork=1,2,...,mbe
continuous functions. Assume that:

(8.7.1) there exists a nonnegative function b € C(J, [0, 00)) and a nondecreasing
Sfunction ¥ : [0, 00) — (0, 00) such that
F@. 0l < b@Oy(lxl), V(.x)€JxR;
(8.7.2) there exist positive constants dy and d, such that

lof (x(D))| < di and |g;(x(1))| < da for j=1,2,....m;

(8.7.3) there exist positive constants ci,cy and continuous functions ¢, :
[0, 00) — [0, 00) such that

¢1(|x) < cilx| and |g(t,x) — g(t,y)| < p1(llx =),
$2(1x]) < calx| and |h(t,x) — h(t,y)| < ¢2([lx = yl).

forallt € Jand x,y € R;

r 1
8.74) su > , where k = max{cy, ¢}, | =
( ) I‘E(O,Eo) Uy (r) + ¥ + 1Y 1 —«¥s ter.e2)

sup{|g(z,0)|, |A(z,0)|} and k¥3 < 1.
teJ

Then the boundary value problem (8.8) has at least one solution on J.

Proof Consider the operator J# : E — E defined by (8.13) in the form:

Hx(t) = Hx(1) + Jox(1), e,
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where 7| and %, are respectively defined by (8.16) and (8.17). From (8.7.4), there
exists a number w > 0 such that

w 1
> .
U (w) + ¥, + ¥, 1 —kYs

Let B, = {x € E : |x|| < w}. We need to show that %] is continuous and
completely continuous. First, we show that %] (B,,) is bounded. For any x € B,,
we have

(log(T /1)) (log (T /tm))*"
'l + 1) i+ 'y +1)

(L)
+22(10 ,)( Wl

(og (/1)
+2Z(r( e S ||<lel)}

(0g(T/1)% |, (log(T/1,))""
= ”f”L?‘;?.,m% T i1 ) Ten D

(log(t;/ti—1)) " (T/t)
+2Z(r(“z 1+ 1) '10gfj—l/tj )]

+2mlgjl +2(mlog T~ log [ T ) g I
j=1

| 1x()| < [ 71l

Thus 7] is uniformly bounded. Let 7y, 7, € J such that 7; < 7,. Then

|1 x(72) — i x(x1)]
= | 2 (r2, x(11) = 22 f (71, x(71)|

+

k
) (1og 7) (A7 P 6x6) + 67 (6
]

J=1

_Z (log ) ( ot; - 1 ft,x(t) + ¢; (x(tj))) ‘

IOg (T /t ) A - T ®j—1— *
" m[ o'l (T”“(T)”J; (1"% ;j) (A a0+ (1))
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3 (5 6 (5) + g0@)) ]

j=1
_log (/1) [ nf (T, x(T)) + i (log ) (A P x@) + 07 (1)) )
log(T/10) L7 ™ (R A

m

+2 (A (f17x(fj))+¢/(X(fj)))]‘
1

=

O[jl

U (12, x(2) — f (1, x(11)| + Z f(.x(1)) + NE))

log (71/12)
log(T'/1o)

“f (T, x(T))+Z(‘°g )(/ﬁ" U x0) 7 (x(0) )

j=1

+ 3 (A F.xw) + @) |,
j=1

which tends to zero as 7, — 7;. Hence .#] is equicontinuous. Hence, it follows by

Arzeld-Ascoli Theorem that .#] (B,,) is compact and hence completely continuous.

Moreover, as in Theorem 8.5, we can show that the operator ~#] is continuous.
Next, we show that .%%; is a nonlinear contraction. For x,y € B,,, we have

(log(n/tm))" (log(§/10))"

| ox(t) — Hay(t)| < O d1([lx =y + m%(”x—ym
<( (log(n/tw))” (log(E/to))’“‘) =yl
“\"Tro+rn TTr@E+n Y

< kWsllx —yll.
Setting ¢ (x) = k¥;3x, note that ¢(0) = 0 and ¢(x) = kW¥3x < x for x > 0. Thus

[#2x — JEayll < ¢ (llx = ylD.

which implies that .’%; is a nonlinear contraction.
For any x € B,,, we have

lg(t, x)| < |g(t,x) — g(t,0)| + |g(z,0)] < ¢1(llx]) + |g(£,0)| < 1w + sup lg(z,0)],

and

|h(t,x)| < coo + sup |A(z,0)].
el
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Thus, letting k = max{cy, ¢} and [ = sup{|g(¢, 0)|, |a(z, 0)|}, we obtain
1€l

(log(n/tm))" n (log(§/10))"
I'v+1) T(w+1)

| Aox|| < [ } (kew + ).

Therefore, both .#;(B,,) and .#5(B,,) are bounded, which implies the boundedness
of # (By).

Finally, we show that the case (C2) in Theorem 1.6 does not occur. To this end,
let us suppose that the condition (C2) holds. This implies that there exists A € (0, 1)
and x € 0B, such that x = A% x. So, we have ||x|| = w and

Ix(1)] = AlAx(t) + Jax(1)|
< |x(1)| + |ax(t)]

Gonrr, Gonr/)
= 'V”Lf‘z‘ ..... A P an ) Tt

(log(t;/ti-1)) '~ (T/t) %
+2Z (F(%Jl j+ 1) ‘log tj—l/]tj ):|

+2mlgjll + 2(mlog T —10g [T 1) g I
j=1
. [aog(n/rm))v . (og(¢/1))"
T'v+1) T(u+1)
= Wy(w) + ¥ + (ko + D)W,

:| (ko + 1)

which, on taking the supremum for all ¢ € J, gives
x| = Y1 ¢ (©) + ¥ + (ko + D¥5.
In consequence, we get

0] 1
<
() +W¥ + 13— 1 -k

which contradicts (8.7.4). Thus the operators #] and J#; satisfy all the conditions
of Theorem 1.6. Hence, the operator J# has at least one fixed point on B,,, which is
a solution of the problem (8.8). This completes the proof. O

Example 8.7 Consider the following problem of impulsive Caputo-Hadamard frac-
tional differential equations
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1 (t3 + 7 COS(X(t))) (7|x(t)| + 9), te BS] \ {t}

C@ak t - —
=3\ 5 a1 0] 21 + ¢
1) — 152
Ax(tk) :W, k=1,2,...,7,

Adx(ty) =zsin & cos ]ﬂ , k=1,2,...,7,

and the nonlinear fractional integral conditions

— ¢Sy arctan(|x|/3)

7 : ©
)= () =2

x(5) = /537/32/128 (9 x(g)) with A(z, x)
B (10sin2(m/15)) (|x|2 + 12|x|) 1

3
7

+

(21 + 3)2 | + 11 2t

where oy = (4 —e ¥?)(2)and fp =271 + 22 + 2% —2>* fork =1,2,...,7.

Herem =7, =3/2,T=5u=5/3,§=7/4,v=3/2,n=9/2,
1 (2 +cosx\ (7|x| +9
f(tvx) = 35 5
27 \ 5+ 4t + |x| 21 + ¢t

and the impulsive functions ¢ (x), @ (x) at impulse moments # fork = 1,2

are defined by

e — 15k> " 2 . X km
or(x) = EETR o (x) = gSlIl(9x+5)COS (7)

9,

For (t,x) € [3/2,5] x R, we have

2+ [|x 3
If %) < m ( + 5) .

Letb € C([3/2,5],R) and ¢ : [0, 00) — (0, 0co0) be defined by

\]IUJ

P+
= m and V¥(x) =

U-’|><
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Obviously b is a nonnegative function and ¥ is a nondecreasing function. The
impulsive functions ¢;" and ¢ are bounded by constants d; = 2/45 and d, = 1/15
respectively. Selecting ¢y, ¢, : [0, 00) — [0, 00) as
9 10
d1(x) = 1 arctan (;—C) , Par(x) = ﬁx,

and noting that ¢ (x) < (3/11)x, we obtain

9 xX—y
o000 = ¢.9)] = 7 arctan (E520) = g1y,
10 sl
ht,x) —ht Y| < —|(|lx—y]| + ———— | < x—ylD.
00 = 1090 = 3¢ (=31 + oy ) < e =)

Thus, we deduce that ||b| = 2/9,d, = 2/45,d, = 1/15,¢; = 3/11 and ¢, =
10/33. Furthermore, ¥, = 0.944897, ¥, = 0.029739 and ¥; = 1.065922, « =
10/33, and I = 1/2. With the given data, the hypothesis (8.7.4) is satisfied for
r > 9.141700. Therefore, the problem (8.19) has at least one solution on [3/2, 5] by
the conclusion of Theorem 8.7.

8.4 Notes and Remarks

In this chapter, we studied boundary value problems for first and second order
impulsive multi-order Hadamard fractional differential equations supplemented
with nonlinear fractional integral conditions by using classical fixed point theorems.
The results in this chapter are based on the papers [176] and [177].



Chapter 9

Initial and Boundary Value Problems for Hybrid
Hadamard Fractional Differential Equations
and Inclusions

9.1 Introduction

This chapter is devoted to the study of initial and boundary value problems of hybrid
fractional differential equations and inclusions involving Hadamard derivative and
integral. Several existence results for local and nonlocal cases of the given problems
are obtained.

By hybrid differential equation, we mean that the terms in the equation are
perturbed either linearly or quadratically or through the combination of first and
second types. Perturbation taking place in form of the sum or difference of terms in
an equation is called linear. On the other hand, if the equation is perturbed through
the product or quotient of the terms in it, then it is called quadratic perturbation. So
the study of hybrid differential equation is more general and covers several dynamic
systems as particular cases.

9.2 Initial Value Problems for Hybrid Hadamard Fractional
Differential Equations

In this section, we study the existence of solutions for an initial value problem of
hybrid fractional differential equations of Hadamard type given by

o .X(t) )
D* | ——— ) = ¢g(t, , 1<t=<T, 0 <1,
" (f(t,X(t)) sex@), 1=t= o= 9.1)

HJl_ax(t)|t=l =1,

© Springer International Publishing AG 2017 297
B. Ahmad et al., Hadamard-Type Fractional Differential Equations,
Inclusions and Inequalities, DOI 10.1007/978-3-319-52141-1_9
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where gy D% is the Hadamard fractional derivative, f € C([1,7T] x R,R \ {0}) and
g:C([1,T] x R,R), yzJ“ is the Hadamard fractional integral and n € R.
From Theorem 2.1, we have:

Lemma 9.1 Giveny € C([1, T], R), the solution of initial value problem

n (f(txgctzt))) =y, 1=t=<T.0<a=1,

al "X (D)) =1 = 1,

9.2)

is given by

x(t):f(t,x(t))( (log 1)1 + —— r(log—)a e, ) te[l,T).

() I(a)

Let X = C([1,T],R) denote the Banach space of all continuous real valued
functions defined on [1, 7] with the norm ||x|| = sup{|x(#)] : ¢t € [1,T]}. For
t € [1,T], we define x,(t) = (log?)"x(¢),r > 0. Let C.([1,T],R) be the space
of all continuous functions x such that x, € C([1, T], R) which is indeed a Banach
space endowed with the norm [[x||c = sup{(log #)"|x(r)| : t € [1, T]}.

Let0 < y < 1and Cy,105[1, T] denote the weighted space of continuous functions
defined by

Criogll. T1 = {g(1) : (log ) (1) € C[L T]. [I¥llc,s, = lllog )" ()l c} -

In the following, we denote [|y||c,,, by [[¥llc-
Theorem 9.1 Assume that:

(9.1.1) the functionf : [1, T]xR — R\ {0} is bounded (i.e. |f(t,x)| < K, VY(t,x) €
[1,T] x R), continuous and there exists a bounded function ¢, with bound
@, such that ¢(t) > 0, a.e. t € [1,T] and

If(t,x) —f(t,y)| < dp@)|x(t) —y()|, a.e. te[l,T] andforall x,y € R;

(9.1.2) there exist a function p € C([1,T),RT) and a continuous nondecreasing
Sfunction $2 : [0, 00) — (0, 00) such that

lg(t.x@)] = p(O2(lIxllc). (t.x) € [1.T] X R;

(9.1.3) there exists a number r > 0 such that

- [n] S
r>K |:F( ) + (log T) Fat D ||p||9(r)} , 9.3)
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and

|77| I—a 1
1911 | s + oe D' sl 2) | < 1

Then the initial value problem (9.1) has at least one solution on [1, T].
Proof Define a subset S of X as

S={xeX:|xllc <r},

where r satisfies the inequality (9.3).
Clearly S is closed, convex and bounded subset of the Banach space X.
By Lemma 9.1, the initial value problem (9.1) is equivalent to the integral equation

nn=faam(r(gmywl

“ 8. x) OD
F( )/ g ) te[l,T].

Define two operators <7 : X — X by
A x(t) = f(t,x(t), t € [1,T], 9.5)

and #: S — X by

t

a1 a1 g(s, X(S))
%x(t)_T)(l o 1) +m (1og ) Eds e (LT 96)

Then x = @/x%x. We shall show that the operators &/ and A satisfy all the
conditions of Theorem 1.7. For the sake of clarity, we split the proof into a sequence
of steps.

Step 1.  We first show that < is a Lipschitz on X, i.e., (a) of Theorem 1.7 holds.
Let x,y € X. Then, by (9.1.1), we have

|(log 1) ~*.a7x(t) — (log 1) ~*.a/y(1)| = (log 1)' ~*|f (1, x(1)) — f (1, y(1))]
< ¢(1)(log 1) ~*|x(1) — y(1)|
=< l¢lllx=yle.

for all ¢ € [1, T]. Taking the supremum over the interval [1, 7], we obtain

x—yllc < llglllx—ylc.

for all x,y € X. So .« is a Lipschitz on X with Lipschitz constant ||¢||.
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Step 2.  The operator P is completely continuous on S, i.e., (b) of Theorem 1.7
holds.

First, we show that £ is continuous on S. Let {x,} be a sequence in S converging
to a point x € S. Then, by Lebesque dominated convergence theorem, we have

lim (log 1)~ Bx, (1)
n—>oo

o n me LT\ g(s, xa(s))

_.n_ ]—Ol E a—1 nl_i)rgog(ssxn(s))
= s + oz / = —
_ -« a=1 g(s,x(s))

= m + (log 1) / Tds

(log 1) = Zx(1),

for all + € [1, T]. This shows that Z is continuous os S. It is enough to show that
Z(S) is a uniformly bounded and equicontinuous set in X. First, we note that

— - )" Lg(s.a(s)
(log)'™*|8x(0)| = | 77 - )—i-(logt) @ / :
|n| 1—a 01 1 1
< iy P12 0D s / N Ly
__nl e 1 .
= T T0ee D ma Ty Pl ),

for all ¢+ € [1, T]. Taking supremum over the interval [1, T], the above inequality
becomes

1
L ogry 120,

1%xle = T(@) T@+1)

for all x € S. This shows that £ is uniformly bounded on S.
Next, we show that Z is an equicontinuous set in X. Let 7,1, € [1,T] with
71 < 7o and x € S. Then, we have

|(log 1)~ (%x)(12) — (log 71)'~* (%) (11)]

_ lel2e)
- I

a—1 1

19 a—1 1 7]
(log ;)™ (log 2) —ds — / (log 7)™ (log 2) —ds
s s 1 s s

1
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||p||‘Q(r) o 1—a 7:2 a1 11—« Tl o=l 1
< W /1 (log o) (log ?) — (log 1) (log ?) ;ds
pll$2(r) [TZ - el 1
—_— 1 “(log — —ds|.
T | ), e (e ) e

Obviously the right hand side of the above inequality tends to zero, independently
of x € S as 1, — 11 — 0. Therefore, it follows from the Arzela-Ascoli Theorem that
A is a completely continuous operator on S.

Step 3.  Next, we show that hypothesis (c) of Theorem 1.7 is satisfied. Let x € X
and y € S be arbitrary elements such that x = .&/x%y. Then, we have
(log 1)'~“|x(1)|
= (log)' |/ x(1)||By(1)|

=1 o(s, y(s
= [f(t, x(0)] (m+(lg)1°‘1,()[ ’ 8( sy()) )|

I—a “ ' g(s. y(s) y(S))
SK(m““ F()/ s )‘
< k| 4 og = pl20) L

[T "% W r( ) s
. [ ) 1
=K F( )+(1 e T)'~ m||ﬁ||9(7)]~

Taking supremum for # € [1, T], we obtain

|77| 1—a 1
llxllc §K|:I“( ) + (log T) m||l7||9(r):| <r,

that is, x € S.
Step 4. Now, we show that Mk < 1, that is, (d) of Theorem 1.7 holds.
This is obvious by (9.1.4), since, we have M = ||B(S)|| = sup{||ZBx| : x € S} <
i ~ 1120 and k = 9],

—_— + .
I' (o) (log 7)’ I'a+1)

Thus all the conditions of Theorem 1.7 are satisfied and hence the operator
equation x = o/x%x has a solution in S. In consequence, the problem (9.1) has
a solution on [1, T]. This completes the proof. |
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Example 9.1 Consider the hybrid initial value problem

2 (]%) =g(t.x), 1<t<e,

aV2x())=1 = 1,

9.7)

where

1 1 1 1
F00) = s (sinan™ 4 7/2), 80,9 = o (Lel 4 peosxd o),

5w 4(1 + |x])
. Jr 7
Ob ly |f(t,x)| < — =K, < W
viously [f(r.x)| < 2 19 = 5= le(e0] = 35 (gl + 7). We
1 7
choose ||p|| = o , () = gr + T By the condition (9.1.3), it is found that
261

119 = <r< (40071 87). Clearly all the conditions of Theorem 9.1 are satisfied.

Hence, by the conclusion of Theorem 9.1, it follows that the problem (9.7) has a
solution on [1, ¢].

9.3 Fractional Hybrid Differential Inclusions
of Hadamard Type

In this section, we investigate the existence of solutions for the following inclusion
problem

13
HD"‘( x(@) )eF(l,x(t)), l<i<T, 0<a<l,

f(t,x(®)) (9.8)

wl " x(@)]i=1 = 1,
where F : [1,T] x R - Z(R) is a multivalued map, & (R) is the family of all
nonempty subsets of R.
Theorem 9.2 Assume that (9.1.1) holds. In addition, we suppose that:

(9.2.1) F : [1,T] x R — P (R) is L'-Carathéodory and has nonempty compact
and convex values;

I ( )1@
(9.2.2) 2||¢||( T )—l—( ogT) I )/ . ds| < 1.

Then the boundary value problem (9.8) has at least one solution on [1, T].
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Proof Transform the problem (9.8) into a fixed point problem. Consider the operator
N X — P(X) defined by

N (x) = (log*~"!

()

1 d £\ u(s)
—_— log - —=ds |, Skx( -
+F(a) 1 <ogs) . v) NS p.g

Now, we define two operators 27| : X — X by

heX: h() = f(t,x(t))(

x(t) = f(1,x(@0), t € [1.T], 9.9)
and B : X > Z(X) by

By(x) ={heC(1,T],R) : h(t) = (logr)*~!

()

F() ( ) —ds vV E Sk -

(9.10)

Observe that A (x) = o/jx%)x. We shall show that the operators 7 and %) satisfy
all the conditions of Theorem 1.8. For the sake of convenience, we split the proof
into several steps.

Step 1. & is a Lipschitz on X, i.e., (a) of Theorem 1.8 holds.
This was proved in Step 1 of Theorem 9.1.

Step 2.  The multivalued operator %, is compact and upper semicontinuous on X,
i.e., (b) of Theorem 1.8 holds.

First, we show that %, has convex values. Let uj,uy € %;x. Then there are
vy, U2 € Sp such that

‘ o a—1 ; ' f“_l v;(s)
) = s tog) ™ + s [ log 1) s

i=1,2, t €[1,T]. Forany 0 € [0, 1], we have

Our(t) + (1 — O)us(t) = FZa) (log 7)™
e i) + (L= O)va)]
+T) (10g ) P

with Qv (1) +(1—0)v,(r) € F(¢,x(r)) forall ¢t € [1, T]. Hence Ou; (£) +(1—0)uy(¢) €
Py1x and consequently A x is convex for each x € X. As a result %, defines a
multivalued operator &, : X — ., (X).
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Next, we show that % maps bounded sets into bounded sets in X. To see this,
let Q be a bounded set in X. Then there exists a real number » > 0 such that ||x| ¢ <
r,Yx € Q.

Now, for each h € A x, there exists a v € Sg, such that

h(t) =

o ! e u(s)
T )(logt) I+ m (10g —) —d

Then for each ¢ € [1, T}, using (9.2.2), we have

(log 1) ~*|h(1)|

n =y ] ! e u(s)
Inl w1 11 g(s)
1

_ Il LT T\ ()
< m+( g T)! I’(a)/; (log ;) Tds.

This further implies that

ey (SA
e < 1L+ gog 1y s [ s,

and so A (X) is uniformly bounded.

Next, we show that %8, maps bounded sets into equicontinuous sets. Let Q be,
as above, a bounded set and & € Z)x for some x € Q. Then there exists a v € Sp
such that

h(r) = T )(ogt)"‘ l+m (log ) ()ds re[l,T].

Then, for any 71, 7, € [1, T] with t; < 1, we have
|(log 72)' % (#1%)(12) — (log 71)' ™ (%1x) (1)

/ (log 72)' “(lo Tz)a 1g(s)d _/ (log 71)!~ ”‘(10 T )a lg(:)
/1[1 |:(10g Tz}l_a <10g %>a_1 - (10g -51)1_"‘ (log %)a_l :| (%S)ds

© a—1
+ / (log 1))@ (log 2) &ds
- s s

=
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Obviously the right hand side of the above inequality tends to zero, independently
of x € Q as 1, — 11 — 0. Therefore it follows by the Arzeld-Ascoli Theorem that
B : X —> F(X) is completely continuous.

In our next step, we show that %, is upper semicontinuous. By Lemma 1.1, %,
will be upper semicontinuous if we prove that it has a closed graph, since %, is
already shown to be completely continuous.

Thus, in our next step, we show that %, has a closed graph. Let x, — X, h, €
P (x,) and h, — hs. Then, we need to show that h, € %,. Associated with 4, €
P\ (xn), there exists v, € Sr, such that for each ¢ € [1, T,

a1 L e ()
ha(t) = F()( og 1) +F() (1og ) s

Thus it suffices to show that there exists v« € Sg,, such that for each ¢ € [1, T,

o ! YL vy (s)
h«(t) = Fa )(log Ne ! 4 m (10g —) . ds.

