跳转至

偏微分方程简介

本章介绍各个偏微分方程的定义以及一些常用的结论。

准备符号

查看 Lawrence C.Evans Partial differential equations Appendix A

令多重指标(multiindex) \( \alpha=(\alpha_1, ... , \alpha_n), \quad \alpha_n \ge 0 \)

\[ |\alpha| := \alpha_1 + ... + \alpha_n \]
\[ \alpha ! := \alpha_1!\cdots\alpha_n! \]
\[ \begin{pmatrix} |\alpha| \\ \alpha \end{pmatrix} := \frac{ |\alpha|!}{\alpha!} \]

对于多元变量 \( x=(x_1, ... , x_n) \)

\[ x^\alpha := x_1^{\alpha_1}\cdots x_n^{\alpha_n} \]
\[ D^\alpha u(x) := \frac{\partial^{|\alpha|} u(x)}{\partial x_1^{\alpha_1}\cdots\partial x_n^{\alpha_n}} = \frac{\partial^{\alpha_1} }{\partial x_1^{\alpha_1}} \cdots \frac{\partial^{\alpha_n}}{\partial x_n^{\alpha_n}}u(x) \]

事实上,对于 \(u(x)\in C^k\)\(\frac{\partial^2 u(x)}{\partial x_1x_2} = \frac{\partial^2 u(x)}{\partial x_2 x_1} \),微分顺序可交换。 因此在定义 \(D^k u(x)\) 的时候,将不同微分次序的前导数看成是同一个。

\[ D^k u(x) = \{ D^\alpha u(x) \mid |\alpha|=k \} \]

nabla算子

\[ \nabla u = (\frac{\partial u}{\partial x_i}, ..., \frac{\partial u}{\partial x_n}) \]

Laplace算子

\[ \Delta u = \nabla\cdot\nabla u = \frac{\partial^2 u}{\partial x_i^2} + ... + \frac{\partial^2 u}{\partial x_n^2} \]

Problems

Question

2 . \( D^k u(x) \) 有几项?

Solution

观察上面 \(D^\alpha u(x)\) 的定义, 就是将 \(k\) 个苹果(偏导数\(\partial^k\)),放进 \(n\) 个盒子(\(\partial x_i, i=1, ..., n\)),允许空盒子。
那么显然有 \( \begin{pmatrix}n+k-1\\ k \end{pmatrix} \) 种放法。

Question

3 . 证明 多项式定理 (Multinomial Theorem):

\[ (x_1 + ... + x_n)^k = \sum_{|\alpha|=k} \begin{pmatrix} |\alpha| \\ \alpha \end{pmatrix} x^\alpha \]

Proof

对于 \( x^\alpha = x_1^{\alpha_1}\cdots x_n^{\alpha_n} \) 的项,有多少种选法?
先从 \(k\) 个中选 \(\alpha_1\)\(x_1\), 再从 \(k-\alpha_1\) 个中选 \(\alpha_2\)\(x_2\),...,最后从 \(k-\sum_{i=1}^{n-1} \alpha_i\) 个中选 \(\alpha_n\)\(x_n\)
总共有

\[ \frac{k!}{\alpha_1! (k-\alpha_1)!} \frac{(k-\alpha_1)!}{\alpha_2! (k-\alpha_1-\alpha_2)!} \cdots \frac{(k-\alpha_1-\cdots-\alpha_{n-1})!}{\alpha_n! (k-\alpha_1-\cdots-\alpha_{n})!} = \frac{k!}{\alpha!} \]

种选法。

Question

4 . 证明 莱布尼兹公式 (Leibniz's Formula):

\[ D^\alpha(uv) = \sum_{\beta\le\alpha}\begin{pmatrix} \alpha \\ \beta \end{pmatrix} D^\beta u D^{\alpha-\beta}v \]

Prove

我们有 \( D^\alpha (uv) = \partial^{\alpha_1}_{x_1} \cdots \partial^{\alpha_n}_{x_n} (uv) \)
而我们知道 \(\partial_i(uv) = (\partial_i u) v + u (\partial_i v) \)。 归纳得

\[ \partial_i^{\alpha_i}(uv) = \sum_{\beta_i=0}^{\alpha_i} \begin{pmatrix} \alpha_i \\ \beta_i \end{pmatrix} (\partial_i^{\alpha_i-\beta_i} u)(\partial_i^{\beta_i} v) \]

