跳转至

Hardy Inequality

Discrete Hardy Inequality 离散 哈代 不等式

在数学分析中我们知道 如果 \(\lim_{n\to\infty} a_n=a\),那么序列的 Cesàro summation 切萨罗求和(平均)

\[ \sigma_n \triangleq \frac{1}{n}\sum_{k=1}^n a_k , \quad \lim_{n\to\infty} \sigma_n = a \]

在研究该级数收敛性时,得到对于 \(p>1\)

\[ \|\sigma\|_p \le \frac{p}{p-1}\|a\|_p \]

即(为了简单,这里令 \(t^p=|t|^p\)

\[ \sum_{n=1}^\infty \sigma_n^p \le \left(\frac{p}{p-1}\right)^p \sum_{n=1}^\infty a_n^p \]

证明

\[ \begin{aligned} \sigma_n^p - \frac{p}{p-1} \sigma_n^{p-1}a_n &= \sigma_n^p(1-\frac{np}{p-1}) + \frac{(n-1)p}{p-1} \sigma_n^{p-1} \sigma_{n-1} \\ &\le \sigma_n^p(1-\frac{np}{p-1}) + \frac{(n-1)p}{p-1} \left( \frac{p-1}{p} \sigma_n^p + \frac{1}{p} \sigma_{n-1}^p \right) \\ &= \sigma_n^p(n-\frac{np}{p-1}) + \frac{n-1}{p-1}\sigma_{n-1}^p \\ &= \frac{1}{p-1} \left( (n-1)\sigma_{n-1}^p - n\sigma_n^p \right) \end{aligned} \]

求和得到

\[ \begin{aligned} \sum_{n=1}^N \sigma_n^p - \frac{p}{p-1} \sum_{n=1}^N \sigma_n^{p-1} a_n \le -\frac{1}{p-1}Nb_N^p \le 0 \end{aligned} \]

那么

\[ \begin{aligned} \sum_{n=1}^N \sigma_n^p &\le \frac{p}{p-1} \sum_{n=1}^N \sigma_n^{p-1} a_n \\ &\le \frac{p}{p-1} \left(\sum_{n=1}^N \sigma_n^{p}\right)^{\frac{p-1}{p}} \left( \sum_{n=1}^N a_n^p \right)^{\frac{1}{p}} \\ \end{aligned} \]

因此

\[ \sum_{n=1}^\infty \sigma_n^p \le \left(\frac{p}{p-1}\right)^p \sum_{n=1}^\infty a_n^p \]

Integral Hardy Inequality 积分 哈代 不等式

\[ F(x) = \frac{1}{x}\int_0^x f(t)dt \]

对于 \(p>1\) ,我们有

\[ \|F\|_p \le \frac{p}{p-1} \|f\|_p \]

\[ \int_0^\infty \Big|\frac{1}{x}\int_0^x f(t)dt \Big|^p dx \le \left(\frac{p}{p-1}\right)^p \int_0^\infty |f(t)|^p dt \]

证明 1

\[ \begin{aligned} F^p(x) - \frac{p}{p-1} F^{p-1}(x)f(x) &= F^p(x) - \frac{p}{p-1} F^{p-1}(x)(xF(x))' \\ &= F^p(x) - \frac{p}{p-1}F^p(x) - \frac{p}{p-1}x F^{p-1}(x)F'(x) \\ &= -\frac{1}{p-1} (xF^p(x))' \\ \end{aligned} \]

那么

\[ \begin{aligned} \int_0^\infty |F(x)|^p dx &\le \frac{p}{p-1} \int_0^\infty F^{p-1}(x)f(x) -\frac{1}{p-1} xF^p(x) \Big|_0^A \\ &\le \frac{p}{p-1} \int_0^\infty F^{p-1}(x)f(x) \\ &\le \frac{p}{p-1} \left(\int_0^\infty |F(x)|^p dx\right)^{\frac{p-1}{p}}\left(\int_0^\infty |f(x)|^p dx\right)^{\frac{1}{p}} \\ \end{aligned} \]

因此

\[ \|F\|_p \le \left(\frac{p}{p-1}\right)^p \|f\|_p \]

证明 2

\[ \begin{aligned} \|F\|_p &= \left( \int_0^\infty \Big|\int_0^1 f(xt) dt \Big|^p dx \right)^{\frac{1}{p}} \\ &\le \int_0^1 \left( \int_0^\infty |f(xt)|^p dx \right)^{\frac{1}{p}} dt \qquad \text{Minkovski's Inequality} \\ &= \int_0^1 \left( \frac{1}{t}\int_0^\infty |f(y)|^p dt \right)^{\frac{1}{p}} dt \\ &= \|f\|_p \int_0^1 t^{-1/p} dt = \frac{p}{p-1}\|f\|_p \end{aligned} \]