Let us consider the linear operator © : L'([1, T],R) — X given by

o ! 1\ u(s)
fH@(v)(t)—m(lg) ‘+m (1g_) —ds.
Observe that
I (®) — ()] = F()/ M L0, asn— oo,

Thus, it follows by Lemma 1.2 that ® o Sg, is a closed graph operator. Further,
we have h,(f) € ©(Sr,,). Since x,, — x, therefore, we have

t

o N 0k (s)
ha(t) = F()(lg) ‘+m (1og-) s

for some vy € S, .
As a result, we have that the operator %, is compact and upper semicontinuous
operator on X.

Step 3.  Now, we show that 2Mk < 1, i.e., (¢) of Theorem 1.8 holds.
This is obvious by (9 2. 3) since, we have M = ||B(X)|| = sup{|%Bi1x : x € X} <

In| o ‘g() B
I )+( F( )/ ( ) —dsand k = ||¢|.

Thus all the conditions of Theorem 1.8 are satlsﬁed and a direct application of
this theorem yields that either the conclusion (i) or the conclusion (ii) holds. We
show that the conclusion (ii) is not possible.
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Let & = {u € X|Au € AuPBu, A > 1}andu € & be arbitrary. Then, we have
for A > 1, Au(t) € @Au(t)PBu(t). Further, there exists v € S, such that for any
A > 1, we have

t a—1
u(t) = A7l ”(f)](ﬁ(l ogn“~" + m (1og -) v(ss) )

for all ¢ € [1, T]. In consequence, we have

(log ) ~*Ju()| = A~ | (¢, u(n)| x

- “ ! IU(S)I
(F()Jr(lgt) F()/ )
I - ( )‘@
(r()“g) ra ] s @

- n] T g(s)
—K<F_oe)+“ T )/ ( E) T‘“)'

I/\

Thus

In] . e )
lullc <K <1_,( )—i-(log T)'~ I )/ ( ) Tds) =M.

Thus the condition (ii) of Theorem 1.8 does not hold. Therefore the operator
equation x = .&7|xJ8x and consequently problem (9.8) has a solution on [1, 7. This
completes the proof. O

Example 9.2 Consider the hybrid initial value inclusion problem

t
uD'/? (ﬁ) e F(t,x(r)), 1 <t<e,
f(t,x)
©.11)
2
HJI/ZX(I)|,:1 = 55
here £(6x) = [ aretans| + ——— and F(tx) = [
where f(f,x) = |—— arctanx an X)) = |,
2 V1t 15(1x° + 1)

lsinx] 2] dT Clearly $(f) = »logs with ¢ = » (th
N et =, an = e. Clear = -1lo i = = (the
7(|sinx| +1) 7 ¢ y p ORI W 2

3
condition (9.2.1) holds) and ||F(t,x)|| = sup{|y| : y € F(t,x)} < 5= g, x eR.
With the given values, the condition (9.2.3) is clearly satisfied, that is,
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In| _a “le@s) )
2”¢”(r( )+( ogT)' e )/ ( ) Tds)_0.859717<1.

In consequence, the conclusion of Theorem 9.2 applies to the problem (9.11).
9.4 Boundary Value Problems for Hybrid Fractional
Differential Equations and Inclusions of Hadamard Type

In this section, we study the existence of solutions of a boundary value problem of
hybrid fractional differential equations of Hadamard type given by

Da( x(1) ):g(t,x(t)), l<t<e l<ac=<2,

f(t,x(1) 9.12)

x(1) =0, x(e) =0,

where D is the Hadamard fractional derivative, f € C([1,¢] x R,R \ {0}) and
g€ C([1,e] xR, R).

For 1 < o < 2,8 > 0, we also investigate the case when the hybrid part of
Hadamard type fractional differential equation contains Hadamard integral for a
given nonlinear function. Precisely, we consider the following problem:

x(1)
’ (log z)f’“ h(s. x(s)) .
N

N

DOé

g(t,x(r), 1 <t <e,

1
f@.x(1) + TR .
x(1) =0, x(e) =0,
(9.13)
where f, h € C([1, ¢] x R, R) are such that
t(log )q_l h(s, x(s))

(l‘ x(t)) + m

For some recent work on hybrid fractional differential equations, we refer to
[34, 77, 186] and the references cited therein.

ds #0, V(t,x) € [l,e] xR.

Lemma 9.2 Giveny € C([1, €], R), the boundary value problem

o (féfff?m) =)0, L<i<e ©.14)
x(1) = x(e) = 0,
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is equivalent to the following integral equation

U e 1Y)
x(f) = f(t,x(t))(m /1 (1og E) s
“— “ 1y(S)
—(log 1) IF( )/ ) te(l, e

Proof As argued before, the solution of Hadamard differential equation in (9.14)
can be written as

I N\ y(s) - o
x(t) = f(z,x(r)) % [1 (log ;) Tds + c1(logt)*™" + c2(log1)* , 9.15)

where cj,c; € R are arbitrary constants. Using the boundary conditions given
in (9.14), we find that

1 ¢ e\e—1 y(s)
=0 ¢ =—— (log —) —=ds.
') s s
Substituting the values of ¢y, ¢; in (9.15), we get
oz 1
NOM
t) = f(t, x(¢
() = (’“())(r()/ :
a 1
y( )
—(log r)*™! / ds|, te]l,e].
I'(@)

The converse follows by direct computation. The proof is completed. O

Theorem 9.3 Assume that:

(9.3.1) the functionf : [1,e] xR — R\ {0} is continuous and there exists a bounded
Sunction ¢, with bound ||@||, such that ¢(t) > 0, fort € [1, e] and

ft,x) —f(t,y)| <p@)|x—y|, for te[l,e] andforall x,y € R,

(9.3.2) there exist a function p € C([1,e],RT) and a continuous nondecreasing
Sfunction $2 : [0, 00) — (0, 00) such that

lg(t, x)| < p(®)2(||x]l), t€][l,e], andforall x € R;

(9.3.3) there exists a number r > 0 such that

. 2F||pll$2(r)
T I+ 1) =2[Iglllpls2(r)

(9.16)



9.4 BVP for Hybrid Fractional Differential Equations and Inclusions of. .. 309

with

2|l

F(a—_'_l)”PH-Q(V) <1,

and Fo = sup,e(; o [f (¢, 0)].
Then the boundary value problem (9.12) has at least one solution on [1, e].

Proof Set & = C([1, e], R) and define a subset S of &) as
S={xed x| <r},
where r satisfies the inequality (9.16).

Clearly S is closed, convex and bounded subset of the Banach space &;. By
Lemma 9.2, the boundary value problem (9.12) is equivalent to the integral equation

! a—1
x(1) =f(t,X(l))<$/ (log E) Mds

(g1 [ oz 1g(s—x(s)) el 9.17)
8V T s ’ el
Define two operators </ : & — &) by
Ax(t) = f(t,x(1)), t €[l,e], (9.18)
and # : S — &) by
_ " '8(s.x(9)
PBx(t) = T )/ .
! g5, )) (9.19)
a—1 01 g(s, x(s
—(log1) T )/ ———ds, te(lel.

Then x = o/x%x. We shall show that the operators <7/ and % satisfy all the
conditions of Theorem 1.7 in a series of steps.

Step 1.  We first show that </ is a Lipschitz on &1, i.e., (a) of Theorem 1.7 holds.
Let x,y € &. Then, by (9.3.1), we have

|/ x(1) — y(@)| = |f (. x(0) = f (2. (1))

< ¢(x(1) —y(0)|
=< l¢lllx—=yl.
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for all ¢ € [1, e]. Taking the supremum over the interval [1, ], we obtain
l7x =yl < l¢llllx =yl

for all x,y € &1. So & is a Lipschitz on & with Lipschitz constant ||¢]|.

Step 2.  The operator B is completely continuous on S, i.e., (b) of Theorem 1.7
holds.

First, we show that 2 is continuous on S. Let {x,} be a sequence in S converging
to a point x € S. Then by Lebesque dominated convergence theorem, we have

7' g6 x(s)

R P AC R
—(log 1~ lr( : / ) B0, )
' a—1 lim g(s, x,(s))
= F(loz) <log g) oot - ds
1
| e a1 lim g(s, x,(s))
—(logt)"_lm/ <log ?) 1 fds
~ ) s,
N F(a) s
_mgo“‘F()/’ QIEQ:QD

= PBx(1),

for all t € [1, e]. This shows that & is continuous on S. Next we show that Z(S) is
a uniformly bounded and equicontinuous set in &). First, we note that

“ Lg(s, x(S))
I'(« )/ s

- NRECECY
e )f T

||p||9(r>[$ / (g g)“_‘ Yas+ %a) / T(1og ) ld}

Ipll$2(r).

|#x(1)| =

T+
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for all # € [1,¢]. Taking supremum over the interval [1, e], the above inequality
becomes

2
| %#x|| < m“PHQ("),

for all x € S. This shows that 4 is uniformly bounded on S.
Next, we show that & is an equicontinuous set in &}. Let 71,7, € [1,¢] with
71 < 1o and x € §. Then, we have

[(#x)(12) — (%x)(11)]

llpII$2(r) /” t\@ ! 1 /” \e ! 1
< — log — —ds — log — —d.
I'(x) 1 (Ogs) ss 1 <0gs> ss

||P||9(V)|(10gfz)°‘ ' — (log )| [¢ ena—l 1
() / (10g —) —ds

< P [attog(ea/ ) + [dog ) tog 1]
Pl 20108 )" — Gogry ']
I'e+1)

Obviously the right hand side of the above inequality tends to zero, independently
of x € § as 1, — 11 — 0. Therefore, it follows from the Arzela-Ascoli Theorem that
A is a completely continuous operator on S.

Step 3.  Here we show that hypothesis (c) of Theorem 1.7 is satisfied. Let x € &
and y € S be arbitrary elements such that x = &/x%y. Then, we have

@] = |/ x(0)||By (1)

_ “ ' g(s.y(s)) y(S))
= If, x(”)'Km [ (1o :

a—1 “ 1 g(s, y(s))
o)™ g >/ Ty B )‘

"‘ " g(s.y(s) y(S))
(F( )f s

a1 “ L g(s, y(S))
e g >f @ )‘
a—1 1

< [¢(t)|x(z>|+Fo]||p||9(r)[ﬁ /1 (1oz}) Jas

= @ x(@) = f(2.0)] + (2. 0)]] x

N
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ria [ ()" o]

< 10 + Fol s 1P 20,

Thus

2 2
[x(1)] < ||¢|||X(t)|m||17||9(r) +Fom||l’||9(r),

which, on taking supremum for ¢ € [1, ¢], yields

< 2Follpl2() ,
" T+ h-20gllpl2e) ="

This shows that x € S.
Step 4. Now we show that Mk < 1, that is, (d) of Theorem 1.7 holds.

This is obvious by (9.3.3) since M = |B(S)|| = sup{||@x| : x € S} <
_ dk = .
Fa o WPl and k= 1l

Thus all the conditions of Theorem 1.7 are satisfied and hence the operator
equation x = .o/x%x has a solution in S. In consequence, the problem (9.12) has a
solution on [1, ¢]. This completes the proof. |

Example 9.3 Consider the boundary value problem
t 1
D3/? L = —cosx(t), 1 <t<e,
sinx + 2 4 (920)
x(1) = x(e) = 0.

1
Here f(t,x) = sinx + 2,g(t,x) = 1 cosx. Clearly (9.3.1) and (9.3.2) hold with

1 2
¢() = 1 and p(t) = Z’Q(r) = 1 respectively. Since mHP”Q(V) =

2
—— < 1, the problem (9.20) has a solution on [1, ¢] by Theorem 9.3.
3T

Theorem 9.4 Assume that (9.3.2) and the following conditions hold:

(9.4.1) the functions f, g : [1,e] x R — R are continuous and there exist bounded
Sfunctions ¢ and W with bounds ||¢| and ||V || such that ¢(t) > 0, ¥ () > 0
fort € [1.e] and [f(1,x(t)) — f(t.y())| = ¢@)Ix(®) —y(@)|, |h(t,x(1) —
h(t, y(0)| < v (@) |x(t) —y(@)|, fort € [1,e] and for all x, y € R;
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(9.4.2) there exists a number r > 0 such that

. 2(Fol"(B + 1) + Ho)llp|[$2(r)
T [Me+Dr@+n=2(817@ + 1) + v Dlpl20)])

where [I'(a + 1) (B+ 1) =2([¢lIT"(B + D) + ¥ DIplI2(n)] > 0, Fo =
sup |f(#,0)| and Hy = sup,; , [A(2, 0)].

t€(l,e]

9.21)

Then the problem (9.13) has at least one solution on [1, e].

Proof Setting the operator <7 : &1 — &) as

ﬁ_
n wcis, tel, e, (9.22)

Ax(1) = f(t, x(£)) + ﬁ /1 l (1og )

N

the proof is similar to that of Theorem 9.3. So, we omit it. O

Example 9.4 Consider the problem (9.13) with @ = 3/2, f(¢t,x) = (| sinx + x| +
/Vt+3, B=3, ht,x) = (|tan~ ' x|+ 7) /T + ¢, g(t,x) = cosx/(3+1), 1 <
t<e Then¢p(t) =2/t +3, v(t) =1/t + 1, p(r) = 1/(3 + 1). With || ¢] =
Ll =1/v2, lpll = 1/4, (1) = 1 and

Fla+D)I@E+1)=20¢lB + 1) + 1y Dlpll$2(r) ~ 4.622489,

all the conditions of Theorem 9.4 are satisfied. Hence the problem (9.13) with the
given data has at least one solution on [1, e].

9.5 Boundary Value Problems for Fractional Hybrid
Differential Inclusions of Hadamard Type with Dirichlet
Boundary Conditions

In this section, we study a Dirichlet boundary value problem of nonlinear fractional
hybrid differential inclusions given by

D"‘( x(0) )eF(t,x(t)), l<t<e l<a<2,

[t x(1) (9.23)

x(1) = x(e) =0,

where D“ is the Hadamard fractional derivative, f € C([1,¢] x R,R \ {0}), F :
[l,e] x R = Z(R) is a multivalued map, Z(R) is the family of all nonempty
subsets of R.
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Definition 9.1 A function x € %?([1,e],R) is called a solution of the prob-
lem (9.23) if there exists a function v € L'([1,e],R) with v(¥) € F(t,x(f)) ae.

on [1, e] such that D* (f(t)fgthI))) = v(t) a.e. on [1, ¢] and x(1) = x(e) = 0.

Theorem 9.5 Assume that (9.3.1) holds. In addition, we suppose that:

(9.5.1) F:[1,e] xR — Z(R) is L'-Carathéodory and has nonempty compact and
convex values;
(9.5.2) there exists a function p € C([1, e], RY) such that

|F(t,x)|| 2 := sup{|y| : ¥y € F(t,x)} < p(t) foreach (t,x) €[1,¢e] xR;

053 121 <

I'a+1)
Then the problem (9.23) has at least one solution on [1, e].
Proof We transform the problem (9.23) into a fixed point problem. Consider the
operator A : & — (&) defined by

a—1 U(S)

Hx(t)y=dhe & : h) = f(t,x(t))(% [1 (1og- —=ds

—(log t)"‘_lﬁ /e (log— a 1 @ds), vE SF,X} .
1

Next, we introduce two operators <7 : & — &) by
A x(t) = f(t,x(1)), t € [l,e], 9.24)
and Z : & — P(&) by

t oa—1
ANIOMN

Bx(t) = he&:h(z):%a)/l(

_(10g[)0‘—1ﬁ/1 (log a 1@ds v ESFX}.

S
(9.25)

Observe that A (x) = &/x%x. For the sake of clarity, we split the proof into several
steps.

Step 1. 7 is a Lipschitz on &, i.e., (a) of Theorem 1.8 holds.
This was proved in Step 1 of Theorem 9.3.

Step 2.  The multivalued operator A is compact and upper semi- continuous on
&1, i.e., (b) of Theorem 1.8 holds.
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First, we show that % has convex values. Let uy, u, € %x. Then there are v, v, €
SF . such that

"‘ L i(s)

1 g 0‘ 1v(s) B ol vi(s)
u;(t) = m/l (log ——ds — (log?) Fa )/ . ds,

i=1,2, te[l,e]. Forany 6 € [0, 1], we have

9u1(t) + (1 = O)us(1)
/ Ot 1 [91)1(5‘) + (1 — G)UZ(S)]
)

N

o« “ HOvi(s) + (1= Ova()] |
~(log?) 11“( )/ s

Since Qv (1) + (1 —0)va(¢) € F(t,x(r)) forallt € [1,¢], Oui(t) + (1 —0)uy(t) € Bx
and consequently %x is convex for each x € 4. As aresult # defines a multivalued
operator B : & — P, (&).

Next, we show that Z maps bounded sets into bounded sets in &}. For that,
let Q be a bounded set in &;. Then there exists a real number r > 0 such that
x| <7, Vx e Q.

Now, for each h € HBx, there exists a v € Sp, such that

h(t) = % /1’ (IOg - (—)ds — (log)*~ 1% /le (log E)a 1 @d&

Then for each ¢ € [1, ¢], using (9.5.2), we have

Iho)| = ﬁfl (log T s ogne 1F( )/ o)
“ 1p() w1 “ 1p(S)
< F(oc) —=ds + (log?) T )/ S
= mllpll

This further implies that

2
hl| = —Ipl.
I = F 5

and so H(&7) is uniformly bounded.

Next, we show that 2 maps bounded sets into equicontinuous sets. Let Q be, as
above, a bounded set and 1 € %x for some x € Q. Then there exists a v € Sp,
such that
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01 1 U(S)

h(r):ﬁ[( 2 ds — (log 1)*~ lr( )/ —=ds.

t € [1, e]. Then, for any 71, 7 € [1, ¢] with 7 < 15, we have

T a—1 1 2 a—11
/ (log E) —ds — / (log 2) —ds
s s 1 s s

lolltog 2)” 2 ~ o e * 4 2)*" 1,
I'(a) 1 g s s

()

Alpll

|h(t2) = h(t)] < T(@)

+

= %[2(10g(f2/‘51))a + |(10g ‘L’z)a — (log Tl)al]
Ipll|(log 2)*~" — (log 71)* |

+ I'lae+1)

Obviously the right hand side of the above inequality tends to zero, independently
of x € Q as 1y — t; — 0. Therefore it follows by the Arzeld-Ascoli Theorem that
B . & — P(8)) is completely continuous.

In our next step, we show that Z, is upper semicontinuous. By Lemma 1.1, %4,
will be upper semicontinuous if we prove that it has a closed graph, since % is
already shown to be completely continuous.

Thus in our next step, we show that A has a closed graph. Let x, — x«, h, €
HB(x,) and h, — hy. Then, we need to show that i, € 2. Associated with h, €
P (xy), there exists v, € Sr, such that for each € [1, €],

fnlt) = ﬁ [1 | (1o g)a_l vns(S) ds — (log t)“‘l% /1 ‘ (10 g)a_l v"s(s) ds

Thus it suffices to show that there exists vy € Sg, such that for each ¢ € [1, ¢],

h*(t)zﬁ[( ds — (log 1)*~ lr( )/

Let us consider the linear operator @ : L!([1,e], R) — & given by

0( 1 Ot 1
v*(s) Vs () ds

t Ot 1
fis> O = %/} (1og- v g

N

a—1 U(S)

—(log1)*™! % /le (log g) Tds.
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Observe that

[17(1) = R (D || =

“ ! (vn(S)—v*(S))
I'(« )/ s
a1 “ l(vn(s)_v*(s))
—(logt) I )/ -

as n — oo. Thus, it follows by Lemma 1.2 that ® o Sg, is a closed graph operator.
Further, we have £, () € ©(Sr,,). Since x,, — xx, we have

— 0,

e\e—1 vy (s)

i — ﬁ /lz <1og é)04—1 U*S(S)ds _ (log t)a—l%a) /;e (log E> ; ds.

for some v« € Spy, -
As a result, we have that % is compact and upper semicontinuous operator
on &.

Step 3. Now, we show that 2Mk < 1, i.e., (c) of Theorem 1.8 holds.

2
This is obvious by (9.5.3) as M = ||B(&1)| = sup{|Bx : x € &} < ——|Ipl

T I'(w
and k = ||¢||.

Thus all the conditions of Theorem 1.8 are satisfied and hence its direct
application implies that either the conclusion (i) or the conclusion (ii) holds. We
show that the conclusion (ii) is not possible.

Let & = {u € € |Au € &/uPBu, X > 1} and u € & be arbitrary. Then, we have
for A > 1, Au € &/uPu. Then there exists v € Sg, such that for any A > 1, we
have

a 1 U(S)

u(f) =A_1[f(t,u(t)]<ﬁ /1 (log— —=ds

—(log t)a_lﬁ /le (log E)a_l %S)ds),

for all ¢ € [1, e]. Then, we have

(] < 27l u(z)|<r( )/

a—1 O‘ ! |v(5)|
+(log?) I )/ . )

“ LI
N
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"‘ ! Iv(S)I
< 1700.) 760+ 6 0 1 [ (1og
I'(@)
“ "G
1 ta 1 /
+(log)™ @ .
=< [ll@llull + Fol 2 Il F |F(z,0)].
u —1rl, = su
- “"Ta+n TN
which yields
2F,
m”l’”
flull < 3l =M.
=l
F( +1)
Thus the condition (ii) of Theorem 1.8 does not hold since I ”('j_” 0 pll <
Therefore the operator equation x = &/x%x and consequently the problem (9.23)
has at least one solution on [1, e]. This completes the proof. O
Example 9.5 Consider the boundary value problem
)
D3/? X EFtx@®), 1<t<e,
|:1—1261_t| arctan x| + 2 &%) (9.26)
x(1) = x(e) =0,
where F : [1,¢] x R —> Z(R) is a multivalued map given by
|x]3 | sin x| 8
t— F(t,x) = ) - I
= Fn [10(|x|3 +3)° 9([sinx| + 1)

By the condition (9.5.1), ¢(r) = e'~"/12 with ||¢|| = 1/12. For f € F, we have

x|3 | sin x|
X
10(Jx|3 + 3) " 9(| sinx| + 1)

- 8
7 < +) I xeR

and

[F@ )| = supflyl : y € F(t. )} < 1 =p(®). x€R.
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Clearly

2llellpll _
Fao+1) 97

Hence all the conditions of Theorem 9.5 are satisfied and accordingly, the prob-
lem (9.26) has a solution on [1, ¢].

