Maximum Principles 极大值原理
Problems
8
设 \(U\) 是有界开集,\(\partial U\) 光滑。令 \(u\) 是一致椭圆方程
\[ Lu = -\sum_{i, j=1}^n a^{ij}(x) \partial_j \partial_i u = 0 \text{ in } U \]
的光滑解。 假设 \(a^{ij}\) 的导数有界。
令 \(v \triangleq |Du|^2+\lambda u^2\),证明如果 \(\lambda\) 足够大,则
\[ Lv \le 0 \text{ in } U \]
并得到
\[ \|Du\|_{L^\infty(U)} \le C( \|Du\|_{L^\infty(\partial U)} + \|u\|_{L^\infty(\partial U)} ) \]
proof
由于 \(Lu = 0\),则
\[ \begin{aligned} 0 = -\nabla (Lu) = \sum_{i,j=1}^n \nabla a^{ij} \; \partial_j \partial_i u + a^{ij} \partial_j \partial_i \nabla u \\ \end{aligned} \]
对于
\[ v = \nabla u \cdot \nabla u + \lambda u^2 \]
考虑
\[ \begin{aligned} Lv &= - \sum_{i,j=1}^n a^{ij} \partial_j \partial_i (\nabla u \cdot \nabla u) - \lambda \sum_{i,j=1}^n a^{ij} \partial_j \partial_i u^2 \\ &= -2 \sum_{i,j=1}^n a^{ij} (\partial_j \nabla u \cdot \partial_i \nabla u + \nabla u \cdot \partial_j \partial_i \nabla u) - 2 \lambda \sum_{i,j=1}^n a^{ij} (\partial_j u \; \partial_i u + u \; \partial_j \partial_i u) \\ &= -2 \sum_{i,j=1}^n a^{ij} \partial_j \nabla u \cdot \partial_i \nabla u + 2 \sum_{i,j=1}^n \nabla u \cdot \nabla a^{ij} \; \partial_j \partial_i u - 2 \lambda (\nabla u)^T A \nabla u + 2\lambda u Lu \\ \end{aligned} \]
注意到,
1 . 由一致椭圆条件,
\[ \begin{aligned} \sum_{i,j=1}^n a^{ij} \partial_j \nabla u \cdot \partial_i \nabla u &= \sum_{i=1}^k \sum_{i,j=1}^n a^{ij} \partial_j (\partial_k u) \; \partial_i (\partial_k u) \\ &\ge \sum_{i=1}^k \theta |\nabla \partial_k u|^2 = \theta | \nabla^2 u |^2 \\ \end{aligned}\]
2 .
\[ \begin{aligned} \sum_{i,j=1}^n \nabla u \cdot \nabla a^{ij} \; \partial_j \partial_i u &\le \sum_{i,j=1}^n |\nabla a^{ij}| |\nabla u| \; \partial_j \partial_i u \\ &\le C(A) |\nabla u| \sum_{i,j=1}^n |\partial_j \partial_i u| \quad (a^{ij} \text{ has bounded derivatives}) \\ &\le C(A) |\nabla u| \; n |\nabla^2 u| \quad (\text{by Hölder inequality}) \\ \end{aligned} \]
3 . 由一致椭圆条件
\[ (\nabla u)^T A \nabla u \ge \theta |\nabla u|^2 \]
4 .
\[ uLu = 0 \]
因此,我们有
\[ \begin{aligned} Lv &\le -2 \theta |\nabla^2 u|^2 + 2 C(n,A) |\nabla u|\;|\nabla^2 u| - 2 \lambda \theta |\nabla u|^2 \\ &\le C(n,A)(\epsilon |\nabla^2 u|^2 + \frac{1}{\epsilon} |\nabla u|^2) - 2\theta |\nabla^2 u|^2 - 2\lambda \theta |\nabla u|^2 \\ &= (\epsilon C(n,A) - 2\theta) |\nabla^2 u|^2 + (\frac{C(n,A)}{\epsilon} - 2\lambda \theta) |\nabla u|^2 \\ \end{aligned} \]
我们可以令 \(2\theta = \epsilon C(n,A)\),那么我们有
\[ Lv \le (\frac{C^2}{2\theta} - 2\lambda \theta)|\nabla u|^2 \]
则只要 \(\lambda > \frac{C^2}{4\theta^2}\),就有 \(Lv \le 0\).
