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Preface to the second 
edition 

Let me thank everyone who over the past decade has provided me with 
suggestions and corrections for improving the first edition of this book. I 
am extraordinarily grateful. Although I have not always followed these many 
pieces of advice and criticism, I have thought carefully about them all. So 
many people have helped me out that it is unfortunately no longer feasible to 
list all their names. I have also received extraordinary help from everyone at 
the AMS, especially Sergei Gelfand, Stephen Moye and Arlene O'Sean. The 
NSF has generously supported my research during the writing of both the 
original edition of the book and this revision. I will continue to maintain 
lists of errors on my homepage, accessible through the math. berkeley.edu 
website. 

When you write a big book on a big subject, the temptation is to include 
everything. A critic famously once imagined Tolstoy during the writing of 
War and Peace: "The book is long, but even if it were twice as long, if 
it were three times as long, there would always be scenes that have been 
omitted, and these Tolstoy, waking up in the middle of the night, must have 
regretted. There must have been a night when it occurred to him that he 
had not included a yacht race ... " (G. Moore, Avowals). 

This image notwithstanding, I have tried to pack into this second edition 
as many fascinating new topics in partial differential equations (PDE) as I 
could manage, most notably in the new Chapter 12 on nonlinear wave equa
tions. There are new sections on Noether's Theorem and on local minimizers 
in the calculus of variations, on the Radon transform, on Turing instabili
ties for reaction-diffusion systems, etc. I have rewritten and expanded the 
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previous discussions on blow-up of solutions, on group and phase velocities, 
and on several further subjects. I have also updated and greatly increased 
citations to books in the bibliography and have moved references to research 
articles to within the text. There are countless further minor modifications 
in notation and wording. Most importantly, I have added about 80 new 
exercises, most quite interesting and some rather elaborate. There are now 
over 200 in total. 

And there is a yacht race among the problems for Chapter 10. 

LCE 
January, 2010 

Berkeley 



Preface to the first 
edition 

I present in this book a wide-ranging survey of many important topics in 
the theory of partial differential equations (PDE), with particular emphasis 
on various modern approaches. I have made a huge number of editorial 
decisions about what to keep and what to toss out, and can only claim 
that this selection seems to me about right. I of course include the usual 
formulas for solutions of the usual linear PDE, but also devote large amounts 
of exposition to energy methods within Sobolev spaces, to the calculus of 
variations, to conservation laws, etc. 

My general working principles in the writing have been these: 

a. PDE theory is (mostly) not restricted to two independent vari
ables. Many texts describe PDE as if functions of the two variables (x, y) 
or (x, t) were all that matter. This emphasis seems to me misleading, as 
modern discoveries concerning many types of equations, both linear and 
nonlinear, have allowed for the rigorous treatment of these in any number 
of dimensions. I also find it unsatisfactory to "classify" partial differential 
equations: this is possible in two variables, but creates the false impression 
that there is some kind of general and useful classification scheme available 
in general. 

b. Many interesting equations are nonlinear. My view is that overall 
we know too much about linear PDE and too little about nonlinear PDE. I 
have accordingly introduced nonlinear concepts early in the text and have 
tried hard to emphasize everywhere nonlinear analogues of the linear theory. 
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c. Understanding generalized solutions is fundamental. Many of the 
partial differential equations we study, especially nonlinear first-order equa
tions, do not in general possess smooth solutions. It is therefore essential to 
devise some kind of proper notion of generalized or weak solution. This is 
an important but subtle undertaking, and much of the hardest material in 
this book concerns the uniqueness of appropriately defined weak solutions. 

d. PDE theory is not a branch of functional analysis. Whereas 
certain classes of equations can profitably be viewed as generating abstract 
operators between Banach spaces, the insistence on an overly abstract view
point, and consequent ignoring of deep calculus and measure theoretic esti
mates, is ultimately limiting. 

e. Notation is a nightmare. I have really tried to introduce consistent 
notation, which works for all the important classes of equations studied. 
This attempt is sometimes at variance with notational conventions within a 
given subarea. 

f. Good theory is (almost) as useful as exact formulas. I incorporate 
this principle into the overall organization of the text, which is subdivided 
into three parts, roughly mimicking the historical development of PDE the
ory itself. Part I concerns the search for explicit formulas for solutions, and 
Part II the abandoning of this quest in favor of general theory asserting 
the existence and other properties of solutions for linear equations. Part III 
is the mostly modern endeavor of fashioning general theory for important 
classes of nonlinear PDE. 

Let me also explicitly comment here that I intend the development 
within each section to be rigorous and complete (exceptions being the frankly 
heuristic treatment of asymptotics in §4.5 and an occasional reference to a 
research paper). This means that even locally within each chapter the topics 
do not necessarily progress logically from "easy" to "hard" concepts. There 
are many difficult proofs and computations early on, but as compensation 
many easier ideas later. The student should certainly omit on first reading 
some of the more arcane proofs. 

I wish next to emphasize that this is a textbook, and not a reference 
book. I have tried everywhere to present the essential ideas in the clearest 
possible settings, and therefore have almost never established sharp versions 
of any of the theorems. Research articles and advanced monographs, many 
of them listed in the Bibliography, provide such precision and generality. 
My goal has rather been to explain, as best I can, the many fundamental 
ideas of the subject within fairly simple contexts. 



PREFACE TO THE FIRST EDITION XX:l 

I have greatly profited from the comments and thoughtful suggestions 
of many of my colleagues, friends and students, in particular: S. Antman, 
J. Bang, X. Chen, A. Chorin, M. Christ, J. Cima, P. Colella, J. Cooper, 
M. Crandall, B. Driver, M. Feldman, M. Fitzpatrick, R. Gariepy, J. Gold
stein, D. Gomes, 0. Hald, W. Han, W. Hrusa, T. Ilmanen, I. Ishii, I. Israel, 
R. Jerrard, C. Jones, B. Kawohl, S. Koike, J. Lewis, T.-P. Liu, H. Lopes, 
J. McLaughlin, K. Miller, J. Morford, J. Neu, M. Portilheiro, J. Ralston, 
F. Rezakhanlou, W. Schlag, D. Serre, P. Souganidis, J. Strain, W. Strauss, 
M. Struwe, R. Temam, B. Tvedt, J.-L. Vazquez, M. Weinstein, P. Wolfe, 
and Y. Zheng. 

I especially thank Tai-Ping Liu for many years ago writing out for me 
the first draft of what is now Chapter 11. 

I am extremely grateful for the suggestions and lists of mistakes from 
earlier drafts of this book sent to me by many readers, and I encourage others 
to send me their comments, at evans@math.berkeley.edu. I have come to 
realize that I must be more than slightly mad to try to write a book of 
this length and complexity, but I am not yet crazy enough to think that I 
have made no mistakes. I will therefore maintain a listing of errors 
which come to light, and will make this accessible through the 
math. berkeley.edu homepage. 

Faye Yeager at UC Berkeley has done a really magnificent job typing 
and updating these notes, and Jaya Nagendra heroically typed an earlier 
version at the University of Maryland. My deepest thanks to both. 