< 1/2.

9.6 Boundary Value Problems for Hybrid Hadamard
Fractional Differential Equations and Inclusions
with Nonlocal Conditions

In this section, we study the existence of solutions for boundary value problems
of hybrid fractional differential equations and inclusions of Hadamard type with
nonlocal conditions. As a first problem, we consider

D"( . )=g(t,x(t)), l=t=ze l<a=x2

f(t,x(1)) (9.27)

x(1) =0, x(e) = m(x),

where D is the Hadamard fractional derivative, f € C([1,¢] x R,R \ {0}), g :
C([l,e] x R,R)and m : C([1,¢],R) — R.

In the second problem, we study the multivalued case of the problem (9.27)
given by

D"‘( x) )eF(t,x(t)), l<i<e l<a<2,

f(#,x(1)) (9.28)

x(1) =0, x(e) = m(x),

where F : [l,e] x R - Z(R) is a multivalued map, & (R) is the family of all
nonempty subsets of R.

9.6.1 Existence Results: The Single Valued Case

Lemma 9.3 Giveny € C([1, e], R), x is a solution of the boundary value problem

of X@ ) _
D (f(t,x(t))) =y(), 0<t<l, 9.29)
x(1) =0, x(e) = m(x)
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if and only if
U e 1Y)
x(f) = f(t,x(t))(m /1 (log E) s
wet1|  mx) “ ly(S)
+(logt) [f(e,m(x)) F(a)/ D tell,e].

Proof As before, the solution of Hadamard differential equation in (9.29) can be
written as

Mﬁ—fﬁxﬁb(r()/
(9.30)

where cj,c; € R are arbitrary constants. Using the boundary conditions given
in (9.29), we find that

a ! Y( ) 1 -2
—ds + c1(logt)*™" + c,(logt)*~

W 20,
@=0 = ) mm/ﬁ s

Substituting the values of ¢y, ¢; in (9.30), we get

AO-fUMW(F()/ i R
wet1| M) “ L y(s)
+(logt) |:f(e, m(x)) @ / —ds:|), tell,e.
The converse follows by direct computation. The proof is completed. O

Theorem 9.6 Assume that (9.3.1) and (9.3.2) hold. In addition, we suppose that:

_omx)
Flem@)| =

(9.6.1) there exists a constant M; > 0 such that

(9.6.2) there exists a number r > 0 such that

2
Fo[m”l’”&?(”) +M1:|

2
1- ||¢|||:m||17||9(r) +M1i|

r >

, 9.31)
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where
2
||¢|||:m||17||9(r) -I-M1j| <1.

Then the problem (9.27) has at least one solution on [1, e].
Proof Set & = C([1, e], R) and define a subset S of &7 as follows:

S={xed x| <r},

where r satisfies the inequality (9.31).
Clearly S is closed, convex and bounded subset of the Banach space &;. By
Lemma 9.3, the problem (9.27) is equivalent to the integral equation

t a—1
(1) = f(z,x(t))(F(Ia) /1 <log i) w(h

(9.32)
+(1og,)a—l[f(e’f’g()x)) _%a) Ie(log E)H g(s’s"(s))dsD, rell,el.
Define two operators </ : & — &) by
Ax(t) = f(t,x(1)), t €[l,e], (9.33)
and B : § — & by
Bx(r) = % [Ir (log E)H Mds
(9.34)

a1 mx) 1 [ e o 8(s. x(5))
+(log?) L‘(e,m(x)) o ), (logs> v dsi|, t€[l,e].

Then x = @/x%x. We complete the proof in a series of steps.
Step 1.  We first show that <7 is Lipschitz on &1, i.e., (a) of Theorem 1.7 holds.
This was proved in Step 1 of Theorem 9.3.

Step 2. The operator & is completely continuous on S, i.e., (b) of Theorem 1.7
holds.

First, we show that 4 is continuous on S. Let {x,} be a sequence in S converging
to a point x € S. Then by Lebesgue dominated convergence theorem,

hm Bxp(t) = hm (F(a)/ a 1 g(s, );,,(S))

[ me ! o,
Floen [f(e,m(x)) e ) (e s D
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L[ty R
r (Ol ) 1 N

S
et m&) 1 e ena—1 1M g(s, xa(s))
Floen [f(e,m(x))_l"(a)[ (le5)" =

_ "‘ e x(s))
N F(a)/ K

a—1| __mx) 1 ¢ e\a—1 g(s,x(s))
+(log 1) |:f(e o)~ T <log ;) sd{|

= Px(1),

for all t € [1, e]. This shows that Z is continuous os S. It is enough to show that
A(S) is a uniformly bounded and equicontinuous set in %} . First, we note that

L 1\t g(s, x(s)
250) = | s [ (10e )" £
amt| _MX) “ L85 x(9)
+(log 1) |:f(e, m(x) T (oz)/ s ”
Ipll2(r) [ el Ipll2@) [° ena—1 |
= I'(e) /i (log E> Eds+M1 * I'e) ) (log E) Eds
= m”l’”fz(r) + M,

for all # € [1,¢]. Taking supremum over the interval [1, e], the above inequality
becomes

2
Bx| < —=|plI$2 M
19931 = oy PI20) + M3,

for all x € S. This shows that 4 is uniformly bounded on S.
Next, we show that Z is an equicontinuous set in 47. Let 71, 7o € [1, ] with
71 < 7o and x € §. Then, we have

[(#x)(12) — (%x)(11)]

llpll£2(r) /” e 1 /“ T\t 1
< —" log — —ds — log — —d.
I'(x) 1 (Ogs) ss 1 <ogs> ss

Il 2)]dog )" = log )| ey
@) / B
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< P [attog(ea/ ) + [dog ) tog ]
Pl 20)]0g )" — Gog )|
I'e+1)

Obviously the right hand side of the above inequality tends to zero, independently
of x € § as 1, — 11 — 0. Therefore, it follows from the Arzela-Ascoli Theorem that
A is a completely continuous operator on S.

Step 3.  Here we show that hypothesis (c) of Theorem 1.7 is satisfied. Let x € &
and y € S be arbitrary elements such that x = &/ xZ%y. Then, we have

@] = |/ x(n)||By ()]

“ L8G.yB)
= Irt. x(ﬂ)l‘(r( [ (rog ) 2,
amt| _MO) “ '8Gs.yB)
Floen [f(e,m(y)) F(a)/ s ])'

"‘ ' g(s.y(s) y(S))
(F( )/ s

Hlogt)a_l[ m) ) g, ])'

= [If(6.x(0) = f(2.0)| + |f (2. 0)]] %

fle.m(y) F(Ot) s

I'() s
Iplls2(r) (¢ o=l 1
+—1"(oc) 1 <log s) ;ds:|

= [li¢llx@[ + Fo]|:

r t a—1
s[¢(z)|x(r)|+F01[M1+”””9() l(logf) ds

||p||9(r)+M1}, Fo = sup |f(z,0)].

t€[l,e]

2
I'e+1)

Thus

(@] = ||¢>||IX(I)I[ IIPIIQ(r)Jer} +F0[ ||P||~Q(r)+M1:|,

2 2
T+ 1) T(a+1)
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which, on taking supremum for ¢ € [1, ¢], yields

2
Fo[m”l?ng(") +M1:|

2
1—|oll [m”ﬁ”fz(r) +M1]

llxll <

=r,

thatis, x € S.
Step 4. Now, we show that Mk < 1, i.e., (d) of Theorem 1.7 holds.
This is obvious by (9.6.3) in view of k = ||¢|| and M = ||B(S)| = sup{| Bx| :
eSSt < —|pl$2 M;.
x€8) = o IPIee) +

Thus all the conditions of Theorem 1.7 are satisfied and hence the operator
equation x = «/x%x has a solution in S. In consequence, the problem (9.27) has a
solution on [1, e]. This completes the proof. |

Example 9.6 Consider the boundary value problem
t 1
D3/? L = —cosx(t), 1 <t<e,
|x(?) sin¢| + 1 4
(9.35)
1
x(1) =0, x(e) = T6 sinx(n), n € (0,1).

1
Let f(¢,x) = |xsint| + 1,g(¢,x) = Zcosx. Then (9.3.1) and (9.3.2) hold with

1 2
¢() = 1land p(t) = T §2(r) = 1 respectively. Since m”p”ﬂ(r) + M, =
2

1
ﬁ + T6 < 1, the problem (9.35) has a solution on [1, ¢] by Theorem 9.6.

9.6.2 Existence Result: The Multivalued Case

Definition 9.2 A function x € %?([1,¢],R) is called a solution of the prob-
lem (9.28) if there exists a function v € L!([1,e], R) with v(r) € F(t, x(t)), a..

on [1, e] such that D¥ (f(:fitzt))) = v(t),a.e.on[l,e] and x(1) = 0, x(e) = m(x).

Theorem 9.7 Assume that (9.3.1), (9.6.1) and the following conditions hold:

(9.7.1) F:[l,e] x R > 2, ,(R) is L'-Carathéodory multivalued map;



9.6 Nonlocal BVPs for Hybrid Hadamard Fractional Differential Equations. .. 325

(9.7.2) there exists a continuous function ¢ € C([1, ], R™) such that

IF(@ 02 = sup{ly| : y € F(1,x)} < §(1) foreach (1.x) € [1,¢] x R;

2

2 1
m”f” +M1] <=

(9.7.3) ||¢||[

Then the problem (9.28) has at least one solution on [1, e].

Proof To transform the problem (9.28) into a fixed point problem, define an operator

F 8 — P(&) as

hed& :

0( 1 v(s)
oo - 1. x(r))( L ds

[ m NECE
Hloen) [f(e,m(x)) r@ D

for v € Sp,. Now, we define two operators &7 : & — &) by

h(t) =

A x(t) = f(t,x(1)), t €[l,¢], (9.36)
and B : & — P(&) by
heéd : 1 ( )
O‘ v(s
B(x) = h(t) = (o) / o dsl ) a o)
+Hloz0™ [f(am(x)) “ @ ), (e}) e }
9.37)

Observe that % (x) = @/x%x. For the sake of clarity, we split the proof into
different steps.

Step 1. &7 is Lipschitz on &) (see Step 1 of Theorem 9.6), so (a) of Theorem 1.8
holds.

Step 2.  The multivalued operator 9B is compact and upper semicontinuous on &,
i.e., (b) of Theorem 1.8 holds.

First, we show that 48 has convex values. Let u;, u, € %x. Then there are vy, v, €
Sr such that

1\ vi(s)
s

u;(t) = ﬁ/l (log ;) Td

a—1 m(x) a Ly (S)
Hloen [f(e,m(x» ria ), (oe5) ds}’
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i=1,2, t€[l,e]. Forany 0 € [0, 1], we have

9u1(t) + (1 - 9)u2(t)

/ a 1 [6vy(s) + (1 - 9)v2(5)]
F(oz)

| m@) ) H[Ovi(9) + (1= ()]
+(log 1) [f(e,m(x)) I (o) / g }

Since Qv (1) + (1 — O)v,(¢) € F(t,x(¢)) for all ¢ € [1, e], therefore Ou,(¢) + (1 —
0)uy(t) € Ax and consequently Ax is convex for each x € %]. As aresult Z defines
a multivalued operator B : & — P, (81).

Next, we show that %8 maps bounded sets into bounded sets in &7. To do so,
let Q be a bounded set in &|. Then there exists a real number » > 0 such that
[x]| <7 VxeQ.

Now for each i € Ax, there exists a v € Sp, such that

alv(s)
F()/ o 5o

w1 m(x) 1 ¢ a 1 y(s)
+(log?) |:f(e,m(x)) — @) /1 (log Tds:|.

Then, for each r € [1, ¢], we have

t a=1 y(s
Fa |, (o2})” e

a1 m(x) 1 ¢ a 1 u(s)
Floen [f(e,m(x))_r(m/l G d}

1 + M.

lh(n] =

= I'e+1)

This further implies that

2
h| £ ——— M,
Il = ey 0+

and so #(&7) is uniformly bounded.

Next, we show that 4 maps bounded sets into equicontinuous sets. Let Q be, as
above, a bounded set and & € Zx for some x € Q. Then there exists a v € Sp, such
that
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h(t) = ﬁ /1 t (1og ﬁ)a_] %S)ds

a1 m(x) 1 ¢ e\a—1 v(s)
+(log?) |: F(oc)/; <log —) —ds:|, te|l,e.

fle,m(x) s s

Then, for any 7, 7, € [1, €] with 7; < 15, we have

|h(t2) — h(ty)] < %' /lfz (log %)a_l éds - /lfl (log %)a_l %ds

”é'l”(lOg tZ)a_l - (log ‘L'l)a_l| ¢ ena—1 ]
i (@) 1 (log$) s
_ e
“Ia+1)
I 11(log 2)*~" — (log )|
T+ 1)

[200g(m2/m))" + [(log 2)° — (log )"

Obviously the right hand side of the above inequality tends to zero, independently
of x € Q as 1, — 11 — 0. Therefore it follows by the Arzeld-Ascoli Theorem that
B & — P(8)) is completely continuous.

In our next step, we show that & is upper semicontinuous. By Lemma 1.1,
will be upper semicontinuous if we establish that it has a closed graph. Since %
is already shown to be completely continuous, we just need to prove that & has a
closed graph.

Let x, — x4, h, € $B(x,) and h, — h,. Then, we need to show that h, € A.
Associated with i, € %(x,), there exists v, € Sp, such that for each r € [1, ¢],

h(f) = %a) /1 t (1og g)a_l U"T(S)ds

a1 m(x) 1 ¢ e\e=1 v,(s)
+(logt) |:f(e,m(x)) — F(oc)/l (log ;) . dsi|.

Thus it suffices to show that there exists vy € Sg, such that for each ¢ € [1, ¢],

ha (1) = %a) /1 t (10 §>a_1 U*S(s)ds

o1 m(x) 1 ¢ e\l v, (s)
+(logt |:f(e,m(x)) — @) [ (log ;) . dsi|.
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Let us consider the linear operator ® : L!([1, ¢],R) — &) given by

a 1 U(S)

1 t
>0 = m/1 (1og- = ds

N

a1 m(x) 1 ¢ 0‘ Lu(s)
+(logt) |:f(e,m(x)) — @) /1 (log Tdsi|.

Observe that

a 1 _
I (® = kel = | s / (v<>s—v<>>

- “ ! (Un(s)_v*(s))
—(log?) 11"( )/ —s

as n — oo. Thus, it follows by Lemma 1.2 that ® o Sg, is a closed graph operator.
Further, we have £, (f) € ©(Sr,,). Since x, — X, therefore, we have

— 0,

N i (s)
s

hy(t) = %/} (log E) .

aet| _m(x) 1 ¢ e\e—1 v, (s)
+(log) |:f(e,m(x)) B F(ot)/l (log E) S a’sj|,

for some v« € Spy, .
In consequence, we have that the operator Z is compact and upper semicontinu-
ous operator on &].

Step 3. Now, we show that 2Mk < 1, i.e., (c) of Theorem 1.8 holds.
This is obvious by (9.7.3) ask = ||¢|| and M = ||B(&1)|| = sup{|Bx :x € &1} <

2
m||§||+M1-

Thus all the conditions of Theorem 1.8 are satisfied and hence its direct
application implies that either the conclusion (i) or the conclusion (ii) holds. We
show that the conclusion (ii) is not possible.

Let & = {u € 61|Au € FuBu, A > 1} andu € &. Then, for 1 > 1, we have
Au € /uPBu. Then there exists v € Sr, such that for any A > 1, we have

N\ v(s)

u(t) = )L‘Wf(t,u(t)](% /1 [ (log E) —=ds

) "‘ Lu(s)
Hlogn [f(e,m(u)) ra ), (o255 "s}’
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for all 7 € [1, e]. Then, we have

lu(r)] < A7Mf(e, u(t)|(F( )/ “ ! Iv(s)l
| y e,
+(log?) |:f(e,m(u)) F(a)/ :|)

"‘ ! Iv(S)I

< (6. ) 0. 0) + 7. om( o [

[ mw £y e,
o [f(e,m(u)) ra ), (eSS D
2
< llllul + Fo][m”f” +M1}, Fo= sup 10|

Thus we obtain

2
F0|:F(a—+1)||§|| +M1]

1= g1 [ﬁn&n +M1}

which implies that the condition (ii) of Theorem 1.8 does not hold as

flull < =M,

1 .
”¢”[F( +1)IIEII + Ml] < 5 Therefore the operator equation x = &/x%Bx
and consequently problem (9.28) has a solution on [1,e]. This completes the
proof. O

Example 9.7 Consider the boundary value problem

D3/2|: - x() :| e F(t,x(t), 1<t<e,

ﬁel_’ tan~!x + 2 (9.38)

x(1) =0, x(e) = i6 sinx(n), 0 <n <1,

where F : [1,¢] x R — Z(R) is a multivalued map given by

x|? | sin x| 1 :|

r— F(t’x) = |:10(|)C|3 + 3)7 3(| siHX| + 1)
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By the condition (9.3.1), ¢(r) = e'~"/12 with ||¢|| = 1/12. For f € F, we have

lﬂ “ma |x|? | sin x| n 1 - 2 cR

X £l . - =~ < X
- 10(|x]?> +3) " 3(|sinx| +1) 3 3
and

2
[F(t.x)| = sup{ly| : y € F(t,x)} < 3= ¢(n), xeR.
Clearly [|¢/| 2 Il + M L)_1e + ! 0.088131 <
ear _— = —|— 4+ — | ~ 0.
y Ta+1) ! 12| 9vz T 16

1/2. Hence all the conditions of Theorem 9.7 are satisfied and accordingly, the

problem (9.38) has a solution on [1, ¢].

9.7 Notes and Remarks

Existence results for initial and boundary value problems of hybrid fractional
differential equations and inclusions of Hadamard type were studied in this chapter,
via fixed point theorems involving the product of two operators. The content of this

chapter is based on the papers [10, 14, 16, 21, 22] and [18].



Chapter 10
Positive Solutions for Hadamard Fractional
Differential Equations on Infinite Domain

10.1 Introduction

Boundary value problems on semi-infinite/infinite intervals often appear in applied
mathematics and physics. Examples include unsteady flow of gas through a semi-
infinite porous medium, the drain flow problems, etc. More details and works
concerning the existence of solutions for boundary value problems on infinite
intervals for differential, difference and integral equations may be found in the
monographs [2, 132]. For details on fractional order boundary value problems
on infinite domain, we refer the reader to a series of papers [110, 163, 180—
182, 184, 185].

10.2 Positive Solutions for Hadamard Fractional Differential
Equations on Semi-Infinite Domain

In this section, we aim to investigate the existence criteria for positive solutions of
fractional differential equations of Hadamard type with integral boundary condition
on semi-infinite intervals. Precisely, we consider the following boundary value
problem:

D u(t) + a()f () =0, 1<a <2, te(l,00), (10.1)

u(l) =0, D" 'u(co) =Y AilPu(y). (10.2)

i=1

where D* denotes the Hadamard fractional derivative of order «, n € (1, co) and
1P is the Hadamard fractional integral of order ; > 0,i = 1,2,...,mand A; > 0,
i=1,2,...,mare given constants.

© Springer International Publishing AG 2017 331
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10.3 Auxiliary Results

Lemma 10.1 Let h € C[1,00) with 0 < [ h(s)% < oo, and

s

"T _
2=r@-) oo " J(r“;i) (log )*F=1 > 0.

i=1
Then the unique solution of the following fractional differential equation
D%u(t) + h(t) =0, re(l,00), «e€(l,2),

subject to the boundary conditions
u(l) =0, D*'u(co) = Y AilPu(y).
i=1

is given by the integral equation

o0 ds
u(t) = /1 Gt i) =

where

“ Ai(logr)*~!

G(t,s) = g(t.s) + ; @ ﬁi)gi(n,sx

and

t a—1
1 (logr)*~!' — (log —) , 1 <s<t<oo,
S

g(t,s) =
e (logr)*~1, 1<t<s<oo,
O(+,B,'—l
(log )+t — (IOg ﬂ) . 1 <s<n<oo,
gi(n,s) = s
(log )Pt I<np=<s<oo.

(10.3)

(10.4)

(10.5)

(10.6)

(10.7)

(10.8)

(10.9)

Proof Applying the Hadamard fractional integral of order o on both sides of (10.4),

we get

t

T a1 g
u(t) = c1(log)®! + cr(log 1)* 2 — o /1 <log -) h(s)?s, (10.10)

N

where ¢;, ¢ € R.
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The first condition of (10.5) implies that ¢, = 0. Therefore,

a—1 d
u(t) = ¢ (log 1)*~ l—m (1og ﬁ) h(s)?s. (10.11)

In accordance with Lemma 1.6, we have
t
d
D*7u(r) = e, T(a) — / h(s)Z,
1 )
which, together with the second condition of (10.5), leads to

1 o ds « Ai 1 nyetBi—1 ds
o= 5(/ 05 =Y g/, (o) h“):)’

(10.12)

where §2 is defined by (10.3). Inserting the value of ¢ in (10.11), the solution of the
problem (10.4)—(10.5) is

m ) a—1 o)
) = ogo=! [ 2Ly 50 AL gt [T hi

T@'s & QI+t
Lareim ) o) o
_ % ]t (log £>a_1 h(s)?

_ %a) 1[ [(log n*~" — (log g)a_l} h(s)— + m/ (log 1)*~ 1h(S)—
3y N e R

" Ai(logr)e! [o° et fim] ds
+ 2 Sty ], e

B Ai(logt)*=t [ ds
= /1 g(t, s)h(s)— + Z era+ /) ) gi(ﬂvs)h(s)?

- / ” 6a.5ns %
1 N

The proof is completed. O
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Lemma 10.2 The Green’s function G(t, s) defined by (10.7) satisfies the following
properties:

(C1) G(t,5) is a continuous function for (t,s) € [1,00) x [1,00);
(C)) G(t,s) >0 for alls tel, oo)

G(t,9) ,g,(n, '
(C3) T+ (log )T ~ F(a) +Z O (@ foralls,te [1, 00);

Glts) Z Ai(log n)‘” 'gi(n.s)

Gy  min T ork > 1 and
(€ n<r<ky 1 4 (logr)*—! — — QI (a + Bi) (1 + (log n)*—1) f
s € [1,00).