那么应用 弱极大值原理,我们有
\[ \max_{\bar{U}} |Du|^2 \le \max_{\bar{U}} v \le \max_{\partial U} v \le \max_{\partial U} |Du|^2 + \max_{\partial U} \lambda |u|^2 \le C(n, A)(\max_{\partial U} |Du| + \max_{\partial U} |u|)^2 \]
因此
\[ \max_{\bar{U}} |Du| \le C(\max_{\partial U} |Du| + \max_{\partial U} |u|) \]
9
设 \(U\) 是有界开集,\(\partial U\) 光滑。 假设 \(u\) 是一致椭圆方程
\[ \begin{cases} Lu = -\sum_{i, j=1}^n a^{ij}(x) \partial_j \partial_i u = f & \text{ in } U \\ u = 0 & \text{ on } \partial U \\ \end{cases} \]
的光滑解,\(f\) 有界。
固定 \(x^0\in \partial U\),定义在 \(x^0\) 处的 势垒 barrier 为一个 \(C^2\) 函数 \(w\),满足
\[ Lw \ge 1 \text{ in } U ,\quad w(x^0) = 0,\quad w \ge 0 \text{ on } \partial U \]
证明如果 \(w\) 是 \(x^0\) 处的势垒,则存在一个常数 \(C\) 使得
\[ |Du(x^0)| \le C \Big| \frac{\partial w}{\partial \nu}(x^0) \Big| \]
proof
根据 弱极大值原理,以及 \(w \ge 0 \text{ on } \partial U \) ,我们有
\[ \min_{\bar{U}} w = \min_{\partial U} w = w(x^0) = 0 \]
令 \(v = u - \|f\|_{L^\infty(U)} w\),那么我们有
\[ \begin{cases} Lv = Lu - \|f\|_{L^\infty(U)} L w \le f - \|f\|_{L^\infty(U)} 1 \le 0 & \text{ in } U \\ v \le 0 & \text{ on } \partial U \end{cases} \]
那么再次使用 弱极大值原理,我们有
\[ \max_{\bar{U}} v = \max_{\partial U} v = v(x^0) = 0 \]
因此,有
\[ 0 \le \frac{\partial v}{\partial \nu}(x^0) = \frac{\partial u}{\partial \nu}(x^0) - \|f\|_{L^\infty(U)}\frac{\partial w}{\partial \nu}(x^0) \]
即
\[ \frac{\partial u}{\partial \nu}(x^0) \ge \|f\|_{L^\infty(U)}\frac{\partial w}{\partial \nu}(x^0) \]
同理,令 \(v = u + \|f\|_{L^\infty(U)} w\),我们可以得到
\[ \frac{\partial u}{\partial \nu}(x^0) \le -\|f\|_{L^\infty(U)}\frac{\partial w}{\partial \nu}(x^0) \]
又因为 \(u=0 \text{ on } \partial U \),边界光滑,因此 \(Du(x^0) = \dfrac{\partial u}{\partial \nu}(x^0) \),我们得到
\[ |Du(x^0)| \le \|f\|_{L^\infty(U)} \Big| \frac{\partial w}{\partial \nu}(x^0) \Big| \]
10
假设 \(U\) 是连通有界开集,\(\partial U\) 光滑。
证明 Neumann 边界条件的 调和方程
\[ \begin{cases} -\Delta u = 0 & \text{ in } U \\ \frac{\partial u}{\partial \nu} = 0 & \text{ on } \partial U \\ \end{cases} \]
的光滑解只有一种 \(u \equiv C\),\(C\) 是某个常数。
proof
(a)
由于 \(-\Delta u = 0\),对于任意的 \(\forall v \in C^\infty(U)\),我们有
\[ \begin{aligned} 0 &= -\int_U \Delta u \; v\;dx \\ &= -\int_{\partial U} \frac{\partial u}{\partial \nu} v \; dS + \int_U \nabla u \cdot \nabla v \; dx \quad (\text{by Green formula}) \\ &= \int_U \nabla u \cdot \nabla v \; dx \qquad \qquad\qquad (\frac{\partial u}{\partial \nu} = 0 \text{ on } \partial U) \\ \end{aligned} \]
令 \(v=u\),则有
\[ \int_U |\nabla u|^2 \; dx = 0 \Rightarrow \nabla u = 0 \text{ in } U \]
且 \(U\) 连通,因此,\(u \equiv C\).