I have been supported by the NSF during much of the writing, most 
recently under grant DMS-9424342. 

LCE 

August, 1997 
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Chapter 1 

INTRODUCTION 

1.1 Partial differential equations 

1.2 Examples 

1.3 Strategies for studying PDE 

1.4 Overview 

1.5 Problems 

1. 6 References 

This chapter surveys the principal theoretical issues concerning the solv
ing of partial differential equations. 

To follow the subsequent discussion, the reader should first of all turn 
to Appendix A and look over the notation presented there, particularly the 
multiindex notation for partial derivatives. 

1.1. PARTIAL DIFFERENTIAL EQUATIONS 

A partiq,l differential equation (PDE) is an equation involving an unknown 
function of two or more variables and certain of its partial derivatives. 

Using the notation explained in Appendix A, we can write out symbol
ically a typical PDE, as follows. Fix an integer k > 1 and let U denote an 
open subset of Rn. 

DEFINITION. An expression of the form 

(1) F(Dku(x), nk-1u(x), ... , Du(x), u(x), x) = 0 (x E U) 

is called a kth_order partial differential equation, where 

-1 
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is given and 
u:U--+IR 

is the unknown. 

We solve the PDE if we find all u verifying (1), possibly only among those 
functions satisfying certain auxiliary boundary conditions on some part r 
of 8U. By finding the solutions we mean, ideally, obtaining simple, explicit 
solutions, or, failing that, deducing the existence and other properties of 
solutions. 

DEFINITIONS. 
(i) The partial differential equation (1) is called linear if it has the form 

L aa(x)Dau = f(x) 
lal~k 

for given functions aa (lal < k), f. This linear PDE is homogeneous 
if f = 0. 

(ii) The PDE (1) is semilinear if it has the form 

L aa(x)Dau + ao(Dk-Iu, ... , Du, u, x) = 0. 
lal=k 

(iii) The PDE (1) is quasilinear if it has the form 

L aa(Dk-Iu, ... , Du, u, x)Dau + ao(Dk-Iu, ... , Du, u, x) = 0. 

lal=k 
(iv) The PDE (1) is fully nonlinear if it depends nonlinearly upon the 

highest order derivatives. 

A system of partial differential equations is, informally speaking, a col
lection of several PDE for several unknown functions. 

DEFINITION. An expression of the form 

(2) F(Dku(x), Dk-1u(x), ... , Du(x), u(x),x) = 0 (x EU) 

is called a kth_order system of partial differential equations, where 
k k-l 

F : IRmn X IRmn X · · · X IRmn X IRm X U ---+ IRm 

is given and 

is the unknown. 

Here we are supposing that the system comprises the same number m 
of scalar equations as unknowns (u1 , ... , um). This is the most common 
circumstance, although other systems may have fewer or more equations 
than unknowns. Systems are classified in the obvious way as being linear, 
semilinear, etc. 
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NOTATION. We write "PDE" as an abbreviation for both the singular 
"partial differential equation" and the plural "partial differential equations". 

1.2. EXAMPLES 

There is no general theory known concerning the solvability of all partial 
differential equations. Such a theory is extremely unlikely to exist, given 
the rich variety of physical, geometric, and probabilistic phenomena which 
can be modeled by PDE. Instead, research focuses on various particular 
partial differential equations that are important for applications within and 
outside of mathematics, with the hope that insight from the origins of these 
PDE can give clues as to their solutions. 

Following is a list of many specific partial differential equations of in
terest in current research. This listing is intended merely to familiarize the 
reader with the names and forms of various famous PDE. To display most 
clearly the mathematical structure of these equations, we have mostly set 
relevant physical constants to unity. We will later discuss the origin and 
interpretation of many of these PDE. 

Throughout x E U, where U is an open subset of IRn, and t > 0. Also 
Du = Dxu = ( Ux 1 , ••• , Uxn) denotes the gradient of u with respect to the 
spatial variable x = (x1, ... , Xn)· The variable t always denotes time. 

1.2.1. Single partial differential equations. 

a. Linear equations. 

1. Laplace 's equation 

n 

~u = L Uxixi = 0. 
i=l 

2. Helmholtz's (or eigenvalue} equation 

-~u =.Xu. 

3. Linear transport equation 

n 

Ut + Lbiuxi = 0. 
i=l 

4. Liouville 's equation 

n 

Ut - L(biu)xi = 0. 
i=l 
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5. Heat (or diffusion) equation 

Ut - ~U = 0. 

6. Schrodinger's equation 

iUt + ~U = 0. 

7. Kolmogorov's equation 

n n 

Ut - L aiiuxix; + Lbiuxi = 0. 
i,j=l i=l 

8. Fokker-Planck equation 

n n 

Ut - L (aiiu)xix; - L(biu)xi = 0. 
i,j=l i=l 

9. Wave equation 
Utt - ~U = 0. 

10. Klein-Gordon equation 

Utt - ~u + m 2u = 0. 

11.- Telegraph equation 

Utt + 2dUt - Uxx = 0. 

12. General wave equation 

n n 

Utt - L aiiuxix; + L biuxi = 0. 
i,j=l i=l 

13. Airy's equation 

Ut + Uxxx = 0. 

14. Beam equation 

Utt+ Uxxxx = 0. 
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b. Nonlinear equations. 

1. Eikonal equation 
IDul = 1. 

2. Nonlinear Poisson equation 

-~u = f(u). 

3. p-Laplacian equation 

div(IDulP-2 Du)= 0. 

4. Minimal surf ace equation 

div ( (1 + 1~:12)1/2) = 0. 

5. Monge-Ampere equation 

det(D2u) = f. 

6. Hamilton-Jacobi equation 

Ut + H(Du, x) = 0. 

7. Scalar conservation law 

Ut + divF(u) = 0. 

8. Inviscid Burgers' equation 

Ut + UUx = 0. 

9. Scalar reaction-diffusion equation 

Ut - ~u = f(u). 

10. Porous medium equation 

Ut - ~(u1') = 0. 

11. Nonlinear wave equation 

Utt - ~u + f (u) = 0. 

12. Korteweg-de Vries (KdV} equation 

Ut + UUx + Uxxx = 0. 

13. Nonlinear Schrodinger equation 

iut + ~u = J(lul2)u. 

5 
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1.2.2. Systems of partial differential equations. 

a. Linear systems. 

1. Equilibrium equations of linear elasticity 

µ~u + (.X + µ)D(divu) = 0. 

2. Evolution equations of linear elasticity 

Utt - µ~u - (.X + µ)D(divu) = 0. 

3. Maxwell's equations 

b. Nonlinear systems. 

{ 
Et= curlB 

Bt = -curlE 

divB = divE = 0. 

1. System of conservation laws 

Ut + divF(u) = 0. 

2. Reaction-diffusion system 

Ut - ~u = f(u). 

3. Euler's equations for incompressible, inviscid flow 

{ 
Ut+u·Du=-Dp 

divu = 0. 

4. Navier-Stokes equations for incompressible, viscous flow 

{ 
Ut +u· Du- ~u = -Dp 

divu = 0. 

See Zwillinger [Zw) for a much more extensive listing of interesting PDE. 