Proof 1t is easy to check that (Cy) and (C3) hold.
To prove (C3), for s, t € [1, 00), we have

G(t’ S) _ g(tv S) + Zm: Al(log t)a_lgi(n’s)

1+ (logr)*=! 1+ (logr)e~! — 20 (a + Bi) (1 + (logn)*~)

1 ' (log £)*~! Xm: Li(log )* 1 gi(n, 5)
T (@) 1+ (dogn*=! & QI (a+ Bi) (1+ (log)*~)

Aigi(nrs)
“Tw " ; Qr+p)

To prove (Cy), from g(t,s) > 0 and g;(n,s) > 0,i = 1,2,...,mfor all 5,¢ €
[1,00), k > 1, we have

G(t,s)
min —
n<t<kn 1 + (logr)*~!

= min & + Xm: Ai(log)* ' gi(n, s)
n<t<kn | 1 4+ (log#)*~! — QI (e« + B:) (1 + (logr)e—1)

g(t,s) . i Ai(log n®1gi(n, s)
mn ——— min
~onsisky L+ (log ) nsiskn & Q2T (e + Bi) (1 4 (log1)* ™)

m

n Ai(log1)*'gi(n. s)
nzizkn = QT (@ + ) (1 + (log)*~")

v

m

3 Ai(log )* ' gi(n, 5)
< QT+ B) (1 + (Qogn™™)’

for s € [1, 00). The proof is completed. |



10.3 Auxiliary Results 335

In the forthcoming analysis, we will use the space E defined by

(o)
E=ueC(l,o0),R): sup ———
(100 B): sup 4 g e

equipped with the norm

el = sup — Ol
rell,o0) 1 + (log£)*~

Lemma 10.3 (E, | - ||g) is a Banach space.

Proof Let {u,}°2, be any Cauchy sequence in the space (E, | - ||£). Then, Ve > 0,
AN > 0 such that

S e 1+ (log e
forn,m > N. Therefore, for any fixed # € [1, 00), {u,(f9)}oc; is a Cauchy sequence
in R. In this way, we can associate to each ¢ € [1, 0c0) a unique u(z). Letting n — oo,
we have |u(f) — u,(t)] < eforall m > N and ¢ € [1,00). It is easy to show
that u,, — u in E as m — oo. Therefore, we deduce that (E, || - | g) is a Banach
space. O

Lemma 10.4 Let U C E be a bounded set. Then U is relatively compact in E if the
following conditions hold:

u(t)

] el ———
(i) for any u T+ (log ™l

[1, 00);
(ii) for any ¢ > 0, there exists a constant T = T(g) > 0 such that

is equicontinuous on any compact interval of

u(t) u(ty)
_ , 10.13
[+ (ogret 14 (ogr)et| = ° (1015

foranyt),tp > T andu € U.

Proof Evidently, it is sufficient to prove that U is totally bounded. In what follows,
we divide the proof into two steps.

Step 1. Let us consider the case r € [1, T].
Define

Upy = {u(®) : u() € U.t € [1,T]}.

. : |u(t)] .
Clearly U, equipped with the norm = s —————— is a Banach
Y U, equipped w llul oo ze[L;,I;"] 1+ (log t)"‘_l

space. The condition (i), combined with the Arzeld-Ascoli Theorem, indicates that



336 10 Positive Solutions for Hadamard Fractional Differential Equations on Infinite. ..

Ul1,17 is relatively compact. Hence Uy pj is totally bounded, namely, for any € > 0,
there exist finitely many balls B (i;) such that

Unn C UBs(ui),

i=1
where

u(?) ui(t)

1+ (ogr)*=! 1+ (logr)e—!

Be(uj) = Ju(t) € Unq : |lu—uilloo = sup
t€[1,T]

Step 2. Define
U, = {u(t) eU:upg € Ba(ui)}'

It is clear that Ujy 1) C UlgiSn Ui, 1)- Now, let us take u; € U; so that U can be
covered by the balls B3, (1;),i = 1,2, ...,n, where

Bio(u) = u(t) € Ut flu—ullp < 3¢}

In fact, for u(r) € U, the arguments in Step 1 imply that there exist i such that
upi,r] € Be(1;). Hence, for ¢ € [1, T], we have

u(r) u; ()
‘ 1+ (logHe=" 1+ (logt)*! (10.14)
Fort € [T, 400), (10.13) and (10.14) yields
R
1+ (logn)*=! 1+ (logr)*~!
e um W )
T |1+ (Jognet 1+ (logT)e! 1+ (logT)*~! 14 (logT)~!
ui(T) u;(t)
1+ (log7)*=" 1+ (logr)~!
<e+e+¢e=3e (10.15)

The relations (10.14) and (10.15) show that ||u(f) — u;(¢)||g < 3e. Therefore, U
is totally bounded and Lemma 10.4 is proved. O

We define the cone P C E by

P={uckE:u() >0on[l,o00)},
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and the operator 7 : P — E by

Tu(t) = /100 G(t, s)a(s)f(u(s))%, t e l,00), (10.16)

where G(¢, s) is defined by (10.7).
Lemma 10.5 Assume that:

(10.5.1) f € C(]0, 00), [0, 00)) such that f (1) # 0 on any subinterval of (0, 00) and
F((1 + (Qog))*"Yu) is bounded on [0, 0);

(10.5.2) a : [1,00) — [0, 00) is not identically zero on any closed subinterval of
[1,00) and

o0
d
0</ a(s)—s < 00.
1 S

Then T : P — P is completely continuous.
Proof We divide the proof into four steps.
Step 1:  We show that T is uniformly bounded on P.

From the definition of E, we can choose ry such that sup,cy |unlle < ro. If
B,, = sup {f((1 + (log)* ")u),u € [1,ry]} and @ is any bounded subset of P,
then there exists » > 0 such that ||u||g < r for all u € @. From (C3), it follows that

1
sup —————
refl,00) 1 + (log 1)1

=1 = digi(n.s) ds
/1 (F(oe) + Z QI (o + ,31)) a(s)f(u(s))?

1 Tulle =

[ Gtvawruens

i=1

1 " Ai(log )@ A1 © s
= (F(a) * L @ h) )B/I als) 5 < oo

i

for u € @. Therefore T® is uniformly bounded.
Step 2:  We show that T is equicontinuous on any compact interval of 1, 00).

Forany S > 1,1,1, € [1,S] witht; < 1, and u € @, we have

Tu(1>) Tu(t))

I+ (logn)*~! 14 (logt)*!

00 , d o0 , d
= /1 #;;Ha(s)f(u(s))?s—/l %d@)ﬂu@))f'

oo 8(12.5) g(t1,5) ds
/1 (1 T (log)* 1 T+ (logr)e! ) ) ?‘

IA
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I (o ) 5 et o'
e e Lo
e T
+[w'yfﬁgz;—f_1ﬁﬁ£z;—léigy%ﬁ:;f@VWGD?
- /1 °° ‘ 1 +i1(<t>2g :z))“_l T +g(l((t)lg :z))a—l Aoy )’

*  (ogn)y* — (logn)™” s
o A e o e e RO

" /1 i (1+ ((llc;ggt;))z_ll)_(1(lig(t12; :)al) gm; Qﬁoﬁ%) a(s)f (u(s)) ?.
Observe that
i ' T s~ T3 fop ‘“(S)f won’y
- /1 tl 1+if22:3)“—1 - 1+g(fct>lg: ;z))a—l als)f (“(S))?
+/nt2 1+ifgzjz)“—1 - 1+i1((t)§:2))a—1 a(s)f (”(s))%
+/::o ‘ I +i1(<t>z :2))“_1 - l+il(f)1g: :z))a—l a(s)f (“(s))%
S B e e
+F:oz) ,:2 (oet)™ ;Soﬁé;)z;j (oe %)a_la(S)f(u(s))?
1 [ ozt oz

ds
I'(e) J,y 1 + (logtp)e! a(s)f(u(s))?

— 0 uniformly as #; — t,. (10.17)



10.3 Auxiliary Results 339

Similarly, we have

/OO (log)* " — (log1;)*~!
1

d
T Qoo D+ (logtl)a_l)g(tl,s)a(s)f(u(s))?s —~0, (10.18)

uniformly as t; — £, and

m

/Oo (log1,)*~" — (log;)*~! Z Aigi(n,s)
1 (I + (logn)*=H(1 + (log#)*1) QI (a+ B)

a(or )™ 0, (10.19)

i=1

uniformly as t| — 1,.
Hence, from (10.17), (10.18) and (10.19), we get

Tu(tz) TM(I]) .
— 0 uniformly as t; — £,.
1+ (logrp)*~! 1+ (logt)*~!

Thus TP is equicontinuous on any compact interval of [1, 00).
Step 3:  We show that T is equiconvergent at oo.

For any u € @, we have

/ e < 5, f "% < o,
1 N 1 K

and

im ’ (Tw) (1)
=00 |1 4+ (logr)*—!

) 1 Rl ds
= ILHEOIW/] G(z,s)a(s)f(u(s))il

i > [ (log)*~! (log )1 Z Aigi(n, s)
—oo )i \T@ 1+ (ogn*" " 1T+ (logre! QI (a+ B)

i=1
o0 1 2 higi(n,s) ds
< | (F(a) +Y Gt ﬂa) A W)

i=1

IA

) a(o uts) &

m

1 Ai(log p)*HAi—t o0 ds
= (F(a) 2 ot A )B’/l w7

i=1

< OQ.

Hence, T® is equiconvergent at infinity.
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Step 4:  We show that T is continuous.

Let u, — u as n — oo in P. Recall that

e ds
[1 A )= < oo

Hence Lebesgue’s dominated convergence theorem and the continuity of f guaran-
tee that

[ araen T — [~ awraon . asn—oc.
1 N 1 s
Therefore, we get

1Tty — Tul|

sup ———  |Tu, — Tu
tE[l,go) 1 + (logt)*! | |

/1 — O () — £ ()] d_ ‘

N zes[?.go) 1 + (logr)e!
1 — Ai(log )* P! ‘ o0 ds [ s ‘
- (F(a) +§ 2l (e + B) ) /1 a(9)f (un(s)) /1 a(s)f (u(s)~

— 0, as n — o0.

So, T is continuous.
Using Lemma 10.4, we deduce that 7 : P — P is completely continuous. The
proof is completed. U

10.4 Ecxistence of at Least Three Positive Solutions

In this section, we use the Leggett-Williams fixed point theorem to prove the
existence of at least three positive solutions for the problem (10.1)—(10.2).
For convenience, we denote

m

_ 1 Ai(log n)*+Ai—1 ©  ds
M= (F(a) X orar ) /1 w0

i

R e LI
m = Z I (o + B)( + (logn)*=1) /; a(s)? > 0.

i=1
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Theorem 10.1 Suppose that the conditions (10.5.1) and (10.5.2) hold. Let 0 < a <
b < d < c and suppose that f satisfies the following conditions:

(10.1.1) £((1 + (log )* V) < % forall (t,u) € [1,00) x [0, c];
(10.1.2) f((1 + (log)* "yu) > %for all (t,u) € [n,kn] x [b, c];
(10.1.3) £((1 + (log )* YY) < % forall (1, u) € [1,00) x [0, dl.

Then the problem (10.1)—(10.2) has at least three positive solutions uy, u, and u;
satisfying

luille <a, b<6(uy)
and
a < ||lusl|g with 6(uz) <b.
Proof We will show that the conditions of the Leggett-Williams fixed point theorem

are satisfied for the operator 7 defined by (10.16). We define a nonnegative
functional on E by

. u(r)
6 = r2rshn 1+ (log t)*—1"

For u € P,, we have lullg < c, that is,

t
S—u() <c for t € [1,00).
1 + (logr)e!

Then, assumption (10.1.1) implies that
Fu) < A% for (¢,u) € [1,00) x [0, c].
Therefore,

1
Tu = Su S EEEE———
ITulle = Sup T ogneT

1 S Ai(logm)™ Pl ¢ [0 ds
< (m Lo ) )M/l “wi=e

i

[ Gtaerue

Hence, T : P, — P. and by Lemma 10.5, T is completely continuous. Using

the preceding arguments, it follows from condition (10.1.3) that if u € P,, then
|ITu||g < a. Therefore, condition (if) of Theorem 1.20 holds.
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Let
b
(1) = %(1 + (log ™), te[l,o0).
. " " b+c .
It obvious that u*(f) € P and ||u™|| = — < c. From the definition of 6(u),
we have
b + c

O(u*) = > b.

Hence, we get
u* € {xeP0,b,d):0(x) > b} #0.
Moreover, for u € P(6, b, d), it follow that

u(t)

W_C for IE[ﬂkT]]

Then, assumption (10.1.2) implies that

fu) > % for (t,u) € [n,kn] x [b,c].

So, we have
O = B g
= [T min TS
- i e [ st en s
> i e || s

QI (@ + Bi)(1 + (log 7
= Ai(log )7)2”‘+/31—2 b [k ds
- ; QI (a + B)(1 + (logn)*~h) Z/H a(s)?

=b.

Thus 6(Tu) > b forallu € P(8, b, d). This shows that condition (i) of Theorem 1.20
holds.
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Finally, we assume that u € P(0,b,c) with ||Tu||g > d. Then |ju||g < ¢ and

t
< L) < ¢ and from assumption (10.1.2), we can have 6(Tu) > b. So,
1 + (logr)~!
condition (iif) of Theorem 1.20 is satisfied. As a consequence of Theorem 1.20, the
problem (10.1)—(10.2) has at least three positive solutions u;, u, and u3 such that
luille <a, b<6(u) and a < |usl|g with O(uz) < b.
The proof is completed. O

Example 10.1 Consider the following Hadamard fractional differential equation
with nonlocal boundary conditions on an unbounded domain:

D 2u(t) + e f(u(r)) =0, 1€ (1,00),

1 5 5 1 5
u(1) =0, D'"?u(o0) = 013/4 (5) + 7%u (5) + 317/%1 (E

(10.20)
4
velos].

4 4 7
+200arctan (u— =), uel|=, -1,
5 55

4
+ 200 arctan (u —3

o (1) e [5)

Setm = 3,0 = 3/2,n = 5/2,k = 6,a(t) = e, Ay = 1/10, A, = 7,
Az = 1/3, 1 = 3/4, B, = 5/2, B3 = 7/2. Using the given data, it is found that
£2 ~ 0.450449, M ~ 0.487034 and m =~ 0.013302. Choose a = 4/5,b = 7/5 and
¢ = 160. Then f satisfies

where

fumn =1 ((_ o))+
o' ((3-4) 71) -

(@]

o
(/)
~
wnl &~
I
S
——
e
—
+

[\o) —‘NI'—‘ | —

|
»
=z.
5

w

(1 + (logt)%)u) <1.5<1.6426 ~ ]\%’ (t,u) € [1,00) X |:0, %i|

m

b 5 7
F((1+ (logH)2)u) > 219.4760 > 105.2492 ~ —, (t,u) € [5, 15] x [g’ 160} ,

o

F((1+ (logf)2)u) < 315.9926 < 328.5189 ~ —, (t,u) € [1,00) x [0, 160] .

Thus, by an application of Theorem 10.1, the problem (10.20) has at least three
positive solutions u1, u,, us such that

t 4 7 t
su —lul()| < = — < min ()

i) 1 + (logf)? 5 5 rel315 1 + (log1)?
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and

|uz (1)

. . us(t
- < sup ———— with min 0

7
—_— <<=
5 ielloo) 1 + (logt)? €315 1 4 (logr)z 3

10.5 Existence of at Least One Positive Solution

In this section, we use the Guo-Krasnoselskii fixed point theorem (Theorem 1.21)
to prove the existence of at least one positive solution.

Theorem 10.2 Suppose that the conditions (10.5.1) and (10.5.2) hold. Let
m>r >0 p € (m ! oo), pp € (0,M™Y) and that f satisfies the following
conditions:

(10.2.1) f((1 + (og)* YYu) > piry for all (t,u) € [1,00) x [0, r];
(10.2.2) f((1 + (og )* NYu) < pors for all (t,u) € [1,00) x [0, r].

Then the problem (10.1)—(10.2) has at least one positive solution u, such that
r < ||M||E < r.
Proof We will show that the condition (i) of Theorem 1.21 is satisfied. By

Lemma 10.5, the operator 7 : P — P is completely continuous.
Let &) = {u € E: ||u|g < r1}. Then, for any u € P N 0P, we have

t
= L <ry, forall re[l,00).
1 + (logr)*!

Then assumption (10.2.1) implies that
f(u) = pyry for (t,u) € [1,00) x [0, r1].

Therefore, for t € [1, 00), we get

17wl

1 o ds
2, g || o deeveen?

. o G(t,s) ds
=) T GO

/ . G(t,s)
> min ————
1 €l 14 (logr)e—!

m

. 200+Bi—2 k
z Z Qr ak—;—(loig ’71)+ log nye—1 P17 / na(s)%
@+ B+ (og =",

ry = ||lu|lg, for ue€ PN ad,. (10.21)

A uls) =

i=1

v
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Let &, = {u € E: |u||g < r2}. Then, for any u € P N d&;, it follows that
t
= L <1y, forall re[l,o0).
1 + (logr)*!
For t € [1, 00), the assumption (10.2.2) yields

ITulle =

o0 ds
Rt | A s )%

*f 1 — Aigi(1.5) ds
= /1 (m + Z m) G(S)f(u(s))?

i=1

1 " Xi(log p)etpi=l ® s
(F(oe)+zl QT (@ + B) )pm/l )y

i=

IA

r, = ||lullg, for ue PN ad,. (10.22)

Hence, from (10.21), (10.22) and condition (i) of Theorem 1.21, it follows that
T has a fixed point in P N (@, \ @;). Therefore, the problem (10.1)-(10.2) has at
least one positive solution such that

r < lullg <r.

The proof is completed. O
Similar to the previous theorem, we can establish the following result.

Theorem 10.3 Assume that the conditions (10.5.1) and (10.5.2) hold. Let ry > r; >
0, p1 € (m™', 00), po € (0, M™") and that f satisfies the following conditions:

(10.3.1) f((1 + (logt)* YYu) < pyry for all (t,u) € [1,00) x [0, r{];
(10.3.2) f((1 + (logt)* YYu) > p1ry for all (t,u) € [1,00) x [0, r].

Then the problem (10.1)—(10.2) has at least one positive solution u, such that
r < |ulle < ra.

Example 10.2 Consider the following Hadamard fractional differential equation
with nonlocal boundary conditions on unbounded domain:

D*3u(r) + 7 (u(r)) =0, 1€ (1,00),

u(0) =0,
1/3 JT —171/2 : 9/7 ﬁ 11/3
D u(o0) =2IY"u(3) + e I'"“u(3) + sin(A11) 7" "u (3) + 71 u(3),

(10.23)
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where
um
27" 4 = cos? (7) +22, uel0,2],

1 8
fu@) = | 27 + 3 cos? (%) + 19 4+ — arctan (u — 2)

+3sin2((u+Tl)n),ue[2,oo).

Lettingm = 4, o = 4/3,n = 3,k = 4, a(t) = 72,4 = 2, 4y = e},
A3 = sin(ll),)t4 = \/;/2,,3] = ﬁ, ,32 = 1/2, ﬂ_?, = 9/7, ,34 = 11/3, we obtain
£2 = 0.199034. By direct calculation, we can get M ~ 2.512136, m =~ 0.103271.
Choose r; = 2, r, = 100, p; = 10 and p, = 3/10 and note that

F((1+ (ogH)F)u) > 22 > 20 = piri, (tu) € [1,00) x [0,2],
F((1+ (log ) )u) < 28.2 <30 = pora, (t,u) € [1,00) x [0, 100].

Thus, the conclusion of Theorem 10.2 applies and hence the problem (10.23) has at
least one positive solution u such that

t
N 0]

—— < 100.
re[l.oo) 1 + (logr)s

10.6 Notes and Remarks

In this chapter, we studied the existence of positive solutions for Hadamard frac-
tional differential equations on infinite intervals. As we know, [1, 00) is noncompact,
so a special Banach space was introduced. However, this Banach space was found to
be unsuitable for Hadamard fractional differential equations. In order to overcome
this difficulty, a variant of Banach space was introduced in [164] so that we may
establish some inequalities, which guarantee that the functionals defined on [1, c0)
have better properties. Applying first the well-known Leggett-Williams fixed point
theorem, we obtained the existence of at least three distinct nonnegative solutions
under appropriate conditions. As a second result, we proved the existence of at least
one positive solution for the given problem by using Guo-Krasnoselskii’s fixed point
theorem. The content of this chapter is taken from the paper [164].



Chapter 11
Fractional Integral Inequalities via Hadamard’s
Fractional Integral

11.1 Introduction

Inequalities have emerged as one of the most powerful and far-reaching tools for
the development of many branches of mathematics. The topic of mathematical
inequalities plays quite an important role in the study of classical differential and
integral equations [113, 134—137]. Fractional inequalities are also important in
studying the existence, uniqueness and other properties of fractional differential
equations. Recently many authors have studied integral inequalities by using
Riemann-Liouville and Caputo derivative, for instance, see [35, 44, 65-67, 72] and
the references therein. More recently, some results on fractional integral inequalities
involving Hadamard fractional integral have also appeared [59, 60, 147].

In this chapter, we derive some new fractional integral inequalities via Hadamard
fractional integral with the aid of Young and weighted AM-GM inequalities. The
obtained results correspond to several interesting situations and produce some
important new inequalities as special cases. A Griiss type Hadamard fractional
integral inequality is also established. Moreover, we obtain some new integral
inequalities involving Hadamard integral with “maxima”.

11.2 Hadamard Fractional Integral Inequalities

In this subsection, we discuss some inequalities involving an integrable function
bounded by integrable functions.

Theorem 11.1 Let f be an integrable function on [1, 00). Assume that:

(11.1.1) there exist two integrable functions ¢, ¢, on [1, 00) such that
@1(t) <f(1) < @at), forall te][l,00).