(b)
因为 \(-\Delta u = 0\), 由 强极大值原理,要么最大值点在 \(U\) 内部取得,则 \(u \equiv C\);
要么最大值只能在边界取得 \(x^0\in \partial U\),\(u(x^0)>u(x) \forall x \in U\), 则由 Hopf 引理,我们得到
\[ \frac{\partial u}{\partial \nu}(x^0) > 0 \]
矛盾。
所以只能是 \(u \equiv C\)。
11
假设 \(U\) 是有界开集,\(\partial U\) 光滑。 \(u\in H^1(U)\) 是方程
\[ -\sum_{i, j=1}^n \partial_j (a^{ij}(x) \partial_i u) = 0 \text{ in } U \]
的有界弱解。
令 \(\phi: \mathbb{R} \to \mathbb{R}\) 是光滑的 凸函数 ,设 \(w = \phi(u)\)。
证明 \(w\) 是 弱下解 subsolution ; 即对于 \(\forall v\in H_0^1(U),v≥0\),有 \(B[w ,v]\le 0\).`
proof
由于 \(u\) 是弱解,因此有
\[ B[u, v] = \sum_{i, j=1}^n \int_U a^{ij}(x) \; D_i u \; D_j v \; dx = 0 \quad \forall v\in H_0^1(U) \]
根据 Chain Rule , \(u\) 有界,则 \(\phi'(u)\) 有界我们有
\[ Dw = \phi'(u) Du \]
对于 \(v\in C_c^\infty(U),v≥0\),
\[ \begin{aligned} B[w, v] &= \sum_{i, j=1}^n \int_U a^{ij}(x) \; D_i w \; D_j v \; dx \\ &= \sum_{i, j=1}^n \int_U a^{ij}(x)\phi'(u) \; D_i u \; D_j v \; dx \\ &= \sum_{i, j=1}^n \int_U a^{ij}(x)D_i u \; D_j(\phi'(u) v)\; dx - \int_U a^{ij}(x)D_i u \; \phi''(u)D_j u \; v \; dx \quad (\text{Leibniz})\\ &= \sum_{i, j=1}^n 0- \int_U a^{ij}(x)D_i u \; \phi''(u)D_j u \; v \; dx \\ \end{aligned} \]
最后一步是由 Chain Rule, \(u\) 有界,则 \(\phi''(u)\) 有界,因此 \(\phi'(u)\in H^1(U), \phi'(u) v\in H_0^1(U)\),推出 \(B[u, \phi'(u)v] = 0\).
\[ \begin{aligned} B[w, v] &= - \sum_{i, j=1}^n \int_U a^{ij}(x)D_i u \; \phi''(u)D_j u \; v \; dx \\ &= -\sum_{i, j=1}^n \int_U \phi''(u) a^{ij}(x)D_i u \; D_j u \; v \; dx \\ &\le - \int_U \phi''(u) \theta |Du|^2 \; v \; dx \le 0 \quad (\phi''(u) \ge 0, v \ge 0) \\ \end{aligned} \]
因此,对于 \(v\in C_c^\infty(U),v≥0\),\(B[w, v]\le 0\)。 而对于 \(v\in H_0^1(U), v\ge 0\),存在一列 \(v_k \in C_c^\infty(U),v_k≥0\) 在 \(H^1(U)\) 中收敛到 \(v\)。
( Evans 5.5 Traces Theorem 2 迹零定理 的证明。 )
1 . 存在 \(z_k\in C_c^\infty(U) \to v \text{ in } H^1(U)\),
2 . 由于 \(v\ge 0\) ,能得到 \(z_k^+ \to v \text{ in } H^1(U)\) ,
3 . 利用 Problem 5.10.18,对于每个 \(k\) 可以选取足够小的 \(\epsilon_k\) ,使得
\[ v_k := F_{\epsilon_k}(z_k) = F_{\epsilon_k}(z_k^+) \in C_c^\infty(U) \to v \text{ in } H^1(U) \]
而且 \(v_k\ge 0\),那么由控制收敛定理,有
\[ B[w, v] = \lim_{k\to \infty} B[w, v_k] \le 0 \]
因此,对于 \(\forall v\in H_0^1(U), v\ge 0\),\(B[w, v]\le 0\)。