1.3. STRATEGIES FOR STUDYING PDE 

As explained in §1.1 our goal is the discovery of ways to solve partial differ
ential equations of various sorts, but-as should now be clear in view of the 
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many diverse examples set forth in §1.2-this is no easy task. And indeed 
the very question of what it means to "solve" a given PDE can be subtle, 
depending in large part on the particular structure of the problem at hand. 

1.3.1. Well-posed problems, classical solutions. 

The informal notion of a well-posed problem captures many of the desir
able features of what it means to solve a PDE. We say that a given problem 
for a partial differential equation is well-posed if 

(i) the problem in fact has a solution; 

(ii) this solution is unique; 

and 
(iii) the solution depends continuously on the data given in the problem. 

The last condition is particularly important for problems arising from 
physical applications: we would prefer that our (unique) solution changes 
only a little when the conditions specifying the problem change a little. (For 
many problems, on the other hand, uniqueness is not to be expected. In 
these cases the primary mathematical tasks are to classify and characterize 
the solutions.) 

Now clearly it would be desirable to "solve" PDE in such a way that 
(i)-(iii) hold. But notice that we still have not carefully defined what we 
mean by a "solution". Should we ask, for example, that a "solution" u must 
be real analytic or at least infinitely differentiable? This might be desirable, 
but perhaps we are asking too much. Maybe it would be wiser to require a 
solution of a PDE of order k to be at least k times continuously differentiable. 
Then at least all the derivatives which appear in the statement of the PDE 
will exist and be continuous, although maybe certain higher derivatives will 
not exist. Let us informally call a solution with this much smoothness a 
classical solution of the PDE: this is certainly the most obvious notion of 
solution. 

So by solving a partial differential equation in the classical sense we mean 
if possible to write down a formula for a classical solution satisfying (i)-(iii) 
above, or at least to show such a solution exists, and to deduce various of 
its properties. 

1.3.2. Weak solutions and regularity. 

But can we achieve this? The answer is that certain specific partial 
differential equations (e.g. Laplace's equation) can be solved in the classical 
sense, but many others, if not most others, cannot. Consider for instance 
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the scalar conservation law 

Ut + F(u)x = 0. 

We will see in §3.4 that this PDE governs various one-dimensional phenom
ena involving fluid dynamics, and in particular models the formation and 
propagation of shock waves. Now a shock wave is a curve of discontinuity 
of the solution u; and so if we wish to study conservation laws, and recover 
the underlying physics, we must surely allow for solutions u which are not 
continuously differentiable or even continuous. In general, as we shall see, 
the conservation law has no classical solutions but is well-posed if we allow 
for properly defined generalized or weak solutions. 

This is all to say that we may be forced by the structure of the par
ticular equation to abandon the search for smooth, classical solutions. We 
must instead, while still hoping to achieve the well-posedness conditions (i)
(iii), investigate a wider class of candidates for solutions. And in fact, even 
for those PDE which turn out to be classically solvable, it is often most 
expedient initially to search for some appropriate kind of weak solution. 

The point is this: if from the outset we demand that our solutions be very 
regular, say k-times continuously differentiable, then we are usually going 
to have a really hard time finding them, as our proofs must then necessarily 
include possibly intricate demonstrations that the functions we are building 
are in fact smooth enough. A far more reasonable strategy is to consider as 
separate the existence and the smoothness (or regularity) problems. The idea 
is to define for a given PDE a reasonably wide notion of a weak solution, with 
the expectation that since we are not asking too much by way of smoothness 
of this weak solution, it may be easier to establish its existence, uniqueness, 
and continuous dependence on the given data. Thus, to repeat, it is often 
wise to aim at proving well-posedness in some appropriate class of weak or 
generalized solutions. 

Now, as noted above, for various partial differential equations this is 
the best that can be done. For other equations we can hope that our weak 
solution may turn out after all to be smooth enough to qualify as a classical 
solution. This leads to the question of regularity of weak solutions. As we 
will see, it is often the case that the existence of weak solutions depends 
upon rather simple estimates plus ideas of functional analysis, whereas the 
regularity of the weak solutions, when true, usually rests upon many intricate 
calculus estimates. 

Let me explicitly note here that once we are past Part I (Chapters 2-4), 
our efforts will be largely devoted to proving mathematically the existence 
of solutions to various sorts of partial differential equations, and not so much 
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to deriving formulas for these solutions. This may seem wasted or misguided 
effort, but in fact mathematicians are like theologians: we regard existence 
as the prime attribute of what we study. But unlike theologians, we need 
not always rely upon faith alone. 

1.3.3. Typical difficulties. 

Following are some vague but general principles, which may be useful to 
keep in mind: 

(i) Nonlinear equations are more difficult than linear equations; and, 
indeed, the more the nonlinearity affects the higher derivatives, the 
more difficult the PDE is. 

(ii) Higher-order PDE are more difficult than lower-order PDE. 

(iii) Systems are harder than single equations. 

(iv) Partial differential equations entailing many independent variables 
are harder than PDE entailing few independent variables. 

( v) For most partial differential equations it is not possible to write out 
explicit formulas for solutions. 

None of these assertions is without important exceptions. 

1.4. OVERVIEW 

This textbook is divided into three major Parts. 

PART I: Representation Formulas for Solutions 

Here we identify those important partial differential equations for which 
in certain circumstances explicit or more-or-less explicit formulas can be had 
for solutions. The general progression of the exposition is from direct formu
las for certain linear equations to far less concrete representation formulas, 
of a sort, for various nonlinear PDE. 

Chapter 2 is a detailed study of four exactly solvable partial differen
tial equations: the linear transport equation, Laplace's equation, the heat 
equation, and the wave equation. These PDE, which serve as archetypes for 
the more complicated equations introduced later, admit directly computable 
solutions, at least in the case that there is no domain whose boundary geom
etry complicates matters. The explicit formulas are augmented by various 
indirect, but easy and attractive, "energy"-type arguments, which serve as 
motivation for the developments in Chapters 6, 7 and thereafter. 

Chapter 3 continues the theme of searching for explicit formulas, now 
for general first-order nonlinear PDE. The key insight is that such PDE 
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can, locally at least, be transformed into systems of ordinary differential 
equations (ODE), the characteristic equations. We stipulate that once the 
problem becomes "only" the question of integrating a system of ODE, it 
is in principle solved, sometimes quite explicitly. The derivation of the 
characteristic equations given in the text is very simple and does not require 
any geometric insights. It is in truth so easy to derive the characteristic 
equations that no real purpose is had by dealing with the quasilinear case 
first. 

We introduce also the Hopf-Lax formula for Hamilton-Jacobi equa
tions (§3.3) and the Lax-Oleinik formula for scalar conservation laws (§3.4). 
(Some knowledge of measure theory is useful here but is not essential.) These 
sections provide an early acquaintance with the global theory of these im
portant nonlinear PDE and so motivate the later Chapters 10 and 11. 