© Springer International Publishing AG 2017 347
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Then, fort > 1, a, B > 0, we have

wIP o1 (I f () + nI @2 ()P f (1)
> o2 (I @1 (1) + wJ*f OuIPf(1). (11.1)

Proof From (11.1.1), forall = > 1, p > 1, we have

(2(v) = f(2) (F(p) — @1 (p)) = 0,

which can alternatively be written as

©(Df (p) + w1(p)f (T) = @1(p)pa(T) + £ (T)f (). (11.2)

el

Multiplying both sides of (11.2) by (10g —) /(I (a)), © € (1,1), and then
T

integrating with respect to 7 on (1, ), we obtain

t

F(p)——

el dt 1 ! el dt
r@ )\ (log;) <Pz(f)7+§01(:0)— (log;) f(T)?

I'e) J,

t

1 ! 1! dr 1 1! dt
200 g | (og) T 1@ s [ (o) s

which yields

Tl e2(t) + 1(P)uI°f (1) = e1(p)u]* 2 (1) + f(P)uIf (1) (11.3)

p—1
t

Multiplying both sides of (11.3) by (log —) /(I (B)), p € (1,1), and then

0

integrating with respect to p on (1, 7), we get

o 1 ! \P! dp
22 ¢2(I)Tﬂ)/l (log;) f(P)?

a 1 ! \! dp
+HJf(t)T,3) ] (log;) <P1(,0)?

. Lo\ dp
> pl ¢2(f)m 1 (log;) 901(/0)7

a 1 ! N\ dp
+HJf(f)m 1 (log;) f(P)F-

Hence, we deduce the inequality (11.1). This completes the proof. |
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As special cases of Theorems 11.1, we obtain the following results.

Corollary 11.1 Letf be an integrable function on [1, 00) satisfying m < f(t) < M,
forallt €[1,00) and m,M € R. Then, fort > 1 and a, B > 0, we have

(logn)f (logn*
m—F(,B m 1)HJ (1) +M—F(a n l)HJ 1)

(logn)**#

o B
>m Fat DFGE LD + uJfOuI’f ().

Corollary 11.2 Let f be an integrable function on [1, 00). Assume that there exists
an integrable function ¢(t) on [1, 00) and a constant M > 0 such that

p(M) —M =f(1) < () + M,
forallt € [1,00). Then, fort > 1 and o, f > 0, we have
M(log )P
r'g+1)

M(log t)® M?(logt)*+h
F+1)" T+ DB +1)
> ul oI’ () + uI“f OuI’f (1)

M(logt)f | M(log 1)*
rg+ 0™ O Fa

wlP oI (1) + nI*@(OnIPf (1) + wl% (1)

JPF(r) +

P ().

Theorem 11.2 Let f be an integrable function on [1,00) and 0y,0, > 0 are such
that 1/6y + 1/6, = 1. Suppose that (11.1.1) holds. Then, fort > 1, o, f > 0, we

have

| (log t)ﬂ 3 o 1 (log t)oz
@™ (@=D") O+ g ro

+ 5o P o1 (D) + wIf O uPf (1)
> w0 (O f (@) + uIf O P o1 (7). (11.4)

I = en)™) ()

Proof Setting x = ¢2(7) —f(t) and y = f(p) — ¢1(p), T, p > 1, in the well-known
Young’s inequality:

1 1
2 >xy,  VYxy=0, 6,,6,>0, o tg =1

1 o 1
—X +_V
92 1 2

61
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we get

0 = FO)" + ()~ o1 ()
1 2
> (p2(0) = SO (0) ~ 01(p)). (11s)

t a—1 t B—1
Multiplying both sides of (11.5) by (1og ;) (log ;) /(xpT (@) T (B)),

7, p € (1,1), and then integrating with respect to T and p from 1 to ¢, we have

Glﬁfﬂ(l)(f)HJa(ﬁﬂz -Hh@ + HJa(l)(t)H]ﬁ(f 0
> wJ (@2 —f)(l‘)HJﬁ(f—wl)(f),

which implies (11.4). O
Corollary 11.3 Let f be an integrable function on [1, 00) satisfying m < f(t) <M,
forallt e [1,00) and m,M € R. Then, fort > 1 and a, B > 0, we have

(log)**F (log 1)?
Fe+Hrpe+1) rE+1

(log1)*
I'a+1)

(m + M)* (1)

wIP2(0) + 20 F (I P (1)

zz(m+M)( U0gD"  rary 4 020" ﬁf(r))

rg+n" Fe+n"

Theorem 11.3 Let f be an integrable function on [1,00) and 0,0, > 0 are such
that 0 + 0, = 1. In addition, suppose that (11.1.1) holds. Then, fort > 1, a, B > 0,
we have

(logt)ﬂ HJa (t)+92 ( g)

e B
"TE D) INCES )HJ f(®)

(log1)”
reg+1
(log 1)~

_logh)™ 18
+92F(a+1),,1 o1(D). (11.6)

> 502 — N Oud? (f — e)* () + 01 ————nJ*f (1)

Proof Letting x = ¢o(7) —f(r) and y = f(p) — ¢1(p), T, p > 1 in the well-known
Weighted AM-GM inequality:

01x + Opy > x"1y"2, Vx,y>0, 6;,6,>0, 6, +6,=1,
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we have

01(¢2(7) = f (1)) + 6:2(f(p) — @1(p))

> (@2(0) =f(@)" (F(0) = 1(p) ™. (11.7)
a— p-1
Multiplying both sides of (11.7) by <log %) 1(log é) /(o (@) (B)),

7, p € (1,1), and then integrating with respect to t and p from 1 to ¢, we obtain
016" (D) (ORI (02 = ))®) + O * V)OI (f — 1) (1)
> w02 =N Oud’ (f — o) (1)

Therefore, we deduce inequality (11.6). a

Corollary 11.4 Let f be an integrable function on [1, 00) satisfying m < f(t) < M,
forallt € [1,00) and m,M € R. Then, fort > 1 and a, B > 0, we have

(log 1)**# (logn)* 4
Fa+ )G+ Tarn™ /O
a+p B
(logr)** (logn)” L)

="T@+nr+n  TE+1
+ 240 (M = )2 (Od? (f —m)? (1),

Lemma 11.1 ([95]) Assume thata > 0,p > g > 0, and p # 0. Then

ar = (gkqppa—i-p_qu) , for any k > 0.
p p

Theorem 11.4 Let f be an integrable function on [1, 00) and there exist constants
p > q > 0, p # 0. In addition, assume that (11.1.1) holds. Then, for any k > 0,
t> 1, a, B > 0, the following two inequalities hold:

P—4,: (log1)*
Fa+1)

q a—r a—r — ¢ (logt)”
(Bl) H-Ia(f_(pl)z(t) + quPI HJa(/)l(t) < qu/)pHJaf(t) + p qu ( g ) )
p p p  TIle+1

q q=—p q=p
(A1) wI* (@2 — )7 () + gk 7 () < gk 7l (t) +

Proof By condition (11.1.1) and Lemma 11.1, for p > ¢ > 0, p # 0, it follows that

q—r

(020 = F@)F = KT (0a(0) = () + Sk, (11.8)

t a—1
for any k > 0. Multiplying both sides of (11.8) by (1og —) /(@) T € (1,0,
T

and integrating the resulting identity with respect to 7 from 1 to ¢, we find that
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q,¢ (logt)®
T'a+1)

w02 —f)7 < gk* (1% 02(0) — n*F () + ©

which leads to inequality (A;). Inequality (B;) can be proved by employing similar
arguments. O

Corollary 11.5 Let f be an integrable function on [1, 00) satisfying m < f(f) < M,
forallt € [1,00) and m,M € R. Then, fort > 1 and a > 0, we have

o _ 1/2 (4 (IOg—t)a
(A2) 20" M =20 + () < M + D o=
_(log)* (log)*
apr o \1/2 o
(B2) 2uJ*(f—m)/=(t) + m T@+1) +1)— Jf()+F( +1)

Theorem 11.5 Let f and g be two integrable functions on [1,00). Suppose
that (11.1.1) holds and moreover, we assume that:

(11.5.1) there exist integrable functions Yy and yr, on [1, 00) such that

Yi(1) < g(1) < ¥a(1),  forall tefl oo).

Then, fort > 0, a, B > 0, the following inequalities hold:

A3)  wIP YOI FO+rI*02(DndPg(1) = uIP v (O 02 () +uIF (I 5(1).
(B3) HJ%I(r)HJ“g(t)+HJ“wz(r)HJﬁf(z) > Hfﬂqol(r)HJ“wz(t)+HJﬂf(t)HJ“g<r>.
(C3)  wJ wz(z)HJ“m(r)+H1“f(z)HJﬂg(r) w2 (t) P () + TP Yo (DI f (2).
(D3)  wl o OudP Y1 (O +uI f (O rIP (1) = 1I* @1 ()ud? () +uIP Y1 () nI“f (2).

Proof To establish (A3), from (11.1.1) and (11.5.1) for ¢ € [1, 00), we have

(p2(v) = f(2) (g(p) = ¥1(p)) = 0.

Therefore
p2(1)g(p) + Y1(p)f (r) = Vi(p)e2(7) + f(T)g(p). (11.9)

t a—1
Multiplying both sides of (11.9) by (log —) /(T (@), © € (1,1), we get
T

1 ryo—l1
(log )" )

ryo—1
log) "0 (1o

(log t)ot—l
T%(f) + ¥1(p) T(@)

(10g £)" (1) + £(p)
e OO TR

g(p)

> Y1(p)
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Integrating both sides of (11.10) with respect to T on (1, t), we obtain

! 1! dr 1 ! 1! dr
g [ (e D) 0T s [ (eet)” s

=00 [ (022) T 0T 4w [ (e ) o

Thus we have

8()ul*o2(t) + V1 (P)ul f (1) = Y1 (P)ul* 2 (1) + g(p)u*f (1).  (11.11)

g1
t
Multiplying both sides of (11.11) by (log —) /(" (B)), p € (1,1), we have
p

(102)"
g(p) + m«n%

p-1 N
%W (p) + HJaf(f)%

Integrating (11.12) with respect to p on (1, ), we get the desired inequality (A3).
We can establish (B3)—(D3) in a similar manner by using the following
inequalities:

(B3)  (¥a(r) — g(1) (F(p) — ¢1(p)) = 0.
(C3)  (¢2(7) = f(7) (8(p) — ¥2(p)) = 0.
(D3)  (p1(7) —f(2) (8(p) — Y1 (p)) = 0.

> gt (1) g(p). (11.12)

|
As a special case of Theorem 11.5, we have the following corollary.
Corollary 11.6 Let f and g be two integrable functions on [1, 00). Assume that:
(11.6.1) there exist real constants m, M,n, N such that
m<f(t) <M and n<g(t) <N, forall te]l,o0).
Then, fort > 1, a, B > 0, we have
n(log t)? t nM(log t)*+#
(a9 OBy ¢ MO gy » MBIy
rg+1 F( +1) Fa+DCB+1
i f(t)HJ'ng(r). N
m(logt) N(logn)* 4 mN (log )*
B ———ut%8(t) + ———uJf(t) = +
(Bs) TG+ g(®) TR [0 = F@+ OB+

wIPFOuI*g().
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MN(log 1)*+# " p M(log £)*
F(a-i/;l)F(,B+ ) + wfOut"gl) = T+ 1)11
N(logt) o
re+n" f(i);g
mn(log t)® o P m(log 1)*
F(a-}g—l)[‘(ﬂ+ ) + wlf(Out"g() = T@+1) 1)H
n(logr) o
TG+ 1)HJ 1 ().
Theorem 11.6 Let f and g be two integrable functions on [1,00) and 6,6, > 0
satisfy the relation 1/0y + 1/0, = 1. Suppose that (11.1.1) and (11.5.1) hold. Then,
fort> 1, a, B > 0, the following inequalities hold.:
1 (logn? o o 1 (logt)“
(As) 0T+ 1)HJ (o2 =) (1) + BT+
? 1l (@2 = )OI’ (Y2 — &) (). X
(Bs) Q—IHJ“ (02 =N (I’ (Y2 — )" (1) + Q—ZHJ“(% — )"0t (02— )" (1)
> H(Ja((pZ)ﬂ_f)(WZ — )0’ (92 —f()(l/fz)— 8)(@).
L (ogt)" o vy 4 L 108D g e
TR O B s = )0
?HJa(f_ﬁal)(t)HJﬂ(g_l//l)(t)- .
(Ds) 9_1HJa(f_ )" (OrI? (g — 1) (1) + O_ZHJa = VD)2 Oud? (f — o) * (1)
> p*(f — ) (g = YOI (f — o) (g — ¥ ().

Proof The inequalities (As5)—(Ds) can be obtained by choosing the following
parameters in the Young’s inequality:

\

JPet) +

(Cq)

\

JPet) +

(D4)

w? (Y2 — )" (1)

(Cs)

(A5) x = @a(7) = f(2), ¥y = va(p) —g(p).
(Bs) x = (p2(v) = f () (W2(p) — 2(p)), ¥y = (¥2(7) — 8(0))(p2(p) — f(p))-
(Cs)x =f(r) —pi1(r), y=g(p)—v1(p).
(Ds) x = (f(r) — 1(0)(g(p) = ¥1(p), ¥y = (g(x) = Y1()(f(p) — @1(p))-

|

Theorem 11.7 Let f and g be two integrable functions on [1,00) and 6,6, > 0
are such that 0, + 0, = 1. Suppose that (11.1.1) and (11.5.1) hold. Then, fort > 1,
a, B > 0, the following inequalities hold:

B a
(As) 6 Ifizg—:—) 1)HJa‘P2(t) + 6, I‘(izg—:—) l)HJﬂl,’&(f)
1 B 1 o
> I (pa—=D) (O (=) (O +6, F((‘;g f ()6, F((‘;g f S50,

(Bs) 01T 02(Dud? v (1) + 01w f (DI (1)
+0u T V2 (P 02(1) + 2T g (DI F (1)
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> 1 (@2 — (W2 — 2 (Oud? (Y2 — 9)" (02 — H* (1)
+015 02 (DB g(t) + 01 5JF (DI Ya(2)
+ 00 Yo () I L (1) + O d® g(t) TP 2 (1)

(logn)? (logn)* 4
(Cs) 61 TG+ 1)HJ f(r) + 921"(0: n 1)HJ g(®
B o
= I (=)™ Ol (= v (1) + 6, F‘z;g f 046, F(l‘;g f a0,

(Ds)  Ord*fOuI?(t) + 015" 01 ()P Y1 (1)

+021°g(O I F (1) + 0o * Y1 ()P 1 (£)

> wl(f — o) (g =¥y > O’ (g = ¥)" (F — ) (1)

+O01 I F OIP Y1 (8) + 12T @1 ()P g (2)

+0,50°8(O I’ 01 () + O Y1 (DI F (2).
Proof The inequalities (Ag)-(Dg) can be established by choosing the following
parameters in the Weighted AM-GM:

(Ae) x = ¢2(7) —f(2), ¥y = v2(p) —g(p).
(Bs) x = (p2(v) = f () (W2(p) — g(p)), ¥y = (¥2(7) — () (p2(p) — f(p))-
(Co) x =f(r) —p1(z), y=2g(p)—¥1(p).
(D) x = (f(r) — 1 (2)(g(p) — ¥1(p), y = (g(r) —¥1()(f(p) — ¢1(p))-

|

Theorem 11.8 Let f and g be two integrable functions on [1,00) and there exist
constants p > q > 0, p # 0. Assume that (11.1.1) and (11.5.1) hold. Then, for any
k>0,1t>1,a B >0, the following inequalities hold:

A7) (g —f)r (Yo — )7 (1) + gk%ﬂmg@ + gk%ﬂmm

q—p q=r — g (1 1%
D T o (t) + KT aafo( + P—9xh 108D"
P P P Fa+1)

(B7) w2 —f)‘g’ O)uJ? (Y2 — g)’g’ (®

+Iijk"1;)”HJ“¢2<r)HJﬂg(r) + I%k%ﬂf(r)m V(1)

=

q =P o ﬂ q =P o /3

< ]_?k P gt (I Yo (t) + l;k 7 gJof(O)ud" g(t)
p—q s (logn™*’

p Fa+1D)I'B+1)

() W (F— )7 (g —Y1)7 (1) + I‘;’k%ﬂfwl(r) + gk"%"ﬂﬂm(r)

+

q . e —q. 4 (logn*®
P

a=p q, a>r p
< -k H./afg(l‘) + =k r H.Ia(/)lwl(t) + k .
P p p Ia+1)
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(D7) wI*(f — 1) (P (g — ¥1)7 (1)

q=p q=>p

+Zk 5 I L (Ol (1) + gk 7 o1 (0P g (1)
q—p q9—p

< ?f OO I%k 7 o1 (O (1)

p—q,2  (logn**h
+ kp .
p Fe+DrB+1
Proof The inequalities (A7)—(D7) can be proved by choosing the following param-
eters in Lemma 11.1:

(A7) a=(p2(7) —f(0)(Y2(r) — g(7)).
(B7)  a=(p2(7) —f(0)(¥2(p) — g(p))-
(C7)  a=(f(r) —ei1(1)(g(r) — ¥1(2)).
(D7) a=(f(x) —e1(0)(g(p) — ¥1(p))-

|

Lemma 11.2 Let f be an integrable function on [1, 00) and ¢y, ¢, be two integrable
functions on [1,00). Assume that the condition (11.1.1) holds. Then, for t > 1,
a > 0, we have

(logn)* arin)2
Ta ™ O Glf)

= (a/%02(t) = uJ*f () (wI°f (1) — uT*P1(1))

1 o
A0e D™ 1o (g —)(F — 01)()

T Te+n”
F(ng C;) w4 o f(0) = u 1 (DI f (1) (11.13)
p(i?ff 0;) 1 0af () = 192D (1)

+ u o1 (OnI* ea(1) — Ifizgfi)gfa¢1wz(t).

Proof Forany t > 1 and p > 1, we have

(p2(p) = () (f (1) — ¢1(7) + (p2(1) = f (7)) (F () — 91 (p))
— (p2(1) = f(1) (f (1) — 01(7)) = (92(p) — f(p)) (F(p) — p1(p))

= 2(0) +17(p) = 2 (@)f (p) + 2(0)f (¥) + 01 (T)f (p) — 91 (D)2(p)
+ @2(0)f (p) + @1 (P)f (T) — @1(p)@2(T) — 2 (T)f (7) + @1 (T)2(7)
—e1(Df (1) — e2(p)f (p) + @1(P)e2(p) — @1 (P)f (p)- (11.14)
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t a—1
Multiplying (11.14) by (1og —) J(zI(@)), 7 € (1,1), t > 1 and integrating the
T

resulting identity with respect to ¢ from 1 to 7, we get

(©2(0) =1 () (aIf (@) = uI*01(D) + (a* 2(1) — wI°f (D) (F(p) — @1(p))

l o

= (02 =) (= 9 ) = 0alp) ~1B) (0) — 1(p) T

1 o
= W0 P P = OO + o FO) + F P n 1)

a+1)

D010+ S PIaTp2() + 91 DI FO) — 91 (D 200

1 o
= WG+ 1020 = IS0 = P 07
(log1)* (log1)*
+¢>1(p)<0z(p)r(a D _‘PI(P)f(P)F(a e (1L.15)
a—1

t
Multiplying (11.15) by { log — /(pI’(«)), p € (1,1),¢t > 1 and then integrating

with respect to p from 1 to #, we obtain

(% @2(t) — gJ°f (1) (wI°f (1) — uJ % @1(2))
+ (1% @2(t) — gIOf (1) (HI°f (1) — uI@1(2))

1 o
a2 =D =0 ) 7

(log 1)*
I'e+1)

—ud* (o2 = 1) (f — 1) (1)

. (log 1)~ (log 1)~
ST+ 1) T'a+1)
+ 5l 02O f () + 5I* 1O f () — 1" o1 () aI* @2(2)
+ 5l 02O f () + 5I* 01O f () — u* o1 (O)aI* @2(1)

w*f* (1) + wI*f2(0) = 25 f () *f ()

1 * 1 o 1 «
- F((Zgj_) I)Hjaﬁozf(f) + 1“(((;g-|t-) I)Hfafﬂﬂﬂz(t) - %Hﬂgolf(t)
I o 1 a
B F((ZgjL) 1)HJa<02f(t) + If(zgf 1)H1a¢1§02(f)
1 o
_;(ngr) ! e O, (11.16)

which implies (11.13). O
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Corollary 11.7 Let f be an integrable function on [1, 00) satisfying m < f(tf) < M,
forallt € [1,00). Then, forallt > 1, a > 0, we have

%’” RACE O
= M — o o _ (log t)a
= (A/ZIF((;);‘ 0 uJ f(t)) (HJ 1) m—F(a " 1)) (11.17)
0g

- mflﬁ (M —=f@)(f (1) —m)).

Theorem 11.9 Let f and g be two integrable functions on [1, 00) and ¢y, ¢, ¥ and
Y, are integrable functions on [1, 00) satisfying the conditions (11.1.1) and (11.5.1)
on [1,00). Then, forallt > 1, a > 0, we have

(log 1)*

Tl 1 RO =l Onl*s(O) < 1T 1. 02)] VTG 91,902,

(11.18)
where T(u, v, w) is defined by

T(u,v,w) = (gJ*W(t) — gJu(®)) (aJ*u(t) — gJ*v(t))
(log 1)*
I'e+1)

(log1)*
I'a+1)

HJ"‘vu(l) — H]aU(I)HJaM(l)

H.IaWM([) — HJ“W([)HJ“u(t)

(log 1)*

+ g% (g w(t) — T@+1)

aJ ow(r). (11.19)

Proof Let f and g be two integrable functions defined on [1, co) satisfying (11.1.1)
and (11.5.1). Define

H(t,p) == (f(x) = f(p) (g(x) —g(p)), w.pe(l,p), t>1  (11.20)

a—1

A t
Multiplying both sides of (11.20) by <log ;) (10g ;) /(pl (@), T, p €

(1, 1) and integrating the resulting identity with respect to 7 and p from 1 to ¢, we

get
1 rort ol AN dt dp
L log = logl)  H( pZ2
2F2(a)/1 /1 (102 ) (ng) S

(log1)*

= Ta 1 0O =l Ol (1121
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Applying the Cauchy-Schwarz inequality to (11.21), we obtain

(log1)*
(F(Ot +1)

1 ot a—1 a—1 ded 2
(g [ [ e 2) (o) e )

1 t t el ¢ a—1 Zd‘L' dp
= (2[‘2(0[)/; /1 (log ;) (log ;) (f(x) = 1(p)) 77) (11.22)

1 e £\o! \*! ,dt dp
8 <2F2(a)/] /1 (log§) (log;) (8(x) — g(p)) 7?)