高维 Hardy 不等式

Evans PDE 5.8 Thoorem 8

\(n \ge 3\),设 \(u\in H^1(\Omega)\) 。 那么对于 \(r>0\) 使得 \(B(0,r)\subseteq \Omega\),有 \(\dfrac{u}{|x|} \in L^2(B(0,r))\)

\[ \int_{B(0,r)} \frac{u^2}{|x|^2} dx \le C(n) \int_{B(0,r)} |Du|^2 + \frac{u^2}{r^2} dx \]

证明

(实际上我还没有更好的理解,只能使用教材中的方法)

由于

\[ D(|x|) = \frac{x}{|x|}, \quad D(\frac{1}{|x|}) = -\frac{x}{|x|^3} \]

所以我们可以将左边表示为

\[ \begin{aligned} \int_{B(0,r)} \frac{u^2}{|x|^2} dx &= -\int_{B(0,r)} u^2 D(\frac{1}{|x|}) \cdot D(|x|) dx \\ \end{aligned} \]

注意到,由 Gauss-Green 公式

\[ \begin{aligned} \int_{\partial B(0,r)} u^2 \frac{1}{|x|} D(|x|) \cdot \nu dS =& \int_{B(0,r)} D(u^2 \frac{1}{|x|}) \cdot D(|x|) dx + \int_{B(0,r)} u^2 \frac{1}{|x|} \Delta(|x|) dx \\ =& \int_{B(0,r)} u^2 D(\frac{1}{|x|}) \cdot D(|x|) dx \\ &+\int_{B(0,r)} 2uDu \cdot \frac{x}{|x|^2} dx + \int_{B(0,r)} (n-1) \frac{u^2}{|x|^2} dx \\ =& (n-2)\int_{B(0,r)} \frac{u^2}{|x|^2} dx + \int_{B(0,r)} 2uDu \cdot \frac{x}{|x|^2} dx \end{aligned} \]

因此

\[ \begin{aligned} (n-2) \int_{B(0,r)} \frac{u^2}{|x|^2} dx &= -\int_{B(0,r)} 2uDu \cdot \frac{x}{|x|^2} dx + \int_{\partial B(0,r)} u^2 \frac{x}{|x|^2} \cdot \nu dS \\ &= -\int_{B(0,r)} 2uDu \cdot \frac{x}{|x|^2} dx + \int_{\partial B(0,r)} u^2 \frac{1}{r} dS \\ &\le \int_{B(0,r)} \lambda|Du|^2 + \frac{1}{\lambda}\frac{u^2}{|x|^2} dx + \int_{\partial B(0,r)} u^2 \frac{1}{r} dS \end{aligned} \]

又注意到

\[ \begin{aligned} r\int_{\partial B(0,r)} u^2 dS &= \int_{\partial B(0,r)} u^2 x \cdot \nu dS = \int_{B(0,r)} \text{div}(u^2x) dx \\ &= \int_{B(0,r)} nu^2 + 2uDu \cdot x dx \\ &\le \int_{B(0,r)} nu^2 + \frac{1}{\mu} |x|^2|Du|^2 + \mu u^2 dx \\ &\le \int_{B(0,r)} \frac{1}{\mu} r^2|Du|^2 + (n+\mu) u^2 dx \end{aligned} \]

我们得到

\[ \begin{aligned} \frac{1}{r} \int_{\partial B(0,r)} u^2 dS \le \int_{B(0,r)} \frac{1}{\mu}|Du|^2 + \frac{n+\mu }{r^2}u^2 dx \end{aligned} \]

所以,我们有

\[ \begin{aligned} (n-2-\frac{1}{\lambda}) \int_{B(0,r)} \frac{u^2}{|x|^2} dx &\le \int_{B(0,r)} (\lambda+ \frac{1}{\mu})|Du|^2 + \frac{n+\mu }{r^2}u^2 dx \\ \end{aligned} \]

\[ \int_{B(0,r)} \frac{u^2}{|x|^2} dx \le C(n) \int_{B(0,r)} |Du|^2 + \frac{u^2}{r^2} dx \]

Corollary

\(n\ge 3\) ,对于 \(u\in H^1(\mathbb{R}^n)\),令 \(r\to \infty\),那么

\[ \int_{B(0,r)} \frac{u^2}{r^2} dx \le \frac{1}{r^2} \int_{\mathbb{R}^n} u^2 dx = \frac{1}{r^2} \|u\|_{L^2(\mathbb{R}^n)}^2 \to 0 \]

但是

\[ \int_{B(0,r)} \frac{u^2}{r^2} dx \to \int_{\mathbb{R}^n} \frac{u^2}{|x|^2} dx ,\qquad \int_{B(0,r)} |Du|^2 \to \int_{\mathbb{R}^n} |Du|^2 \]

所以

\[ \int_{\mathbb{R}^n} \frac{u^2}{|x|^2} dx \le C(n) \int_{\mathbb{R}^n} |Du|^2 \]

我们给出一个具体的 \(C\),取 \(\lambda=\dfrac{2}{n-2}, \mu \to \infty\)\(C(n)=\lambda(n-2-\frac{1}{\lambda})^{-1}=\dfrac{4}{(n-2)^2}\)