Chapter 4 is a grab bag of techniques for explicitly (or kind of explicitly) 
solving various linear and nonlinear partial differential equations, and the 
reader should study only whatever seems interesting. The section on the 
Fourier transform is, however, essential. The Cauchy-Kovalevskaya Theo
rem appears at the very end. Although this is basically the only general exis
tence theorem in the subject, and thus logically should perhaps be regarded 
as central, in practice these power series methods are not so prevalent. 

PART II: Theory for Linear Partial Differential Equations 

Next we abandon the search for explicit formulas and instead rely on 
functional analysis and relatively easy "energy" estimates to prove the ex
istence of weak solutions to various linear PDE. We investigate also the 
uniqueness and regularity of such solutions and deduce various other prop
erties. 

Chapter 5 is an introduction to Sobolev spaces, the proper setting for 
the study of many linear and nonlinear partial differential equations via en
ergy methods. This is a hard chapter, the real worth of which is only later 
revealed, and requires some basic knowledge of Lebesgue measure theory. 
However, the requirements are not really so great, and the review in Ap
pendix E should suffice. In my opinion there is no particular advantage in 
considering only the Sobolev spaces with exponent p = 2, and indeed in
sisting upon this obscures the two central inequalities, those of Gagliardo
Nirenberg-Sobolev (§5.6.1) and of Morrey (§5.6.2). 

In Chapter 6 we vastly generalize our knowledge of Laplace's equation to 
other second-order elliptic equations. Here we work through a rather com
plete treatment of existence, uniqueness and regularity theory for solutions, 
including the maximum principle, and also a reasonable introduction to the 
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study of eigenvalues, including a discussion of the principal eigenvalue for 
nonselfadjoint operators. 

Chapter 7 expands the energy methods to a variety of linear partial 
differential equations characterizing evolutions in time. We broaden our 
earlier investigation of the heat equation to general second-order parabolic 
PDE and of the wave equation to general second-order hyperbolic PDE. We 
study as well linear first-order hyperbolic systems, with the aim of motivat
ing the developments concerning nonlinear systems of conservation laws in 
Chapter 11. The concluding section 7.4 presents the alternative functional 
analytic method of semigroups for building solutions. 

(Missing from this long Part II on linear partial differential equations is 
any discussion of distribution theory or potential theory. These are impor
tant topics, but for our purposes seem dispensable, even in a book of such 
length. These omissions do not slow us up much and make room for more 
nonlinear theory.) 

PART III: Theory for Nonlinear Partial Differential Equations 

This section parallels for nonlinear PDE the development in Part II but 
is far less unified in its approach, as the various types of nonlinearity must 
be treated in quite different ways. 

Chapter 8 commences the general study of nonlinear partial differential 
equations with an extensive discussion of the calculus of variations. Here 
we set forth a careful derivation of the direct method for deducing the ex
istence of minimizers and discuss also a variety of variational systems and 
constrained problems, as well as minimax methods. Variational theory is 
the most useful and accessible of the methods for nonlinear PDE, and so 
this chapter is fundamental. 

Chapter 9 is, rather like Chapter 4 earlier, a gathering of assorted other 
techniques of use for nonlinear elliptic and parabolic partial differential equa
tions. We encounter here monotonicity and fixed point methods and a vari
ety of other devices, mostly involving the maximum principle. We study as 
well certain nice aspects of nonlinear semigroup theory, to complement the 
linear semigroup theory from Chapter 7. 

Chapter 10 is an introduction to the modern theory of Hamilton-Jacobi 
PDE and in particular to the notion of "viscosity solutions". We encounter 
also the connections with the optimal control of ODE, through dynamic 
programming. 
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Chapter 11 picks up from Chapter 3 the discussion of conservation laws, 
now systems of conservation laws. Unlike the general theoretical develop
ments in Chapters 5-9, for which Sobolev spaces provide the proper abstract 
framework, we are forced to employ here direct linear algebra and calculus 
computations. We pay particular attention to the solution of Riemann's 
problem and to entropy criteria. 

Chapter 12, an introduction to nonlinear wave equations, is new with 
this edition. We provide long time and short time existence theorems for 
certain quasilinear wave equations and an in-depth examination of semilinear 
wave equations, especially for subcritical and critical power nonlinearities in 
three space dimensions. To complement these existence theorems, the final 
section identifies various criteria ensuring nonexistence of solutions. 

Appendices A-E provide for the reader's convenience some background 
material, with selected proofs, on inequalities, linear functional analysis, 
measure theory, etc. 

The Bibliography is an updated and extensive listing of interesting PDE 
books to consult for further information. Since this is a textbook and not 
a reference monograph, I have mostly not attempted to track down and 
document the original sources for the myriads of ideas and methods we will 
encounter. The mathematical literature for partial differential equations is 
truly vast, but the books cited in the Bibliography should at least provide 
a starting point for locating the primary sources. (Citations to selected 
research papers appear throughout the text.) 

1.5. PROBLEMS 

1. Classify each of the partial differential equations in §1.2 as follows: 

(a) Is the PDE linear, semilinear, quasilinear or fully nonlinear? 

(b) What is the order of the PDE? 

2. Let k be a positive integer. Show that a smooth function defined on 
Rn has in general 

distinct partial derivatives of order k. 

(Hint: This is the number of ways of inserting n - 1 dividers I within 
a row of k symbols o: for example, o o II o o o I o I o o o II o o o ol. 

Explain why each such pattern corresponds to precisely one of the 
partial derivatives of order k.) 
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The next exercises provide some practice with the multiindex notation 
introduced in Appendix A. 

3. Prove the Multinomial Theorem: 

h (lol) ·- ~ I - I I I d o - 01 etn Th w ere 0 .- o! , o. - 01.02 .... On., an x - x1 ... Xn . e sum 
is taken over all multiindices o = (oi, ... , on) with lol = k. 

4. Prove Leibniz's formula: 

where u, v : JR.n -+ JR. are smooth, (p) := {3!(;~{3)!, and /3 < a means 
/3i < Oi ( i = 1, ... , n). 

5. Assume that f: JR.n-+ JR. is smooth. Prove 

for each k = 1, 2, .... This is Taylor's formula in multiindex notation. 

(Hint: Fix x E JR.n and consider the function of one variable g(t) := 

f(tx).) 

1.6. REFERENCES 

Klainerman's article [Kl) is a nice modern overview of the field of partial 
differential equations. 

Good general texts and monographs on PDE include Arnold [Ar2), 
Courant-Hilbert [C-H), DiBenedetto [DBl), Folland [Fl), Friedman [Fr2). 
Garabedian [G), John [J2), Jost [Jo), McOwen [MO), Mikhailov [M), Petro
vsky [Py), Rauch [R], Renardy-Rogers [R-R), Smirnov [Sm), Smaller [SJ, 
Strauss [St2), Taylor [Ta), Thoe-Zachmanoglou [T-Z), Zauderer [Za), and 
many others. The prefaces to Arnold [Ar2] and to Bernstein [Bt) are in
teresting reading. Zwillinger's handbook [Zw) on differential equations is a 
useful compendium of methods for PDE. 
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FOUR IMPORTANT 
LINEAR PARTIAL 
DIFFERENTIAL 
EQUATIONS 

2.1 Transport equation 

2.2 Laplace's equation 

2.3 Heat equation 

2.4 Wave equation 

2.5 Problems 

2.6 References 

Chapter 2 

In this chapter we introduce four fundamental linear partial differen
tial equations for which various explicit formulas for solutions are available. 
These are 

the transport equation 
Laplace's equation 
the heat equation 
the wave equation 

Ut + b ·Du= 0 
Llu = 0 

Ut - Llu = 0 
Utt - Llu = 0 

(§2.1), 
(§2.2), 
(§2.3), 
(§2.4). 