_ [ (logn)” (log1)*
B (F(a+1) T+ 1)

2
o) — HJ“f(t)HJ“ga))

WD) — (HJ“f(r»z) ( g0 <HJ“g(t)>2) .

Since (@2(t) = f(O) (1) — ¢1(1) = 0 and (Y2(1) — (1)) (g(1) — Y1 (1)) = O for

t € [1, 00), we have

(log 1)~
o+ 1"

J (@2 = Hf —@1)(®) =0,

and

(log 1)*
I'o+1)

wl* (Y2 —g)(g—¥1)(@) > 0.

Then, from Lemma 11.2, we get

(logn)* PVING
mfl] F2(t) — (u°f (1))
< wI02(t) — uJf (1) (wI°f () — I @1(2)
(log1)*
F'ae+1)

(log )*
I'a+1)

wI*eif (1) — nJ“ o1 (O J°f (1) (11.23)

+

oI oof (1) — gJ 2 (I f (1)

(log 1)~

J® t
F(a+1)H ©192(1)

+ul 01Ol p2(1) —

= T(fv @1, 902)5
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and
1 o
%Hﬂgzm (w50
< (@Y () — uJ* (D) (aJ*g(t) — uJ* Y1 (1))
1 o
+%Hﬁ%g(f} — ] Y1 (I g(1) (11.24)
1 o
+%Hﬁ Yag(0) — nI (I g(0)
+u Y1 (O Yo (t) — %Hﬂ% V(1)
=T(g. Y1, ¥2).
From (11.22)—(11.24), we obtain (11.18). 0
Remark 11.1 If T(f,¢1,92) = T(f,m,M) and T(g,¥1,¥2) = T(g p,P),

m,M,p,P € R, then the inequality (11.18) reduces to the following Griiss type
Hadamard fractional integral inequality:

(log1)*

o ) TR0 — S50

2
) (M — m)(P—p).

<(1 (log 1)*
“\2r@+1)

11.3 On Mixed Type Riemann-Liouville and Hadamard
Fractional Integral Inequalities

In this section, we obtain some new inequalities of mixed type for Riemann-
Liouville and Hadamard fractional integrals for the functions, which are bounded
by integrable functions and are not necessarily increasing or decreasing like the
synchronous functions.

Theorem 11.10 Let f be an integrable function on [a, c0), a > 0. Assume that:

(11.10.1) there exist two integrable functions ¢y, ¢, on [a, 00) such that
©1(t) <f(t) < pa(t), forall t€la,00), a>0. (11.25)

Then, for 0 < a <t < ooanda, f > 0, the following two inequalities hold:

(E))  wl0(OILF() + wIf(DIE @1(1) = 5I%0a(DIE 01 (1) + wIf(DIEF(0),
(F1)  I2o0udBf () + If (OuTb o1 (1) = 122 (b1 (1) + 14 () Bf (0).
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Proof From (11.10.1), for all z, p > a, we have

(92(7) = f(@D)(f(p) = ¢1(p)) = 0,

which implies that

0 () (p) + @1 (p)f (1) = @i (p)p2(T) + f(0)f (p). (11.26)

Multiplying both sides of (11.26) by (log(z/7))*~!/(zI'(@)), T € (a,t), and then
integrating with respect to T on (a, t), we obtain

t

t a—1 a—1 d
10 e [ (02) 0% + o [ (e ) 0

t t

a1 dt a1 d
=005 | (02) " 0T 0 [ (e D) s

which yields

() ulg2(t) + @1(p) uJof (1) = @1(p) nIg02() + f(p) ulof (©). (11.27)

Multiplying both sides of (11.27) by (t — p)’=!/I'(B), p € (a.t), and then
integrating with respect to p on (a, t), we get

I <P2(f)Tﬂ) / (t— )P F(p)dp + wl2f (”Tﬂ) / (t— )P or()dp

> HJawz(t)m ( — ) oi(p)dp + HJ“f(t)F(ﬂ) ( — )P~ f(p)dp.
(11.28)

Hence, we get the desired inequality in (E;). The inequality () can be obtained
by using similar arguments. |

Corollary 11.8 Let f be an integrable function on [a,00), a > 0 satisfying m <
f(@®) <M, forallt € [a,c0) and m,M € R. Then, for0 <a <t <oocanda,p > 0,
the following two inequalities hold:

Gog )" , (=) o (ogly(-af

(E) Mg 0+ g il 0 2
WIS OIS ), ﬂ ﬁ
(., Gog ), (1~ @(og )

(F2) My /el O + mppe T laf (0 = mMp e

IO UAL0)
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Theorem 11.11 Let f be an integrable function on [a,00), a > 0 and there
exist 0,0, > 0 such that 1/0, + 1/6, = 1. In addition, suppose that the
condition (11.10.1) holds. Then, for 0 < a <t < oo and a, § > 0, the following
two inequalities hold:

(E3)  wl%ox(0IPgi(1) + J“f(t)lﬂf(t)Jr—u T4 (@2 — )" (1)
3 HY 92 @1 H o, F(ﬁ+1)ﬂ (%]

1 (log£)* » 6,

BT P(F— o)1)

= nla@(OIF () + nIif O 1 (1), ﬂ
(B Eosull o) + EFOuitro + -8

1 6 TB+1) e
l‘_
o b= 0

> 102 (Oulf (1) + I ()T (2).
Proof Firstly, we recall the well-known Young’s inequality:

I3 (o2 = )" (1)

1 1
e_xf’l + 9_y92 >xy, VYx,y>0, 6,,0,>0,
1

where 1/60;+1/6, = 1. By setting x = ¢»(7)—f(z) and y = f(p) —¢1(p), T, p > a,
in the above inequality, we have

gil«oz(r) —fO)" + eiz(f(p) — ()" = (02(0) — () — @1 (). (11.29)

Multiplying both sides of (11.29) by (log(t/7))*~'(t — p)?~'/t (@) (B), t.p €
(a, 1), we get

1 (logt/7)* ' (1 = p)f ™!
61 () '(B)

1 (logt/t)* ' (1 = p)P ™!
6, () (B)

(logt/7)*! (t—p)P~
>rF—(oz)( 02(t) —f(T) — T )

Double integrating (11.30) with respect to T and p from a to ¢, we obtain

(@a() = f(2))"

(f(p) — ¢1(p))™ (11.30)

(f (p) — @1(p))-

GilHJz(wz — NI ()(@) + elzsz(l)(r)If(f 0]

> 5% (02 — )OI (f — 1)(0),

which proves the result in (£3). By using the similar method, we obtain the
inequality in (F3). |
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Corollary 11.9 Let f be an integrable function on [a,o0), a > 0 satisfying m <
f(@®) <M,0, =0, =2forallt € [a,00) and m,M € R. Then, for0 <a <t < o0
and a, B > 0, the following two inequalities hold:

, (log H)*(r — a)” (t—a)P e (log ) B2
Es) M) R DB+ T TE+ D" f(Hr( el O+
2% f (OIPF (1)
- (log 2)* 4 (
_z<m+M)(F( - af(): F(ﬁﬂ)mm) ,3
, (t—a)*(log?l) (t—a)® 6 (log )P
(Fs) (m+M) FatDIG+D) Tt n” f()+F(ﬂ+1)1f(t)+

2ulBf (OISF (1)
(log H? (-
22(m+M)(F(ﬁ+l)If()+ NCESIG f(t))

Theorem 11.12 Let f be an integrable function on [a,00), a > 0 and 61,6, > 0
satisfying 6y + 6, = 1. In addition, suppose that the condition (11.10.1) holds. Then,
for0 <a<t<oo,anda, B > 0, the following two inequalities hold:

(t—a)f (log )«

(Es) elmfﬂa(ﬂz(ﬂ + 921_,(“ n I)Iff(t)
B Iya
= W52 =D O =000+ st 0+ 0 )
s 62080 oy, =D s
5 1r(ﬁ+1)“‘p2 T+ 1
a o 8 0, (log ©)! | (1 8
> I3 (@2 =) Oy (f — 1) (f)+91m1 f(f)-l—QZWHJ @1 (1).

Proof Let us consider the well-known Weighted AM-GM inequality
O1x + 6oy > x"y"2 Vxy >0, 6,,6,>0,

where 0; + 6, = 1. Setting x = ¢2(7) —f(r) and y = f(p) — ¢1(p), T, p > a, in the
above inequality, we have

01 (p2(v) — (1)) + 62(F (0) — 91 (p))
> (¢2(7) =@ (F(p) — 91 (p)) ™. (11.31)

Multiplying both sides of (11.31) by (log(z/7))* "' (t — p)?~' /(z " (@) " (B)), T, p €
(a, ), we obtain

g, (02t/D)"~" 1= p)~!
T @T(B)

(p2(7) = f())
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(log(t/))* " (t — )~

+ 0, TT@IP) (f(p) — @1(p) (11.32)
(logt/7)*! o (t—p)f! 6,
> rl“—(a)(%(r) —f(1) W(f(ﬁ) —@1(p)”.

Double integration of (11.32) with respect to T and p from a to ¢, we obtain

01 (2 = DO D@ + O DO F = ) ()

> w302 =N O (F — 1) *(0).
Therefore, we deduce the inequality in (Es). By using the similar method, we obtain
the inequality in (F’5). |

Corollary 11.10 Let f be an integrable function on [a, 00), a > 0 satisfying m <
f@®) <M, 0 =6, =1/2forall0 < a <t < ocoand m,M € R. Then, for
0O<a<t<ooanda,f > 0, the following two inequalities hold:

(log H)* (1 — a)’ (log 2)*

B
E) My DI D) " Tt AL
(log L)* (1 — a) t—af ) e ”
= "T@+DIB+ DTG+ [l O+ 20 M=) PO ¢ =m) (@),
o o e,

Fe+Dr@e+1) r@+1
(t — a)*(log £)* | Uog Lyp
m
- e+ DHrB+1) rE+1
Theorem 11.13 Let f be an integrable function on [a, 00), a > 0 and there exist

constants p > q > 0, p # 0. In addition, assume that the condition (11.10.1) holds.
Then, forany k > 0,0 < a <t < oo, > 0, the following two inequalities hold:

(E7)  wd%(@2 — NP (F—1) P (1) + gk@—f”ﬁ’ (rI%02(DI% @1 () + gJ2f(D)IZF (1))

o o
91 a=p/p (, o a @ pep e P—q,,,t—a*0og )

< =k\9TPIP (4] HICf () +uJ%f ()] 1)) + k9

—p (H a(pZ()af() Haf()a(pl()) Fz(oz 1)

(F7)  I%(p2 — )P ()& (f — 1) ”(t)+gk("_p)/ P (I8 o2 (DT o1 (O +ILf (D Tof (1))
P =4t —a)*(log )"

p a+1)
Proof From the assumption (11.10.1) and Lemma 11.1, forp > ¢ > 0, p # 0, it
follows that

IEF () + 21 (M —£) 2 () B (f —m) V2 (2).

’

< gk@—pm) (1202 (I (1) + IF (DI %1 (1) +

((2(0) —F@)(F () — @1 ()
< gkw—m/p(«pz(r) —f@)F(p) = 1(p)) + ’%kw, (11.33)
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for any k > 0. Multiplying both sides of (11.33) by (log(t/7))*"!/(z"(@)), T €
(a, 1), and integrating the resulting identity with respect to t from a to f, we have

(F(p) — @1 (PP % (@2 — £) VP (1)

p— qk,,/,,( og ;)"
Fa+1)
(11.34)

< I%k(’f—m/ﬂ(f(m — 01 (P)) % (@2 — ) (1) +

Multiplying both sides of (11.34) by (t — p)*~'/I'(«), p € (a,1), and integrating
the resulting identity with respect to p from a to ¢, we obtain

w5 (@ = NP I (f = ) ()"

)

p— qkq/p(t a)*(log ;)
p

qia=p/v, 12y, — *(f —
Spkqplyja((pz HOL S — o)) + (e +1)

which leads to the inequality in (Eg). Applying the similar arguments, we get the
inequality in (Fg). O

Corollary 11.11 Let f be an integrable function on [a, o0), a > 0 satisfying m <
f@®) < Mforallt € [a,00), g = 1,p =2,k = 1 and m,M € R. Then, for
0 <a<t<ooando > 0, the following two inequalities hold:

(Es)  2pd5(M —=)'POIE(F —m)"2(0) + I of O (1)

M(log 2)* m(t—a)® (t — a)*(log L)
*TerD af()+r( +l)HJf(r)+(1— M)W’
(Fs) 215(M — )" 2O pJ%(f —m)' 2 (1) + L2 (1) (1)
cMe—ae m(log L) (t —a)*(log L)
_m f()+F( ) If@) + (1 - M)W-

11.4 Chebyshev Type Inequalities for Riemann-Liouville
and Hadamard Fractional Integrals

In this section, we establish fractional integral inequalities of Chebyshev type
involving the integral of the product of two functions and the product of two
integrals. We make use of the following lemma in the forthcoming results.

Lemma 11.3 Let f be an integrable function on [a, 00), a > 0 and ¢y, ¢, are two
integrable functions on [a, 00). Assume that the condition (11.10.1) holds. Then, for
0<a<t<oo anda,B > 0, we have
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(t—a)* (log £)*

Flat D™ O+ el O = 2L LT

= ulo(f — )OI (2 = )(®) + 5 (2 = DI (f — p1)(2)
r(t(; i)l) (/e (01f + @of = @192) (1) = 15 (2 = — 1)) (1))

+ LB e 4 o — )0~ 2 (02— — o)0)
Tt D o +of =) 1 (2 .

+ wlgo1(O)IG (92 — )(1) + H-]a‘/’z(t)la((ﬂl —)(t) = aJof (DI (@1 + @2)(2),
(Fo) (t—a)? ) (log £)”

o ﬂ o ﬂ
rE+ 0™ O+ ra 1)If () = 2uJ5f ()ILF (1)

=l (f = )OI (92 = ) (@) + 5 (@2 = NOL (= 91) (1)

—a)f
+ Ift(ﬂ i)l) (IS (o1f + @of — @1902) (1) — 1S (92 — ) — 91))(0))

log )¢
+ IE((;g_T_)l) (I (@if + @of — 102) () — I (92 =) (f — 1)) (1))

(Eo)

+

+ uls o1 (D1 (92 =0 + w0215 (91 = (1) = wIf DI (91 + 2) (1),
Proof Forany 0 < a < t,p <t < 00, we have
(p2(p) = f(PN(f () — @1(7)) + (92(7) = (D)) (F(p) — ¢1(p))
= (p2(0) = F(@)F () — @1 (7)) — (@2(p) = f(P)) () — @1 (p))
=12(1) +12(p) = 2 ()f (p) + p2(0)f (¥) + 91 (D)f () — 1 (D2 (p)  (11.35)
+ @2(D)f () + @1(0)f (T) — P1(P)2(T) — 2(T)f (T) + @1 (T)2(7)
— o1 (Df (1) — e2(p)f (p) + @1 (P)e2(p) — @1 (P)f (p)-

Multiplying (11.35) by (log(t/t)*'/(zI"(@)), T € (a,1),0 < a < t < oo, and
integrating the resulting identity with respect to T from a to ¢, we get

(@2(p) =F(P) (I Gf (1) — ulge1 (D) + (aI502(0) — wlof (D) (f(P) — @1(p))

log L)
— W22 =D = )0~ (0200) ~F VTP — o) e
= WO+ L) = OIS ) + 2Pl ) (11.36)
+1(P)ulg1 (D) — @2(0)udg 01 () + f(P)udg02(1) + @1 (P)udof (1) — 1(p) g 92(1)
log 1)
— W )+ I 50020) — IO — 020 )
1 o 1 o
o)t () e

'ao+1) T+1)
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Multiplying (11.36) by (t—p)*~' /I (at), p € (a,1),0 < a < t < 00, and integrating
the resulting identity with respect to p from a to ¢, we obtain

(#af () = ul g1 D) UG @2 (1) — Iof (D) + (0I5 02(D) — wlof D) Ugf (1) — I3 01(D))

W2 =N = O = =D - wl))()r((g+)1)
o ( ) ( g )Ot o o
= WO F s PO g~ 2 OLF @)

+ 5Jof DI 02 (t) + w01 (DI (1) — ady @1 (DI a(1)
+ wlo2(OIf () + o f (DI 01(1) — ulGe2(DI; @1 (1)

o (t—a)* o (t—a)* (t—a)®
—ul; ¢J()F( +1)+H‘Ia¢1(p2(t)m_l‘1a Lf()F( s

" (log H)* (log £)* (log £)*
—I;p J()F( +1)+Ia‘ﬂl¢2(f)m Lf()r( )

Therefore, (Ey) is proved. (F9) can be derived by using the similar arguments. O

Theorem 11.14 Let f and g be two integrable functions on [a,c0), a > 0 and ¢,

@2, V1 and W, are integrable functions on [a, 00) satisfying the conditions (11.10.1)
and

(11.14.1) there exist integrable functions ¥\ and Y, on [a, 00) such that

Yi(f) < g(t) < Ynp() for 0<a<t<oo.

Then, for all 0 < a <t < 0o and o > 0, the following inequality holds:

(t_ )a oz ( g )a o o o o o
Ry RO + e ) = IS IR0 — [ (0T 80)
< |K(f, 01, 02) "2 |K(g, Y1, ¥2)| /2, (11.37)

where K(u, v, w) is defined by

K(u,v,w) = %HJg(uw + uv —vw)(z)
1+ 020" e 1w — o (1) — 200 u (I u(r).

Te+1)¢
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Proof Letf and g be two integrable functions defined on [a, 0o) satisfying (11.10.1)
and (11.14.1), respectively. We define a function H for 0 < a < t < oo as follows

H(z, p) := (f(z) =f(p)(g(7) — g(p)). T.p € (a.0). (11.38)

Multiplying both sides of (11.38) by (log(t/7))* '(t — p)*~'/(z"*(@)), T.p €
(a,t), and double integrating the resulting identity with respect to T and p from
atot, we get

Fz;(a) /at/at (IOg %)H (t—p)* ' H(z, p)dpd{

— o 1 o
- F(tax fl)”’ 80 + r(<o g+)1>’”fg(” — nSF I8 — I (D28 (0.

(11.39)

Applying the Cauchy-Schwarz inequality to (11.39), we have

2

Fat ™0+ 7o

s(r%(a) [ [ (ee)™ =p g0 —f(p))zdpd{)

N o T —

=< =" e + ( 02 )" japo (r)—ZHJ“f(t)I“ﬂf))

@ 1 AT
((I 9 M13fg<r>—HJ‘;‘ﬂr)IZ‘g(r)—I;'f(r)HJZg(n)

t—a)* (log Hy* oo
8 (F(a+ #as O+ Fo e (0 = 26l5g 0 g(t)) (11.40)

Since (¢2(1) = f(D))(f (D) — ¢1(®)) = 0 and (Y2(t) = f())(f (@) — Y1 (1)) = O for

t € [a, 00), we get

F(t(;j_)l)HJZ((wz =N =e))1) =0,
F(( g+)1) I (@2 =N = 1))(1) = 0,

152;1)1)’”5((\”2 —8)(g— v =0,
(log L)«

et e (V2= 9= 9))® 2 0.
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Thus, from Lemma 11.3, we obtain

(t_ ) o ( g )Ot o o
@ +1)ij()+F( +1)1f(f) 2udof (DIf (1)

< I — )OI (@2 — )0 + 1T (@2 — YOI — 1) (D)
+ F“(;—fl)HJz«pzf +of — o) (0)
1 08 et o — pron® (11.41)
Ta+1)@ @ % D192 .

+ ulq 01O (92 = ) (O + 5IG02(015 (01 = ))(0) — I of (D15 (01 + 92) (D)

_ F“( ;j_)l)HJg(qozf +oif —0192) (1)

(log £)* I(@of + oif — 0102) () — 26 F(DICF(2)
T+ 1) W Tof— o 1S ol (Dl

=K, ¢1,92),

+

and

(t—a)® (log L)«

o 2 o o
Tt 1) g0+ ot 1)1 “g?(t) — 2% g (1) % g(1)

< wly (@ —=v)OI; (Y2 — )0 + uly (V2 — 8) (I (g — Y1) (1)
+ %Hﬁ;(m +Y1g — Y1) (1)

+ 002" g+ g — )0 (11.42)
F(oe—i—l) a\V28 18 12 .

+ ulg 1 (OIG (V2 — @) (1) + nlg 2 (DI (Y1 — @) (1) — nJag I (Y1 + ¥2) (1),
= Ift(;i)l)yfi(mg + @18 — 0192) (1)
+ L8 o+ prg— 1) (0 205 )
F( +1) o\ P28 18§ — @192 H

= K(g. V1. ¥2).

From (11.40), (11.41) and (11.42), it follows that the required inequality in (11.37)
holds true. o
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Corollary 11.12 If K(f,¢1,92) = K(f,m,M) and K(g,¥1,v¥2) = K(g,p,P),
m, M, p, P € R, then the inequality (11.37) reduces to the following fractional
integral inequality:
(t—a)* (log £)*
J + =
Tlat 080+ F
(t—a)® (log £)” )2
—m
I'le+1) I'oa+1)

o Y 1/2
+ (lzf(r) )+ Mg (=) ) }

1f8(t) — udaf D15 g(t) — If (D uT58(1)

[(Hfzfm I7() + M

I'e+1) 'o+1)

(t—a) (log L)~ )2
rae+n ’Ta+n

woin e (—ar  (ogh \21"
+ (Hfag(t)—lag(f)+pr(a+ 0 PTra+ 1)) '

x [(HJ"‘ (1) — I°g(6) + P

Theorem 11.15 Let f and g be two integrable functions on [a,00), a > 0.
Assume that there exist four integrable functions @1, @2, ¥ and , satisfying the
conditions (11.10.1) and (11.14.1) on [a, 00). Then, for all 0 < a < t < 0o and
a, B > 0, the following inequality holds:

(t—af (log D)* 4 wrinif p N
mlﬂafg(t) + —— Fa il Pra(t) — nI?f(O)IPg(t) — IPF(t) % g(1)
< Ki(f. o1, 9) "2 |Ki (g, Y1, )| /2, (11.43)

where K| (u, v, w) is defined by

—a)P
Ki(u,v,w) = %HJZ(MW + uv — vw)(1)
—i—%]ﬁ (uw + uv — vw)(f) — 2HJZu(t)Ifu(t).