这也被称为问分法则的 莱布尼兹公式。

那么 \(D^\beta u D^{\alpha-\beta}v = \partial^{\beta_1}_{x_1} \cdots \partial^{\beta_n}_{x_n} u \cdot \partial^{\alpha_1-\beta_1}_{x_1} \cdots \partial^{\alpha_n-\beta_n}_{x_n} v \) 有多少种选法?
它有 \( \begin{pmatrix} \alpha_n \\ \beta_n \end{pmatrix}\cdots \begin{pmatrix} \alpha_1 \\ \beta_1 \end{pmatrix} = \frac{\alpha_1!\cdots\alpha_n!}{\beta_1!\cdots\beta_n! (\alpha_1-\beta_1)!\cdots (\alpha_n-\beta_n)!} = \begin{pmatrix} \alpha \\ \beta \end{pmatrix} \) 种选法。

Question

5 . 设 \(f: R^n \to R\) 是光滑函数,证明

\[ f(x) = \sum_{|\alpha|\le k} \frac{1}{\alpha !} D^{\alpha} f(0) x^{\alpha} + O(\|x\|^{k+1}) \]

这称为多元函数的 Taylor 公式

Prove

固定 \(x\),令 \(g(t) = f(tx)\),那么由单变量的 Taylor 公式 (看 Cauchy),有

\[ \begin{align} g(t) &= \sum_{i=0}^k \frac{1}{i!} g^{(i)}(0) t^i + \int_0^t g^{(k+1)}(s)\frac{(t-s)^k}{k!} ds \\ &= \sum_{i=0}^k \frac{1}{i!} g^{(i)}(0) t^i + g^{(k+1)}(\xi) \frac{t^{k+1}}{(k+1)!}, \quad \xi \in [0, t] \\ \end{align} \]

\[ f(x) = g(1) = \sum_{i=0}^k \frac{1}{i!} g^{(i)}(0) + g^{(k+1)}(\xi) \frac{1}{(k+1)!}, \quad \xi \in [0, 1] \]

\[ \begin{gather} g'(t) =\frac{d f(tx)}{dt} = \nabla(f(tx)) \cdot x = \sum_{i=0}^n \partial_i f(tx) x_i \\ g''(t) =\frac{d}{dt}(\partial_i f(tx) x_i) = \sum_{i,j} \partial_{ij} f(tx) x_i x_j = \sum_{|\alpha|=2} \begin{pmatrix} 2 \\ \alpha \end{pmatrix} D^{\alpha} f(tx) x^{\alpha} \\ \cdots \\ g^{(k+1)}(t) = \frac{d^k}{dt^k} f(tx) = \sum_{i_1, \cdots, i_{k+1}} \partial_{i_1} \cdots \partial_{i_{k+1}} f(tx) x_{i_1} \cdots x_{i_{k+1}} = \sum_{|\alpha|=k+1} \begin{pmatrix} k+1 \\ \alpha \end{pmatrix} D^{\alpha} f(tx) x^{\alpha} \end{gather} \]

所以有

\[ \begin{align} f(x) &= \sum_{i=0}^k \frac{1}{i!} g^{(i)}(0) x^i + g^{(k+1)}(\xi) \frac{1}{(k+1)!} \\ &= \sum_{i=0}^k \frac{1}{i!} \sum_{|\alpha|=i} \begin{pmatrix} i \\ \alpha \end{pmatrix} D^{\alpha} f(0) x^{\alpha} + \frac{1}{(k+1)!}\sum_{|\alpha|=k+1} \begin{pmatrix} k+1 \\ \alpha \end{pmatrix} D^{\alpha} f(\xi x) x^{\alpha} \\ &= \sum_{|\alpha|\le k} \frac{1}{\alpha !} D^{\alpha} f(0) x^{\alpha} + \frac{1}{(k+1)!} \sum_{i_1, \cdots, i_{k+1}} \partial_{i_1} \cdots \partial_{i_{k+1}} f(\xi x) x_{i_1} \cdots x_{i_{k+1}} \\ \end{align} \]

由于 \(f\) 光滑,所以当 \(x\) 足够小时, 有 \(|\partial_{i_1} \cdots \partial_{i_{k+1}} f(\xi x)| < C(x, n), \quad \xi \in [0, 1]\)

\[ \frac{1}{(k+1)!} \sum_{i_1, \cdots, i_{k+1}} \partial_{i_1} \cdots \partial_{i_{k+1}} f(\xi x) x_{i_1} \cdots x_{i_{k+1}} < C(x, k+1)(|x_1|+\cdots+|x_n|)^{k+1} = O(\|x\|^{k+1}) \]

故当 \(x \to 0\),有

\[ f(x) = \sum_{|\alpha|\le k} \frac{1}{\alpha !} D^{\alpha} f(0) x^{\alpha} + O(\|x\|^{k+1}) \]