Before going further, the reader should review the discussions of inequal
ities, integration by parts, Green's formulas, convolutions, etc., in Appen
dices B and C and later refer back to these as necessary. 

-17 
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2.1. TRANSPORT EQUATION 

One of the simplest partial differential equations is the transport equation 
with constant coefficients. This is the PDE 

(1) Ut + b ·Du= 0 in 1Rn x (0, oo), 

where bis a fixed vector in 1Rn, b = (bi, ... , bn), and u : 1Rn x [O, oo) ---+ 1R 
is the unknown, u = u(x, t). Here x = (x1, ... , xn) E 1Rn denotes a typical 
point in space, and t > 0 denotes a typical time. We write Du = Dxu = 

(uxl' ... , Uxn) for the gradient of u with respect to the spatial variables x. 

Which functions u solve (1)? To answer, let us suppose for the moment 
we are given some smooth solution u and try to compute it. To do so, we 
first must recognize that the partial differential equation ( 1) asserts that a 
particular directional derivative of u vanishes. We exploit this insight by 
fixing any point (x, t) E 1Rn x (0, oo) and defining 

z(s) := u(x + sb, t + s) (s E JR). 

We then calculate 

.i(s) = Du(x+sb,t+s) ·b+ut(x+sb,t+s) = 0 ( = !) , 
the second equality holding owing to (1). Thus z(·) is a constant function of 
s, and consequently for each point ( x, t), u is constant on the line through 
(x, t) with the direction (b, 1) E JRn+l. Hence if we know the value of u at 
any point on each such line, we know its value everywhere in 1Rn x (0, oo ). 

2.1.1. Initial-value problem. 

For definiteness therefore, let us consider the initial-value problem 

(2) { Ut + b · Du = 0 in 1Rn x (0, oo) 
u = g on Rn x { t = O}. 

Here b E 1Rn and g : ]Rn ---+ 1R are known, and the problem is to compute 
u. Given (x, t) as above, the line through (x, t) with direction (b, 1) is 
represented parametrically by (x + sb, t + s) (s E JR). This line hits the 
plane r := 1Rn x {t = O} when s = -t, at the point (x - tb, 0). Since u is 
constant on the line and u(x - tb, 0) = g(x - tb), we deduce 

(3) u(x, t) = g(x - tb) (x E 1Rn, t > 0). 

So, if (2) has a sufficiently regular solution u, it must certainly be given 
by (3). And conversely, it is easy to check directly that if g is C1, then u 
defined by (3) is indeed a solution of (2). 
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Weak solutions. If g is not C 1, then there is obviously no C 1 solution of 
(2). But even in this case formula (3) certainly provides a strong, and in 
fact the only reasonable, candidate for a solution. We may thus informally 
declare u(x, t) = g(x - tb) (x E Rn, t > 0) to be a weak solution of (2), even 
should g not be C1. This all makes sense even if g and thus u are discontin
uous. Such a notion, that a nonsmooth or even discontinuous function may 
sometimes solve a PDE, will come up again later when we study nonlinear 
transport phenomena in §3.4. 

2.1.2. Nonhomogeneous problem. 

Next let us look at the associated nonhomogeneous problem 

(4) { Ut + b · Du = f in Rn x (0, oo) 
u = g on Rn x {t = O}. 

As before fix (x, t) E Rn+l and, inspired by the calculation above, set z(s) := 

u( x + sb, t + s) for s E R. Then 

z(s) = Du(x + sb, t + s) · b + Ut(x + sb, t + s) = f(x + sb, t + s). 

Consequently 

and so 

u(x, t) - g(x - tb) = z(O) - z(-t) =I: Z(s) ds 

= I>(x+sb,t+s)ds 

= lf(x+(s-t)b,s)ds, 

(5) u(x, t) = g(x - tb) + l f(x + (s - t)b, s) ds (x E R.n, t > 0) 

solves the initial-value problem ( 4). 

We will later employ this formula to solve the one-dimensional wave 
equation, in §2.4.1. 

Remark. Observe that we have derived our solutions (3), (5) by in effect 
converting the partial differential equations into ordinary differential equa
tions. This procedure is a special case of the method of characteristics, 
developed later in §3.2. 
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2.2. LAPLACE'S EQUATION 

Among the most important of all partial differential equations are undoubt
edly Laplace's equation 

(1) Llu = 0 

and Poisson's equation 

(2) -Llu = f. • 

In both (1) and (2), x E U and the unknown is u : [J -+ JR, u = u(x), 
where U c Rn is a given open set. In (2) the function f : U -+ 1R is also 
given. Remember from §A.3 that the Laplacian of u is Llu = L:~1 Uxixi. 

DEFINITION. A C2 function u satisfying (1) is called a harmonic func
tion. 

Physical interpretation. Laplace's equation comes up in a wide variety 
of physical contexts. In a typical interpretation u denotes the density of 
some quantity (e.g. a chemical concentration) in equilibrium. Then if V is 
any smooth subregion within u' the net flux of u through av is zero: 

{ F · vdS = 0, lav 
F denoting the flux density and v the unit outer normal field. In view of 
the Gauss-Green Theorem (§C.2), we have 

{ div F dx = { F · v dS = 0, lv lav 
and so 

(3) divF = 0 in U, 

since V was arbitrary. In many instances it is physically reasonable to as
sume the flux Fis proportional to the gradient Du but points in the opposite 
direction (since the flow is from regions of higher to lower concentration). 
Thus 

(4) F = -aDu (a > 0). 

*I prefer to write (2) with the minus sign, to be consistent with the notation for general 
second-order elliptic operators in Chapter 6. 



2.2. LAPLACE'S EQUATION 

Substituting into (3), we obtain Laplace's equation 

If u denotes the 

equation (4) is 

div(Du) = Llu = 0. 

{ 
chemical concentration 

temperature 

electrostatic potential, 

{ 
Fick's law of diffusion 

Fourier's law of heat conduction 

Ohm's law of electrical conduction. 

21 

See Feynman-Leighton-Sands [F-L-S, Chapter 12] for a discussion of the 
ubiquity of Laplace's equation in mathematical physics. Laplace's equa
tion arises as well in the study of analytic functions and the probabilistic 
investigation of Brownian motion. 

2.2.1. Fundamental solution. 

a. Derivation of fundamental solution. One good strategy for inves
tigating any partial differential equation is first to identify some explicit 
solutions and then, provided the PDE is linear, to assemble more compli
cated solutions out of the specific ones previously noted. Furthermore, in 
looking for explicit solutions, it is often wise to restrict attention to classes 
of functions with certain symmetry properties. Since Laplace's equation is 
invariant under rotations (Problem 2), it consequently seems advisable to 
search first for mdial solutions, that is, functions of r = lxl. 