Proof Multiplying both sides of (11.38) by (log(t/7))*~'(t — p)?~!/(zI"(e) "(B)),
7, p € (a,t), and then double integrating with respect to T and p from a to ¢, we get

—F(a)lp( 5 / r / (02 D)" -0 Her e

(t—a)f f()+(g)

— _ o B _ B o
- F(Ol + 1) F( 4 1) afg(t) HJuf(t)Iag(t) Iaf(t)HJug(t)~

(11.44)
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Applying the Cauchy-Schwarz inequality to double integrals, we have

IEZ‘(;—T_)])HJng(t) + 1'('( g+)])lﬂtfg(t) _ HJJ(t)Iag(t) _ Iaf(t)HJag(t)

- [F(a)lf(ﬁ) [ [ (o)™ a0t Poans
’ m AL f)a_l -0 P
F("‘)F Ce)r() / / )« P)’s_lf(r)f(p)df’d%} :
) [m /at /at (toz %)a_l (t—p)" gz(f)dpd%
* T@® / / (1loe )™ = " (a0

1/2
> [ AN p-1 dr
_W/a /a (IOg ?) (t=p) g(f)g(p)de} :

Therefore, we get

—a)” log !
Fla 10+ i A0 SO0 S 0S50
(t=a) (log £)* 12
_ ﬁ "
<[F(ﬂ Ty O+ g el O = 2O, f(t)}

o /2
(t—a) @,2 (log ) B 2 o B |
§ [F(ﬂJrl) Jas’ O+ (o +1)I a8 (0 =2ul58Dl 8 | .

Thus, from Lemma 11.3, we have

t—a)f (log H)* s

mmf () + EESIL BF2(t) — 250%f (1P (1)

< w(f — )OI (92 — )(O) + 1T (@2 = HOIE(F — 91)(2)
(t—a)f

rp+ I)ng(‘pi +o1f — 192) (1)
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+ LB bt + of — g0 (11.45)
T@+1) a\@ P1 192 .

+ w0 (DI (02 — (O + wISo2(DI (01 = 1)(1) = I Sf DI (91 + 92)(2)

_ (—af
rg+1i
(log £)*
I'o+1)

= Ki(f, ¢1.92),

g (@of + oif — @102)(1)

P(oof + ouf — 0192) () — 250 (DIPF (1)

and

(—a ., (oghy
r@+ 0" O Fa
< % (g — )OI W — () + (W — DI g — ) (1)

(t—a)f
rg+1

1 o
F((ag +)1) (Y28 + Y18 — V19) (1) (11.46)

+ 1Y (DI (Y — @) (1) + wIEY2 (VI (Y1 — g) (1) — nI2g(DIE (W1 + ¥2) (8)

_ B
= Ift(ﬂ j_)])HJg((ng + 018 — 192 (1)

(log £)*
I'ae+1)
= Ki(g, V1, V2).

1P (t) — 24 0%()1P (1)

g (Vg + vig — Yivn) (1)

(28 + 018 — 0102) (1) — 208 (DIP g (1)

From (11.39), (11.45) and (11.46), we obtain the desired inequality in (11.43). O

Corollary 11.13 If K(f, ¢1,92) = K(f,m,M) and K(g,¥1,v¥2) = K(g,p,P),
m, M, p, P € R, then inequality (11.37) reduces to the following fractional integral
inequality:

—a)f w
F(t(ﬂ i)l)HJng(t) + p(( ~ +)1)Iffg(t)—HJ“f(t)1ﬂ (1) — PP (D)l (1)
(t—a)f (log £)* )2
rg+1) "T@+1

= [(Hfzf(r) 1) + M
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gty  -af \*]"
F(a+1)_mF(ﬂ+1))

(t— a)ﬂ (log )« )
reg+ 1) F(a +1)

Y log H)* \>1"°
+(HJ“g(t)—Iﬂg(’)+P1£(ﬁi)1) PF(((;gjr)l))} §

+ (Iff(t) — wlof (1) + M

y [(Hng@ 1g(0) + P

11.4.1 Applications

In this subsection, we demonstrate a method for constructing four bounding
functions, and use them to give some estimates for Chebyshev type inequalities
involving Riemann-Liouville and Hadamard fractional integrals for two unknown
functions.

From the definitions, for 0 < a = fp < iy < th < -+ <t < tpy1 = T,
we define two notations of sub-integrals for Riemann-Liouville and Hadamard
fractional integrals as

1 fi+1 _ )
Iy, f(T) = m/ (T —0)* Yf(x)dr, j=0,1,...,p. (11.47)
i
and
N 1 ag ' dr
g f(T) = m/l (log ?) f(r)? j=0.1,....p. (11.48)

Note that

I2f(T) = Z Y (D)

. ; n a—1 - a—1
- / (T =00 + / (T = 0" f(x)d

- a—1
+-+ '@ )[ (T —0)* f(r)dr,
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and

14

wlZf(T) =Y J2,  f(T)

j=0
1 n T\% ! 1 2 T\ !
m /; (lOg ?) f(l’)d'l,' + m \ (log ;) f(‘[)df

17 ™\
et m : (log;) f(r)dr.

Let u be a unit step function defined by

1,t>0,

S 11.49
=157 (11.49)
and let u, () be the Heaviside unit step function defined by
I,t>a
) =u(t—a) =1’ ’ 11.50
W =ut—a = 1= (11.50
Let ¢ be a piecewise continuous functions on [0, 7] defined by
@1(t) = my (uo(t) — uy, (1)) + ma(uy, () — up, (1)) + .. + M1y, (1)
=myug(t) + (my —m)uy (1) + ... + (mp1 — my)uy, (1)
P
= (i1 — m)uy (1), (11.51)
j=0
wheremo =0and0 <a=1t <t <t < <t, <tpp1 =T.
Analogously, we define the functions ¢,, ¥ and v, as
P
02(0) = Y (M1 — My)uy (1), (11.52)
j=0
p
Vi) =Y (g1 — m)uy (1), (11.53)
j=0
P
Ya(t) = Y (Nj1 — Npuy (1), (11.54)

J=0
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F 3 y y= (92 ([)

—_———

y=¢/()

A J
~

a t t, t t, (8 T

Fig. 11.1 Functions f, ¢; and ¢,

where np = Ny = My = 0. If there is an integrable function f on [a, T] satisfying
condition (11.10.1), then we get mj1; < f(f) < My, for each t € (1, t41],
j=0,1,2,...,p. In particular, for p = 4, the time history of f has been shown
in Fig. 11.1.

Proposition 11.1 Let f and g be two integrable functions on [a,T]|, a > 0.
Assume that the functions @1, 2, V1 and Y, defined by (11.51), (11.52), (11.53)
and (11.54) respectively, satisfy (11.10.1) and (11.14.1). Then, for ¢ > 0, the
following inequality holds:

(= (log )* o . )
Tt ™ 0+ - Tatn Sfe(t) — ulof (VIS () — I5f (D)5 g (1)
(11.55)

1
< |K*(f, o1, o) |2 [K* (g, Y1, ¥2)|2,
where

K*(u, v, w)(T)

IET((X——:’)I) Z {wHJt, e 4(T) + v uls, 4 W(T) = vw [(log %) - (log —) ] }

(10g DL

T+ T+ Z % Ly (D) + 0L () = ow [(T = 5)" = (T = 1j41)°] }

p P
-2 (Z # u(T)) (Z I, u(T)) .
j=0

J=0
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Proof Since

(4 — L b _yoe—l
Izj,thr](l)(T) - F(O{)/[; (T ‘C) dt

1 . @
=m[(T—fj) —(T=121)"].

1 (ag T\* ' dr
J¢ WT) =—— log — —
W, (D) F(a)L (ogf) 4

el )
S Ta+1) o8 i o8 li+1 ’

we have

"\ mjp Mg a o
E(piga)(T) = Y o (T — 1) — (T = 14.4)].
1¢2 JZ(;F(O[—F]) 'j j+1

i+1N; T\“ T \*
w5 () (1) = Z% [(log g) (log —) ]

li+1

Therefore, two functionals K*(f,¢1,¢)(T) and K*(g, v, v2)(T) can be
expressed as

Ol

p
K*(f, 1. 92)(T) < F( T Zg i1 dp g S (@) + mpiJi,  f(T)
0

)]
T\“ T \*
w2 () )
i it
(log 2

F(a + 1) Z { J+1 ti z/_,_lf(T) + m]+l 4 f/+1f(T)

— mj Mg [(T — 1)* — (T — tj41)%] §

-2 ZHJ f+1f(T) Z t+1f(T) s
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and

K* T) < (t_a)a u
(& Y1, ¥2)(T) < F(O‘—WLDJ:ZO

T\*" T \*
— nj+1Mj+1 IOg — log o
I Tt

(log )* -
F(O{ +1) Z N/'H lzf+1g(T) + it t,t_Hg(T)
j=0

Nit1di4, 8T + i, 8(T)

— N [(T = 1) — (T = 111)%] }

P
=2 2wy Z 118D

J=0

By applying Theorem 11.14, we obtain the required inequality (11.55). |

Proposition 11.2 Let f and g be two integrable functions on [a, T|, a > 0. Assume
that the functions @1, @2, V1 and Y, defined by (11.51), (11.52), (11.53) and (11.54),
respectively, satisfy (11.10.1) and (11.14.1). Then, for a,B > 0, the following
inequality holds:

(t—a)f (log £)*

_ B _ B o
TE+1)e Jofg(t) + ——— CES Pre(t) — wIf(DIPg(t) — IPF () uI%g (1)

(11.56)
< |KF (o1, o)|'2 K (8,90, y)] 2
where

K (u, v, w)(T)
—_— ﬂ p o o
o N O R |

L log ) ¢ P P
* e +1>,Zo Wi u(T) 01y (D) = ow[(T = ) = (T = 1;3.1)/]

P P
-2 (Z sz,t/+1“(T)) (Z Iﬁ»%l”(T)) :
J=0 J=0
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Proof By direct computations, we have

Y-
KiGoneD = 10 %M Iy (D) + My D)
=0

T\* T \*
— mjt 1Mt [(log —) (log —) } }
lj li+1

(IOg 2

F(a + 1) Z % J'qu t/+] () + mj+]]tl ’/-H f(T)

— m M [(T = 1)P = (T—tj+1)ﬂ]}

P P
2> O | [ DD |

J=0 J=0

and

* r— P z
K} (g 91, 2)(T) < % > {Nm « 8T+, g(1)
T

o T o
lj fi+1

(10g )*

a2 > { i 8) + il 8T

— N1 [(T = 5)P — (T —111)"] §

)4 P
—2| Yl 8 | [ D18
Jj=0

J=0

By applying Theorem 11.15, the required inequality (11.56) follows. O
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11.5 Certain Chebyshev Type Integral Inequalities Involving
Hadamard’s Fractional Operators

In this section, we obtain certain new integral inequalities which provide an esti-
mation for the fractional integral of a product of the individual function fractional
integrals, involving Hadamard fractional integral operators.

Theorem 11.16 Let p be a positive function, and f and g be two differentiable
functions on [1,00). If f' € L.([1,00)).g" € Ly([1.00)).r > 1L,r'! +57' = 1.
Then, forallt > 1 and a > 0,
2{ad* @O}y I pOf 08(D)} — w* p(f (1)} wI* {p()g(D)}]
111,181, / / T )T @pe)
< — log — log — ———— |t —p| dtd
= T . I(ng) 02 T |t — p| drdp

= [IF1l, [lg'll,r s @b’

(11.57)
Proof We define
H(T,p) = (f(r) —f(p) (8(x) — g(p), (11.58)
and
rya—1
Ft,7) = % ey, t>1. (11.59)

Notice that the function F'(¢, T) remains positive, forall T € (1,7),¢ > 1. Multiplying
both sides of (11.58) by F(¢, t)p(t) and integrating with respect to t from 1 to ¢, we
get

[ t\* ! p(z)
m [ <10g ;) T%(T’ p)dT
=/ p(f (D¢} —f(P)ut* {p()g(n)}
—g(P)ul* {p(Of (O} +f(P)g(p)u* {p(1)} .

(11.60)

Next, multiplying both sides of (11.60) by F(t, p)p(p), and integrating with respect
to p from 1 to ¢, we obtain

1 Lo N N\ p()p(p)
_1 og 1) (10g ) P9PY i pydrd
Fz(a)/l /1 (1oe ) (ng) T O pTdp (11.61)

=2l p@}u I pOf (08D} —u J* p()f ()} I Ip(Dg(D)}) .
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In view of (11.58), we have
14 P , ,
H(t.p) = / / F )¢ (dyds.

Using the following Holder’s inequality for 7 > 1 and 7! + 571 = 1:

o re e
/ [f )" dydz

P rP
/ f(g@)dydz| <

we obtain

pore s~
1A (z, p)| < / |¢' @) dydz

/Tp/f ' )| dydz i

Since

pore ~ | re .
I/{[]”(y)Ydydz =l [VM dy

and

—1

e cP
‘ /}g’(Z)|‘dz

= |t —pl

’

pore s 57!
/ lg'@)[ dydz

the inequality (11.62) reduces to

|7 (T, p)| < |v -

! p s s
‘ / lg' )| dz

Again, it follows from (11.61) that

%m/lt[(log %)a_l (log p) (f)p(p) e | dedp
= Fz;(a) /1/1 (1o %)H (logé)a_ ”—(?’;(p) It —pl %
P N e 1

A voral | wera

Applying Holder’s inequality on the right-hand side of (11.64), we get

1 t t t a—1 t a—1 p(r)p(p)
rTx)/I /1 (12 ) (log;) L, 1@ p)lddp

dtdp.

porp 57!
/ lg(2)|’ dydz
T T

(11.62)

(11.63)

(11.64)
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= [F'l(a) /1/1 (10g é)ﬂ (1°g£)a_] ’%’:}p) Iz — pl
L «! P@Pe)
X[rf(a)/l [ (e ) (o p) el

In view of the fact that

—1

drdpi| X

dtdpi|

p r
/ I I dy

71

ol |[ 1@

[ vora <.

we get
L (0g 1) (10 1) 2P0
T(“)[ /1 (IOg?) (log ;) p |5 (z. p)| drdp
WU [ (g ) (10g 1) 200)
= |:F’(a)/1 /1 (logf) (l"gp) oy T pldudp] X (11.65)

—1

llg'Il; )““ POPp) | S
{1" (ot)/ / ( o TP =l drdpi|
From (11.65), we have

1 t t a—1 a—1
in(a) /1 /1 (log %) (1°g é) p(tt);;)(p) | (T, p)| dtdp

WIS [ " (0e Y (10e L) 2P@PG) '
=< I (a) [/;/;(logf) (logp) T o |t — pl drdp:| X (11.66)

X |:/1t/1t (log %)ail (log é)a_] l%ljo(p) |t —pl dtdp:|dv

Using the relation 7~ ! + s~! = 1, the above inequality takes the form:

£\ p@p(p)
1"2(01)/ / log (lo ,0) p ITP |z, p)| drdp

(11.67)
11, 1g 1l AN N\ p@pp)
< 71“2(0:) /1. /1. (log ;) (log ;) — P |t — p| drdp.
On the other hand, (11.61) gives
21w {p0} uI* {pOf O8O} — wI* pOF ()} nI* P}
(11.68)

1 t t ryo—1 ¢ a—1 p(r)p(p)
< e ), J (e) (log;) 1 @l dedp.

On making use of (11.67) and (11.68), the left-hand side of the inequality (11.57)
follows in a straightforward manner.
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To establish the right-hand side of the inequality (11.57), we observe that 1 <
T <t 1<p<=<t, and that

0<|t—p| =<t

Evidently, from (11.67), we have

1 tort a—1 a—1
) ), o) (l"g%) PO | (v, ) v

_ L g, 1 N\ o)
= @ // g 7 ("g;) —2p o

=PIl 118"l 7 ™ tp @)
which completes the proof of Theorem 11.16. 0

Now, we establish the following integral inequality, which may be regarded as a
generalization of Theorem 11.16.

Theorem 11.17 Let p be a positive function and f and g be two differentiable
functions on [1,00). If f' € L,([1,00)),g" € Ly([1,00)),r > 1,r 1 +s7! =1,
then

[ ip0} w” p(f g} + wI” (p()} wI* {p(Of (Dg(1)}
— wl pf 1)} wI” p(Dg()} — uI’ POF O} wI* (PN}

I [ [t O\ (o)
U 1 o) () 2y

= VI Mlg'l], 1™ tp@} wI” P @)}

forallt>1, « >0and B > 0.
Proof The inequality (11.60) plays a pivotal role in proving this result. Multiplying

p—1
both sides of (11.60) by (1og %) p(0)/(o T (B)), p € (1), t > 1, which
remains positive, and integrating with respect to p from 1 to ¢, we get

! I o 1) (r)p(p)
rar | [ o) (e 2) e
=y J* {p®)} wI? pOF g} +r I {p(1)} rJ® {p(t)f(z)g(t)} (11.69)
— " pWF O} wI pWDgO} = wl? POFO} 1" PDM} .
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Now using (11.63) in (11.69), we get

Y (e ) N\ p(@)pp)

F(a)l"(ﬂ)/l [1 (toz ) (10% p) o, ol drdp
1 t pt NG A\ ! P(0)p(p)

= m[ /1 (log?) (l"g;) 2, lTTelx

p e 57!
X/ If' 0| dy ‘/ lg' @) dz
(11.70)

Applying the Holder’s inequality on the right-hand side of (11.70), we obtain

m/lt/l’ (IOg %)a—l (1 p) (rr)p(P) (e, p)| dedp
[ [ [y ()
! d a—1 —_
P o (N e

dtdp.

—l

/ o) dy

drdp}
—1

drdp}

'@ dz

or

L e T p@pe)
F(a)F(ﬂ)//(log?) (]"gp) p | (z, p)| dedp

L 1ig 1 (e = pp()
= F(a)F(ﬂ)// log £ (lgp) rp PP d’dfl'm)

In view of (11.69) and (11.71), and the properties of modulus, one can easily arrive
at the left-sided inequality of Theorem 11.17. Moreover, we have | <7 <1t, 1 <
p < t, and hence

0<|t—p| <t

Therefore, from (11.71), we get

vy AN I3 P(T)P(,O)
F(“)F(ﬂ)//(log ) (logp) |7 (z, p)| drdp

_ WL el ‘“ ( t) P(T)P(P) B
=< F(a)F(ﬁ)// lg logp —r,o |t — p| drdp

¢'l[, 7 I P}y Jﬁ ()},

which completes the proof of Theorem 11.17.

Remark 11.2 For B = «, Theorem 11.17 immediately reduces to Theorem 11.16.
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11.5.1 Special Cases

As implications of our main results, we consider some consequent results of
Theorems 11.16 and 11.17 by suitably choosing the function p(¢). For instance,
taking p(f) = (log#)*(A € [0,00),1 € (1, 00)), the following results follow from
Theorems 11.16 and 11.17 respectively.

Corollary 11.14 Let f and g be two differentiable functions on [1,00). If f’ €

L ([1,00)), g € Ly([1,00)), r > 1,r ' 4+ 571 = 1, then forall t > 1, A € [0, 00)
and o > 0,

‘ PCED (tog iy {(tog ' (050}

r‘i+i+oa
— wJ* {(log*f (1)} w* {(log)*g(0)}]

/ ’ t pt N ¢ a—1 1 A A
o O N (PEA R L A LNy

() Ji Ji T P Tp

r’(+2x)

< / " ot log £ 2/\+2a.
< I ey o
Corollary 11.15 Let f and g be two differentiable functions on [1,00). If f’ €
L([1,00)), g € Ly([1,00)), r> 1,r ' + 57! =1, then

ra+a
‘ﬁaog DM 5P {(og 0 (05(1)}

T+ it e A
+F(1+A+/3) (log )* TP r* {(log ) f(1)g()}

=" {(og 10} " {(10g 050} = uI? {(log 10}, 7 {(l0g 0’0}
< Farg h [ (o) (e} oyl dudp

r(1+2)

1 t21+¢¥+ﬁ97
FA+ A+l +A+p oe)

<l N8l

forallt>1, >0, >0and A € [0, 00).

Further, if we put A = 0 in Corollaries 11.14 and 11.15 (or set p(f) = 1 in
Theorems 11.16 and 11.17), we obtain the following results:

Corollary 11.16 Let f and g be two differentiable functions on [1,00). If f’ €
L.([1,00)), g € Ly([1,00)), r> 1,r ' + 57! =1, then forall t > 1 and o > 0,

(log 1)*

T o W00 = Y OF 1" 180
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WL [ 1ot A\ =l
(o) /;/;(10;;;) (log;) “p dtd
ap 1yt (logn)*

1111l g 3o

IA

IA

Corollary 11.17 Let f and g be two differentiable functions on [1,00). If f' €
L([1,00)), g € Ly([1,00)), r > 1,r ' + 571 =1, then

(logn)* 4 (log )’
X )H-] {0} + ———== T+ B
— wl O} 1’ {0} — I O}y I L2}

WS, [ [ ! A
= r(a)rofs)/l/l (1oe 7) (l"gﬁ) o LT
, t (log 1) *F

I rl+ae)r(1+p)

wl® {f (D80}

forallt > 1, a >0and B > 0.

11.6 Integral Inequalities with “maxima” and Their
Applications to Hadamard Type Fractional Differential
Equations

Differential equations with “maxima” are a special type of differential equations
that contain the maximum of the unknown function over a previous interval. Several
integral inequalities have been established in the case when maxima of the unknown
scalar function is involved in the integral, for instance, see [39, 92] and references
cited therein.

Recently in [158], some new types of integral inequalities on time scales with
“maxima” are established, which can be used as a handy tool in the investigation
of making estimates for bounds of solutions of dynamic equations on time scales
with “maxima”. In this section, we establish some new integral inequalities with
“maxima” involving Hadamard’s integral. The significance of our work lies in the
fact that “maxima” are taken on intervals [ft, ] which have non-constant length,
where 0 < f < 1. In many papers, the “maxima” on [t — A, t], where h > 0, is a
given constant.
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11.6.1 Useful Lemmas

Throughout this subsection, we take #, > 0. The following results in Lemmas 11.4
and 11.5 are obtained by reducing the time scale T = R, f(r) = g(f) = 1, and
a(t) = b(t) = 0 for all t € (ty, T) in Theorems 3.3 and 3.2 ([160], pp. 8 and 6),
respectively.