Let us therefore attempt to find a solution u of Laplace's equation (1) 
in U = Rn, having the form 

u(x) = v(r), 

where r = lxl = (x~ + · · · + x~) 112 and v is to be selected (if possible) so 
that Ll u = 0 holds. First note for i = 1, ... , n that 

Or 1 ( 2 2)-1/2 Xi - = - X1 + · · · + X 2Xi = -
OXi 2 n r 

(x -1- 0). 

We thus have 

I ( ) Xi " x~ I ( 1 x~ ) 
Ux· = v r -, Uxixi = v (r)-2" + v (r) - - - 3" ' r r r r 
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for i = 1, ... , n, and so 

n-1 
Ll u = v" ( r) + v' ( r). 

r 

Hence Ll u = 0 if and only if 

(5) II n-1 I 0 
v + v = . 

r 

If v' f:. 0, we deduce 
v" 1 - n 

log(lv'I)' = -, = , 
v r 

and hence v'(r) = rna_ 1 for some constant a. Consequently if r > 0, we have 

{ 
blog r + c ( n = 2) 

v(r) = rnb-2 + c (n > 3), 

where b and c are constants. 

These considerations motivate the following 

DEFINITION. The function 

{ 
-2~ log lxl 

~(x) := 1 I 
n(n-2)a(n) lxln-2 

(6) 
(n = 2) 

(n > 3), 

defined for x E Rn, x f:. 0, is the fundamental solution of Laplace's equation. 

The reason for the particular choices of the constants in (6) will be 
apparent in a moment. (Recall from §A.2 that a( n) denotes the volume of 
the unit ball in Rn.) 

We will sometimes slightly abuse notation and write ~(x) = ~(lxl) to 
emphasize that the fundamental solution is radial. Observe also that we 
have the estimates 

(7) 

for some constant C > 0. 

b. Poisson's equation. By construction the function x ~ ~(x) is har
monic for x f:. 0. If we shift the origin to a new point y, the PDE (1) is 
unchanged; and so x ~ ~ ( x - y) is also harmonic as a function of x, x f:. y. 
Let us now take f: Rn---+ Rand note that the mapping x ~ ~(x - y)f(y) 
( x f:. y) is harmonic for each point y E Rn, and thus so is the sum of finitely 
many such expressions built for different points y. 
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This reasoning might suggest that the convolution 

u(x)= fRn cI>(x - y)f(y) dy 

(8) = {- 2~ JR2 log(lx - yl)f(y) dy (n = 2) 

n(n-~)a(n) JRn lx!~j2-2 dy (n > 3) 

will solve Laplace's equation (1). However, this is wrong. Indeed, as inti
mated by estimate (7), D2cI>(x - y) is not summable near the singularity at 
y = x, and so naive differentiation through the integral sign is unjustified 
(and incorrect). We must proceed more carefully in calculating Llu. 

Let us for simplicity now assume f E c;(Rn); that is, f is twice contin
uously differentiable, with compact support. 

THEOREM 1 (Solving Poisson's equation). Define u by (8). Then 

(i) u E C2(Rn) 

and 
(ii) -Llu = f in Rn. 

We consequently see that (8) provides us with a formula for a solution 
of Poisson's equation (2) in Rn. 

Proof. 1. We have 

(9) u(x) = J. cI>(x - y)f(y) dy = J. cI>(y)f(x - y) dy; 
Rn Rn 

hence 

u(x +he~) - u(x) = L <I>(y) [ /(x +he; - ~) - /(x - y)] dy, 

where h =f. 0 and ei = (0, ... , 1, ... , 0), the 1 in the ith_slot. But 

I ( x + hei - y) - I ( x - y) 
h -+ I Xi ( x - y) 

uniformly on Rn as h -+ 0, and thus 

Similarly 

(10) Uxix;(x) = J. cI>(y)fxix;(x -y) dy (i,j = 1, ... ,n). 
Rn 
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As the expression on the right-hand side of (10) is continuous in the variable 
x, we see u E C2 (IRn). 

2. Since ~ blows up at 0, we will need for subsequent calculations to 
isolate this singularity inside a small ball. So fix c > 0. Then 

Llu(x) = { ~(y)Llxf(x - y) dy + { ~(y)Llxf(x - y) dy 
(11) Jn(O,c) }JRn-B(O,e:) 

=:le;+ Je;. 

Now 

(12) 

An integration by parts (see §C.2) yields 

Je: = f ~(y)Llyf (x - y) dy 
}R.n-B(O,e:) 

= -!. D~(y) · Dyf (x - y) dy 
(13) R.n-B(O,c) 

+ f ~(y) 881 (x - y) dS(y) 
lan(O,e:) v 

=:Ke:+ Le:, 

v denoting the inward pointing unit normal along 8B(O, c). We readily check 

l { Ccl log cl (n = 2) 
(14) ILe:I < llDJllL00 (JRn) l~(y)I dS(y) < C ( > 3) 

8B(O,e:) c n _ . 

3. We continue by integrating by parts once again in the term Ke;, to 
discover 

Ke: = f Ll~(y)f (x - y) dy - f 88~ (y)f (x - y) dS(y) 
}Rn-B(O,e:) lan(O,e:) v 

= - f 88~ (y)f(x - y) dS(y), 
lan(o,e:) v 

since~ is harmonic away from the origin. Now D~(y) = n~(~) IY~n (y =f. 0) 

and v = TiJf = -~on 8B(O, c). Consequently i~ (y) = v· D~(y) = na(n)e:n-1 
on 8B(O, c). Since na(n)cn-l is the surface area of the sphere 8B(O, c), we 
have 

(15) 

K, = - ( ~ _1 { f(x-y)dS(y) 
na n en lan(o,e:) 

= -j f(y) dS(y)-+ -f(x) as c-+ 0. 
8B(x,e:) 
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(Remember from §A.3 that a slash through an integral denotes an average.) 

4. Combining now (11)-(15) and letting e ~ 0, we find -~u(x) = f(x), 
as asserted. D 

Theorem 1 is in fact valid under far less stringent smoothness require
ments for f: see Gilbarg-Trudinger [G-T]. 

Interpretation of fundamental solution. We sometimes write 

80 denoting the Dirac measure on Rn giving unit mass to the point 0. Adopt
ing this notation, we may formally compute 

-~u(x) = [ -~x<P(x - y)f(y) dy 
}Rn 

= { 8xf(y) dy = f(x) (x E Rn), 
}Rn 

in accordance with Theorem 1. This corrects the faulty calculation (9). 

2.2.2. Mean-value formulas. 

Consider now an open set U C Rn and suppose u is a harmonic function 
within U. We next derive the important mean-value formulas, which declare 
that u(x) equals both the average of u over the sphere 8B(x, r) and the 
average of u over the entire ball B ( x, r), provided B ( x, r) c U. These 
implicit formulas involving u generate a remarkable number of consequences, 
as we will momentarily see. 

THEOREM 2 (Mean-value formulas for Laplace's equation). If u E C2(U) 
is harmonic, then 

(16) u(x) = j udS = f udy 
oB(x,r) B(x,r) 

for each ball B(x, r) c U. 

Proof. 1. Set 

Then 

<P(r) := j u(y) dS(y) = j u(x + rz) dS(z). 
oB(x,r) oB(0,1) 

<P'(r) = j Du(x + rz) · zdS(z), 
oB(0,1) 
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and consequently, using Green's formulas from §C.2, we compute 

<P'(r) = j Du(y) · y - x dS(y) 
8B(x,r) r 

= f au dS(y) 
8B(x,r) av 

= rf Llu(y) dy = 0. 
n B(x,r) 

Hence <P is constant, and so 

¢(r) = lim ¢(t) = lim f u(y) dS(y) = u(x). 
t-+0 t-+0 8B(x,t) 

2. Observe next that our employing polar coordinates, as in §C.3, gives 

1 l r(L ) udy = udS ds 
B(x,r) 0 8B(x,s) 

= u(x) l' na(n)sn-lds = a(n)rnu(x). D 

THEOREM 3 (Converse to mean-value property). If u E C2 (U) satisfies 

u(x) = j udS 
8B(x,r) 

for each ball B ( x, r) C U, then u is harmonic. 

Proof. If Llu ;/:. 0, there exists some ball B(x, r) c U such that, say, Llu > 0 
within B(x, r). But then for <Pas above, 

O=<P'(r)= rf Llu(y)dy>O, 
n B(x,r) 

a contradiction. D 

2.2.3. Properties of harmonic functions. 

We now present a sequence of interesting deductions about harmonic 
functions, all based upon the mean-value formulas. Assume for the following 
that Uc IRn is open and bounded. 
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a. Strong maximum principle, uniqueness. We begin with the asser
tion that a harmonic function must attain its maximum on the boundary 
and cannot attain its maximum in the interior of a connected region unless 
it is constant. 

THEOREM 4 (Strong maximum principle). Suppose u E C2(U) n C(U) 
is harmonic within U. 

(i) Then 
max u = max u. o au 

(ii) Furthermore, if U is connected and there exists a point xo E U such 
that 

then 

u(xo) = mµ u, 
u 

u is constant within U. 

Assertion (i) is the maximum principle for Laplace's equation and (ii) is 
the strong maximum principle. Replacing u by -u, we recover also similar 
assertions with "min" replacing "max" . 

Proof. Suppose there exists a point xo E U with u(xo) = M := maxo u. 
Then for 0 < r < dist(xo, au), the mean-value property asserts 

M = u(xo) = j u dy < M. 
B(xo,r) 

As equality holds only if u = M within B(xo, r), we see u(y) = M for all 
y E B(xo, r). Hence the set {x EU I u(x) = M} is both open and relatively 
closed in U and thus equals U if U is connected. This proves assertion (ii), 
from which (i) follows. D 

Positivity. The strong maximum principle asserts in particular that if U 
is connected and u E C2 ( U) n C ( U) satisfies 

{ Llu = 0 in U 
u = g on au, 

where g > 0, then u is positive everywhere in U if g is positive somewhere 
on au. 

An important application of the maximum principle is establishing the 
uniqueness of solutions to certain boundary-value problems for Poisson's 
equation. 
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THEOREM 5 (Uniqueness). Let g E C(aU), f E C(U). Then there exists 
at most one solution u E C2(U) n CCU) of the boundary-value problem 

(17) { -Llu = f in U 
u=g onau. 

Proof. If u and u both satisfy (17), apply Theorem 4 to the harmonic 
functions w := ±(u - u). D 

b. Regularity. Next we prove that if u E C2 is harmonic, then necessarily 
u E C 00 • Thus harmonic functions are automatically infinitely differentiable. 
This sort of assertion is called a regularity theorem. The interesting point 
is that the algebraic structure of Laplace's equation Llu = E~1 Uxixi = 0 
leads to the analytic deduction that all the partial derivatives of u exist, 
even those which do not appear in the PDE. 

THEOREM 6 (Smoothness). If u E C(U) satisfies the mean-value prop
erty (16) for each ball B(x, r) c U, then 

u E C00 (U). 

Note carefully that u may not be smooth, or even continuous, up to au. 
Proof. Let 'T/ be a standard mollifier, as described in §C.4, and recall that 
'T/ is a radial function. Set ue := 'T/e * u in ue = { x E u I dist(x, au) > E }. 

As shown in §C.4, ue E C00 (Ue). 

We will prove u is smooth by demonstrating that in fact u = ue on Ue. 
Indeed if x E Ue, then 

u•(x) = fu 1/e(x - y)u(y) dy 

= ~ r 'T/ ( Ix - YI) u(y) dy 
E Jn(x,e) E 

- __!_ re 'T/ (!:.) ( r u ds) dr 
En Jo E lan(x,r) 

= _!_u(x) re 'T/ (!:.) no:(n)rn-1dr by (16) 
En Jo E 

= u(x) r 'T/e dy = u(x). 
j B(O,e) 

Thus ue = u in Ue, and so u E C 00 (Ue) for each E > 0. D 
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c. Local estimates for harmonic functions. Now we employ the mean
value formulas to derive careful estimates on the various partial derivatives 
of a harmonic function. The precise structure of these estimates will be 
needed below, when we prove analyticity. 

THEOREM 7 (Estimates on derivatives). Assume u is harmonic in U. 
Then 

(18) 

for each ball B(xo, r) c U and each multiindex a of order !al = k. 

Here 

(19) 
1 (2n+1nk)k 

Co= a(n)' Ck= a(n) (k = 1, ... ). 

Proof. 1. We establish (18), (19) by induction on k, the case k = 0 being 
immediate from the mean-value formula (16). For k = 1, we note upon 
differentiating Laplace's equation that Uxi (i = 1, ... , n) is harmonic. Con
sequently 

(20) 

Now if x E 8B(xo, r/2), then B(x, r/2) c B(xo, r) c U, and so 

1 (2)n lu(x)I < a(n) ~ llullL1(B(x0 ,r)) 

by (18), (19) fork= 0. Combining the inequalities above, we deduce 

2n+ln 1 
ID0 u(xo)I < a(n) rn+l llullL1(B(x0 ,r)) 

if !al = 1. This verifies (18), (19) for k = 1. 

2. Assume now k > 2 and (18), (19) are valid for all balls in U and each 
multiindex of order less than or equal to k - 1. Fix B(xo, r) c U and let a 
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be a multiindex with lad= k. Then D 0 u = (Df3u)xi for some i E {1, ... , n}, 
I.Bl = k - 1. By calculations similar to those in (20), we establish that 

If x E 8B(xo, ~), then B(x, kk 1r) c B(xo, r) C U. Thus (18), (19) for 
k - 1 imply 

f3. (2n+ln(k - l))k-1 
ID u(x)I < n+k-1 llullL1 (B(xo,r))· 

o:(n) (kk"lr) 

Combining the two previous estimates yields the bound 

(21) 
(2n+lnk)k 

ID0 u(xo)I < o:(n)rn+k llullL1(B(x0 ,r))· 

This confirms (18), (19) for lo:I = k. D 

d. Liouville's Theorem. We assert now that there are no nontrivial 
bounded harmonic functions on all of IRn. 