Lemma 11.4 ([160]) Let the following conditions be satisfied.:

(11.4.1) the functions p and q € C((to, T),R");

(11.4.2) the function ¢ € C([,Bto,T),R+) with maXge(gi,.,) 9 () > 0, where
0<B<1;

(11.4.3) the functionu € C ([/31‘0, T) ,R+) and satisfies the inequalities

u(t) < ¢ + /

fo

t [p(s)u(s) +q(s) [max u(E)} ds, te(t,T),
u(t) < ¢(), telpr,t].

Then the following inequality holds:

u(t) < $(0) + h(t) exp ( e +q(s>]ds), fe (. T),

where

s€[B1o,10]

W = max 60)+ [ [p<s)¢(s>+q(s>gg;;§]¢@)} ds, 1€ (1.T).

By splitting the initial function ¢ into two functions, we deduce the following
corollary.

Corollary 11.18 Let the following conditions be satisfied:

(11.18.1) the functions p, g and v € C((ty, T), RT);

(11.18.2) the function w € C([ﬂto,to],R+) with maXse(gy ] W) > 0 and
w(ty) = v(ty), where 0 < B < 1;

(11.18.3) the functionu € C ([,BIO, T), R"’) satisfies the inequalities:

u(t) < v(t) + /

fo

t [p(s)u(s) +q(s) [max u(é)} ds, te(t,T),
u®) <w(t), te[Btto].

Then

u(t) < v(t) + h(r) exp (/t[p(s) + q(s)]ds) , te(t,T),
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where

h(t) = max w(s) + / |:p(s)v(s) + q(s) Erergﬂaiv] m(E)j| ds, te(tT),

s€[Bro.10]
with
v(®), te (7)),
W([), te [ﬂto, to] .

m(t) = {

Lemma 11.5 ([160]) Let the condition (11.4.1) of Lemma 11.4 be satisfied. In
addition, assume that:

(11.5.1) the function k € C((ty, T), (0, 00)) is nondecreasing;
(11.5.2) the function ¢ € C([,Bt(),[o),R+)for0 <B<l
(11.5.3) the functionu € C ([ﬂto, T) ,]R"') satisfies the inequalities:

u(t) < k(1) + / t [pmu(s) + 4(s) max u(&)} ds, te (. T),
1o £€[Bs.s]
u(t) < (1), tel[Btoto].
Then
u(t) < Nk(t) exp ( [ ) + q(s)]ds) L teln),

where

N = max { 1, Mselpro.o] PT5) () % .

k(zo)

The following lemma is a consequence of Jensen’s inequality which can be found
in [104].

Lemma 11.6 ([104]) Letn € N, and let x,, . .., X, be non-negative real numbers.
Then, for o > 1,

n o n
E x| <n! E X
i=1 i=1

11.6.2 Main Results

Theorem 11.18 Suppose that the following conditions are satisfied:
(11.18.1) the functions p and r € C((ty, T), RT);
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(11.18.2) the function ¢ € C([,Bto,to] ,R+) with maXge(gy, ] P(s) > 0, where
0<B<l;
(11.18.3) fora > 0, the functionu € C ([,Bto, 7), R+) with

t

a—1 d
u(t) < rt) + / (1og£) p(s)grer[lgsxslu(é)f,te(to,T), (11.72)

u(?) < ¢(1), te B to]. (11.73)

Then, the following assertions hold:

1
() Ifa > > then

_ t 1/2
u@s{mwnmmmmeﬂ%—ﬁfp%mﬁ],remjx

(11.74)
where
¢; = max {Zto ,(Bto)~ } (11.75)
and
2ci Qo — 1
hi(t) =c; max ¢ ()+u
s€[B1o.10]
t
/ p (s) max ml(g)ds t e (ty,T), (11.76)
fo
with

r(t), te(nT),
= 11.77
o {¢®,tGWmmL a7

In addition, if r € C((ty, T), (0, 00)) is a nondecreasing function, then

u(t) < v/c1Nitr(t) exp (w [lpz(s)ds) , 1€ (1), T), (11.78)

where

(11.79)

N, = max { I, TR selbusl @ 15 ¢2(S)} .

r2(to)
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1
@) If0<a< > then

1/b

2\1a
ut) <t czrb(t) ~+ hy(t) exp u/‘ p (s)ds , t€(ty, 1),
(11.80)
1
whereb =1+ —,
o
¢, = max {zitg”, (,Bto)_b} : (11.81)
and
2 l/a
ha(f) = c; max ¢’(s) + M
s€[Bro,10] t
/ p (s) max ml(“g‘)ds te(t,T). (11.82)

Moreover, if r € C((ty, T), (0,00)) is a nondecreasing function, then

. [2F(a2)]1/a ‘e
u(t) < (caN,) b tr(t) exp T/ p’(s)ds], te€ (t,T), (11.83)
where
b
N2=max{1,m$t’$¢@§. (11.84)

1
Proof (i) a > 5 For t € (%,T), by using the Cauchy-Schwarz inequality
in (11.72), we get

t 20—2 /2 12
u(t)fr(t)+[/ <log§) ds} |:/p(s)(max (g)) } L (11.85)

Observe that

i

t £ 202 log 75
/ (log -) ds =1 / 22770 < ['(2a — 1)t (11.86)
1o 0
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Substituting (11.86) in (11.85), we obtain

1/2
u(t) < r(0) + [P o — D] [ / P ( max u(&)) 9}

52

Applying Lemma 11.6 withn = 2, 0 = 2, we get the estimate

u?(t) < 2r(1) + 2I' Qo — 1)z/t

fo

2
d
P(s) (;2?2‘521 u(E)) L orewn.

Setting v(¢) = 1 2u?(t) for t € (t, T), we have

o) = 2722 + 2F22 D [ ) ( max u@)) -

< 265777 (1) + M/ p (s) max (é_zuz(g‘)) ds

<) + w/ P2(s) max v(%‘)ds (11.87)
and for t € [B1, ty],
v(t) < 177¢7(1) < (Bro) 77 (1) < 19’ (o). (11.88)

An application of Corollary 11.18 to (11.87) and (11.88) leads to
2I' 2o — 1 !
o0 < aro + mo e (= [ 20as). re @
o

where ¢; and A are defined by (11.75) and (11.76), respectively. Therefore, we
obtain the desired bound in (11.74).

Now, if r € C((ty,T),(0,00)) is a nondecreasing function, then, by
Lemma 11.5 with (11.87) and (11.88), it follows that

v(t) < e \Ni 7 (t) exp (w /tpz(s)ds), t € (to. T),

where N is defined by (11.79). Thus, we get the inequality in (11.78). This
completes the proof of the first part.

1 1
(ii) For the case 0 < a < 5 leta =14+ aand b = 1 + —. It is obvious that
o

1 1
-+ 3 = 1. Using the Holder’s inequality in (11.72), for ¢ € (¢y, T'), we obtain
a

t ale— 1/a b 1b
u(t)fr(t)+[ / (1og§)( l)ds] [ / P (s)(m;t;c u(g:)) ﬂ _(11.89)
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For the first integral in (11.89), repeating the process used to get (11.86), we
obtain

t a(e—1)
/ (10 i) Vs < (1 —a(l— e (11.90)

Obviously, I —a(l —a) = a?> > 0and I' (1 —a(l —a)) € R. Substitut-
ing (11.90) in (11.89), we get

u(t) = 1) + [M(@)]” [ / P <s)(maxs]u(s)) "]

Applying Lemma 11.6 with n = 2, 0 = b, we get the following estimate

(1) < 27710 + 207 [ / P(s) ( max]u(g)) ‘sij

fo

Lb e 1 * ds
= 2ur"(1) + [2I (e)1] / p’(s) ( n%;lx]u(g‘)) % t € (to, T).

By taking v(7) = t~?u’(z), we have

(1) < ear’(t) + M / t p(s) Srelbsazcx]v(é)ds, te (t,T),
' (11.91)
and
v(1) < 29”(1)., 1 € [Bio. 1o). (11.92)

An application of Corollary 11.18 to (11.91) and (11.92) yields

271/
v(t) < car’ (1) + hy(f) exp (u / pb(s)ds>, te(t,T),

where ¢, and &, are defined by (11.81) and (11.82), respectively. Thus, we get
the required inequality in (11.80).
Furthermore, if r € C((ty, T), (0, 00)) is a nondecreasing function, then, by
applying Lemma 11.5 to (11.92) and (11.93), we get

t

2 l/a
v(r) < czNzrb(t) exp (M/ pb(s)ds) , te(t,T),

where N, is defined by (11.84). Therefore, the desired inequality in (11.83) is
established. This completes the proof. O
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Theorem 11.19 Suppose that the conditions (11.18.1) and (11.18.2) are satisfied.
In addition, we assume that:

(11.19.1) the function g € C((ty, T),R™);
(11.19.2) the functionu € C ([Bto, T) ,R™) with

t

u(t) < r() +/

fo

A ds
(102 )™ [p0u) + 40 max )| . v .1

(11.93)
u(?) = ¢(1), t€[Br. 1], (11.94)

where o > 0.

Then, the following assertions hold:

1
(@) Ifa > > then

_ t 1/2
u(t)§t|:63r2(t)+h3(t)exp(&.;l) / [pz(s)—l—qz(s)]ds)] e (10, T),

(11.95)
where
3 = max {3152, (Bto) %} . 1196
and
ha(0) = ey max ¢%(s) + Lf“‘”

X / t |:p2(s)r2(s) + ¢*(s) Elel?gx]mf(é)] ds, t e (t,T).(11.97)

with my defined by (11.77).
Furthermore, if r € C((ty,T), (0, 00)) is a nondecreasing function, then

u(t) < /c3Nitr(t) exp (%/ [P*(s) + ¢°(5)] ds) . 1€ (10, 7),

(11.98)

where Ny is defined by (11.79).
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1
b) If 0<a§§,then

1/b

oal/e
u(t) <t |:C4rb(t) + ha(t) exp ([3”0;)] / [pb(s) + qb(s)] ds)j| ,t € (10, T),

(11.99)

1
whereb =1+ —,
o

cs = max {3157, (Bto) "}, (11.100)
and

cs [3T (o? e
ha(f) = ¢4 max ¢b(s)+u
s€[B1o,10]

X [t|: ()P (s) + q°(s) max m1 (5)] ds,t € (1, T).
(11.101)

In addition, if r € C((ty, T), (0, 0)) is a nondecreasing function, then

1 30 (a2 Ve o
u(t) = (csN2)bir(0) exp ([(‘Z,)] [ o +do] ds) L 1€ (0. 7).

(11.102)
where N, is defined by (11.84).

1
Proof (a) o > 3 Using the Cauchy-Schwarz inequality in (11.93), for
t € (tp, T), we have

t £ 202 1/2 ', 5 ds 1/2
oy <o+ [ (02f) ] | [P ]
t 1\ 202 1/2 t ) ds 1/2
[ oy ] | [ () 5

t 1/2
=70+ [1Ca— l)r]‘”; [ / pz(s)MZ(S)f—j]

{ / (s)( max u(s)) fj}mf.
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From Lemma 11.6 withn = 3, 0 = 2, we get

u(t) < 3r°(t) + 3 Qa — 1)t|:/tp2(s)u2(s)d—2s
Io s

Z ds
/ 2(s) ( max]u(é)) 2 :| te (t,T).

Setting v(f) = t~2u*(t), we obtain

V() < C3r2(t) + 31—‘(2(:1)|:/ P (s)v(s)ds—l—[ q (s) max]v(E)dsj| t € (t,T),

(11.103)

and

v(t) < 39’0, 1 € [Bro, 10]. (11.104)
Using Corollary 11.18 for (11.103) and (11.104), it follows that

3F(2a

v(z>sc3r2(z)+h3(z>exp( ) f [() + ()] d ) L (10, T),

where c¢3 and h3 are defined by (11.96) and (11.97), respectively. Therefore, we
get the desired inequality in (11.95).

As a special case, if r € C((ty, T), (0, 00)) is a nondecreasing function, then
by applying Lemma 11.5 with (11.103) and (11.104), we have

3F(2a

v(t)SC3N1r2(f)eXP( 1)/ [P*(s) + ¢°(5)]d ) 1€ (1o, 7).

where N is defined by (11.79). Thus, we get the required inequality in (11.98).
This completes the proof of the first part.

1 1
0 <o = 3 Leta =1+ o and b = 1 + —. Using the Holder’s inequality
o
in (11.93) for ¢ € (¢, T), we obtain

t a(e—1) 1/a ¢ 1/b
I/L(f) = r(t) + |:[ (log g) dSi| § |:/ pb(s)ub(s)fgi:}
4 /b
|:/ q (s) ( max (é)) Si| §
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t 1/b
< (0 + [ % [ / pb<s)u”(s)§]

t b d 1/b
; ds
[feofe)?] '}

By Lemma 11.6 withn = 3, 0 = b, we get

| « ! d
ub (1) < 3arb(@) + [3F(a2)t]l/ |:/t0 pb(s)ub(s)s—;v

t b
+/mqb(s)(rr[1§1x]u(:§)) fs], t € (10, T).

Taking v(f) = t~"u(t), we obtain

1/a
v(1) < et (@) + [(t)]|:/ p (s)v(s)dv+/ b(s) max U(E)d{| t € (t,T),

te \v]

(11.105)
and

v(f) < s’ (), 1 € [Bro, to). (11.106)

Applying Corollary 11.18 to (11.105) and (11.106), we have the following
estimate

[3r@?)]"”

t 1

(t) < car®(t) + ha(t) exp ( f l [p”(s)d + c/’(s)] ds) . 1€ (. 1),

where c4 and h4 are defined by (11.100) and (11.101), respectively. Hence, the
result (11.99) is proved.
As a special case, if r € C((tp, T), (0, 00)) is a nondecreasing function, then by
using Lemma 11.5 together with (11.105) and (11.106), we get

271/
V(1) < caNorP (1) exp (% f [P’ (5)d + ¢’ (5)] ds) , 1€ (1. 7),

where N, is defined by (11.84). Thus, the required inequality in (11.102) is proved.
This completes the proof. O
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11.6.3 Applications to Hadamard Fractional Differential
Equations with “maxima”

In this subsection, the dependence of solutions on the given orders and the bound for
solutions of an initial value problem of Hadamard fractional differential equations
are investigated. We consider the following fractional differential equation with
“maxima’:

WD (0) =f(r,y(r), nng]y(s)), (el=(0.T). (11107)
SE|pt,1
oD YO = e k=1.2....n0 n=—[-el, (11.108)
and initial function

y(@) = (), 1 € [Bto, 10] . (11.109)

where yD* represents the Hadamard fractional derivative of order & (@ > 0), f €
C(I x R x R,R), ¢ is a given continuous function on [Bty, %], 0 < B < 1 and
Nk, k =1,2,...,n are constants.

The problem (11.107)—(11.109) describes a fractional order model in which some
parameters are often involved. The values of these parameters can be measured
only up to certain degree of accuracy. Hence, in (11.107)—(11.109), the orders of
fractional differential equation « and the initial conditions & — k may be subject to
some errors either by necessity or for convenience. Thus, it is important to know
how the solution of (11.107)—(11.109) changes when the values of o and o — k are
slightly altered.

Theorem 11.20 Leta > 0and § > 0 be suchthat0 <n—-1<a -6 <o <n.
Also, let f : [ x R x R — R be a continuous function satisfying the assumption:

(11.20.1) there exist constants Ly,Ly > 0 such that |f(t,uy, uz) — f(t, vy, v2)| <
Li|uy — vy| 4 Ly|uy — va|, for each t € I and uy, up, v, v, € R.

If y and z are the solutions of the initial value problems (11.107)—(11.109) and
aD*z(t) = f (t, z(t), max z(s)) , tel, (11.110)
s€[Bra]
HD“—S—kz(t)|t=to+ =7, k=12,....n, n=—[-(a—20)], (11.111)

with initial function

2t) = (1), 1€ Bro.to]. (11.112)
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respectively, where_ﬁk are constants and ¢ is a given continuous function on [Bty, to]
such that ¢(t) # ¢(t) for all t € [Bty, 1], then the following estimates hold for
to<t<h<T:

1
) Foroz—8>§andt61,

l2() —y()| = t[CsAz(t) + hs(1)

3 Qa —28 — (L2 + L2)(t — 1o) 2
xexp( LT 0)} . (11.113)

(o)t

1
) ForO0<a—§ < Eandtel,
|2() —y(1)] = t[%Ab(t) + he (1)

(11.114)

X exp

[3I (@ = 8)] W + L)t —10) ) |
b (o)t '

where

~ n ﬁj i a—8—j ~ n i i a—j
A0 =1 TG (log lo) 2 TG+ (log lo)
£\’ 1 1
(o) (Femsvm @ 8>r<a>)‘ v

1 | \*? 1 | \*
(@ —8)T () (°g 5) TT@+) (%)

Il = sup L/(t ¥(0), max y<s>)
to<t<h s€[pra]

, €5 = max {362, (ﬂto)_2} , Ce = max {3ﬁt0_b, (,Bto)_b} ,

+

+ 1l (11.115)

)

b=1+

1
a—35
hs() = es_max [5(5) = 9(5)f

3¢5 (20 — 28 —
I (a)t

1 t
) / (LfAZ(s) + L3 max mg(g)) ds,
fo §€(Bs.s]
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and
— b
he(f) = ¢ _max |p(s) — ¢ (s)]
s€[B1o.10]

ce[3T (@ - 6)?)]
I'b(a)t

t
/ (Lll’Ab(s) + le’ max m’;(g)) ds,
1o £€[Bs.s]
with a continuous function my(t) defined by

A(D), tel,
() — ()], 1€ [Bro,10].

my(t) =

Proof The solutions y and z of the initial value problems (11.107)—(11.109)
and (11.110)—(11.112) satisfy the equations

(t)—zn:—n'" (10 i)a_j
YW= T+ 8%

J=1
1 ! A G ds
- log - ,¥(s), —,
+F(a) g (Og S) f(s y(s) grer[lgfs]y(é)) g
and

n

3 ﬁj | t a—6—j
=3 ro = ()

j=1

* F(a]— 5) /,0 (1og 2)

respectively. By the assumption (11.20.1), it follows that

a—8—1

ds
f (s, (9. max. Z(E)) &3

|2(r) = y(@)|
n = a—8—j n a—j
e )
<Yt (lg—) - — T (log-
_;F(a—S—j+1)(0gto) J;F(a—jﬂ) %%

ds

1 1 \e—8—1
[ () (s g 0) §

! t ds

1 a—5—1
7w [ (o) f(s,z(s), sg};g;]z(s)) :
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1 ! o1 ds
" Ta)/ (log3) 7 (S’ «(s), max z(é)) -~
1 4 £\ a—8—1 ds
T /,0 <log E) ! (S’y(s)’ Eg}g‘fs]y(é)) =
0( —5—1
L [ oz D) ™ (530, e ve)

i [ G gf)‘“ (169, s w0) &

a—§—1
<A@+ m (10g E)
(10 =360+ La e 2(6) - max 60 ) &
a—§—1
<A@ + m (log 2)

ds
x (Ll |2(s) = y(s)| + Lo max [z(§) —y(S)I) —, tel
E€[Bs,s] Ky
where A(?) is defined by (11.115), and

|2() = y(O)] = [¢(1) = )|, 1 € [Bro, 10].
Applying Theorem 11.19 yields the desired inequalities (11.113) and (11.114). This
completes the proof. O

In the following theorem, we present the upper bounds for the solution of the
problem (11.107)—(11.109).

Theorem 11.21 Assume that:

(11.21.1) there exist functions ju,v € C(I, R™) such that fort € I, uj, u € R,
[ (t 0 12)] < 2 0) o] 4+ 00 [ (11.116)

If y is solution of the initial value problem (11.107)—(11.109) such that ¢(t) # 0 for
all t € [Bty, ty], then the following estimates hold:
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1
(IIl) Leto > 3 Then, fort €1,

2

)| < I e )"
yOl =tfes Zm Ogg

j=1

3rQa—1)

t 1/2
()t /Z[MZ(S)+V2(S)]dS):| . (1L.117)

0

+ h; (1) exp (

1
(IV) Let0 < < X Then, fort €1,

alml” ()"
=<t log —
0] = [rb(a) (10e 1)

[3re»]" ., , v
+ hg(t) exp —/ [112(5) + v*(s)] ds . (11.118)

Fb(a)t o

where b, c3, cq4 are defined as in Theorem 11.19,

im0 = s e 979 + %
N
<[ | (]:Zlml—%l)(l"gm)_/) #20) max iE) | ds
and
hs(t) = c4 nax. | (s)]”
L [ (o) s ]

with a continuous function ms(t) defined by

n

. t a—j
Y e (e l) e
my(t) = o Fle—j+1) fo

()] 1 € [Bto. 1o] -
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Proof The solution y of the initial value problem (11.107)—(11.109) satisfies the
following equations

N U 1\
0= Fas T (log ro)

J=1

1 4 a—1 d
T Jy (toe5)" 7 (S,y@)» max y(é)) el

N E€[Bs,s] S

y(1) = ¢(1), te[Bto, o]

For @ > 0, by using the assumption (11.21.1), it follows that

. ;] 1\
1| < — | log—
@l = j§=1 T ey
t

1 t a—1 ds
+ @ : (log E) (M(S)Iy(s)l + v(s) 52?2& |y(g)|) =, e I
ly®| = [p®)], t € [Bto.10].

Then a direct application of Theorem 11.19 yields the estimates in inequali-
ties (11.117) and (11.118). This completes the proof. O

11.7 Notes and Remarks

We have obtained some integral inequalities involving Hadamard fractional integral
for integrable functions bounded by integrable functions. Some new inequali-
ties of mixed type for Riemann-Liouville and Hadamard fractional integrals are
also established. Then we switch our focus to fractional integral inequalities of
Chebyshev type for functions and integrals expressible in product form. This follows
new integral inequalities with “maxima” involving Hadamard integral. The papers
[124, 148, 150] and [161] are the sources of the work presented in this chapter.
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