THEOREM 8 (Liouville's Theorem). Suppose u : IRn -+ IR is harmonic 
and bounded. Then u is constant. 

Proof. Fix xo E IRn, r > 0, and apply Theorem 7 on B ( xo, r): 

as r-+ oo. Thus Du - 0, and sou is constant. D 

THEOREM 9 (Representation formula). Let f E c;(IRn), n > 3. Then 
any bounded solution of 

has the form 

u(x) = { ~(x - y)f (y) dy + C (x E IRn) 
}Rn 

for some constant C. 
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Proof. Since cI>(x) -+ 0 as lxl -+ oo for n > 3, u(x) := fRn cI>(x - y)f(y) dy 
is a bounded solution of -~u =fin 1Rn. If u is another solution, w := u-u 
is constant, according to Liouville's Theorem. D 

Remark. If n = 2, cI>(x) = - 2~ log !xi is unbounded as lxl -+ oo and so 
may be JR2 cI>(x - y)f(y) dy. 

e. Analyticity. We refine Theorem 6: 

THEOREM 10 (Analyticity). Assume u is harmonic in U. Then u is 
analytic in U. 

Proof. 1. Fix any point xo E U. We must show u can be represented by a 
convergent power series in some neighborhood of xo. 

Let r := -! dist(xo, 8U). Then M := a(~)rn llullL1(B(xo,2r)) < oo. 

2. Since B(x, r) C B(xo, 2r) C U for each x E B(xo, r), Theorem 7 
provides the bound 

Now ~~ < ek for all positive integers k, and hence 

for all multiindices o:. Furthermore, the Multinomial Theorem (§1.5) implies 

whence 

Combining the previous inequalities yields the estimate 

(22) 

3. The Taylor series for u at xo is 

""' nau(xo) ( )a 
L.J ' x - xo ' o:. 

a 
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the sum taken over all multiindices. We assert this power series converges, 
provided 

(23) 

To verify this, let us compute for each N the remainder term: 

RN(x) := u(x) - I: L D"u(xo)(~ - xo)" 
a. 

k=O jaj=k 

= ~ nau(xo + t(x - xo))(x - xo)a 
L...J a! 

jaj=N 

for some 0 < t < 1, t depending on x. We establish this formula by writing 
out the first N terms and the error in the Taylor expansion about 0 for the 
function of one variable g(t) := u(x0 + t(x - x0 )), at t = 1. Employing (22), 
( 23), we can estimate 

(2n+l 2 )N N 
IRN(x)I <CM ~ n e ( r ) 

L...J r 2n+2n3e 
jaj=N 

N 1 CM 
< CMn (2n)N = 2N ---+ 0 as N---+ oo. D 

See §4.6.2 for more on analytic functions and partial differential equa
tions. 

f. Harnack's inequality. Recall from §A.2 that we write V cc U to 
mean V c V c U and Vis compact. 

THEOREM 11 (Harnack's inequality). For each connected open set V 
CC U, there exists a positive constant C, depending only on V, such that 

supu < Cinfu v - v 

for all nonnegative harmonic functions u in U. 

Thus in particular 

1 
Cu(y) < u(x) < Cu(y) 

for all points x, y E V. These inequalities assert that the values of a non
negative harmonic function within V are all comparable: u cannot be very 
small (or very large) at any point of V unless u is very small (or very large) 
everywhere in V. The intuitive idea is that since V is a positive distance 
away from au, there is "room for the averaging effects of Laplace's equation 
to occur". 
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Proof. Let r :=-! dist(V, au). Choose x, y Ev, Ix - YI < r. Then 

u( x) = f u dz > 1 r u dz 
B(x,2r) - a(n)2nrn } B(y,r) 

1 f 1 = 2n udz = 2n u(y). 
B(y,r) 

Thus 2nu(y) > u(x) > 2~ u(y) if x, y E V, Ix - YI < r. 
Since V is connected and V is compact, we can cover V by a chain of 

finitely many balls {Bi}!1, each of which has radius ~ and Bin Bi-1 f:. 0 
for i = 2, . . . , N. Then 

1 
u(x) > 2n(N+1) u(y) 

for all x, y E V. D 

2.2.4. Green's function. 

Assume now U c Rn is open, bounded, and 8U is C1. We propose 
next to obtain a general representation formula for the solution of Poisson's 
equation 

-Llu = f in U, 

subject to the prescribed boundary condition 

u = g on au. 

a. Derivation of Green's function. Suppose u E C 2(U) is an arbitrary 
function. Fix x E U, choose c > 0 so small that B ( x, c) c U, and apply 
Green's formula from §C.2 on the region Ve := U - B(x, c) to u(y) and 
~(y - x). We thereby compute 

(24) 
r u(y)Ll~(y - x) - ~(y - x)Llu(y) dy 

Jve 
la a~ au 

= u(y)-a (y - x) - ~(y - x)-a (y) dS(y), 
a~ v v 

v denoting the outer unit normal vector on 8Ve. Recall next Ll~(x -y) = 0 
for x f:. y. We observe also 

I r ~(y - x) ~u (y) dS(y) I < Ccn-l max 1~1 = o(l) 
} 8B(x,e) uV 8B(O,e) 

as c--+ 0. Furthermore the calculations in the proof of Theorem 1 show 

f u(y) ~~ (y - x) dS(y) = f u(y) dS(y) --+ u(x) J 8B(x,e) V 8B(x,e) 
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as e---+ 0. Hence our sending e---+ 0 in (24) yields the formula 

1 au a<P 
u(x) = <P(y - x)-a (y) - u(y)-a (y- x) dS(y) 

au v v 

-L <l>(y - x)Au(y) dy. 
(25) 

This identity is valid for any point x EU and any function u E C2 (U). 

Now formula (25) would permit us to solve for u(x) if we knew the 
values of Au within U and the values of u, au/ av along au. However, for 
our application to Poisson's equation with prescribed boundary values for u, 
the normal derivative au/av along au is unknown to us. We must therefore 
somehow modify (25) to remove this term. 

The idea is now to introduce for fixed x a corrector function <Px = <Px(y), 
solving the boundary-value problem 

{ A</>x = 0 in U 
(26) <PX = <P(y - X) On au. 

Let us apply Green's formula once more, to compute 

1 1 a¢x au 
- <Px(y)Au(y) dy = u(y)-a (y) - <Px(y)-a (y) dS(y) 

u au v v 

1 a¢x au 
= u(y)-a (y) - <P(y - x)-a (y) dS(y). 

au v v 

(27) 

We introduce next this 

DEFINITION. Green's function for the region U is 

G(x, y) := <P(y - x) - </>x(y) (x, y E U, x f:- y). 

Adopting this terminology and adding (27) to (25), we find 

(28) u(x) = - { u(y) aaG (x, y) dS(y) -1 G(x, y)Au(y) dy (x EU), 
lau v u 

where aa 
av (x, y) = DyG(x, y) · v(y) 

is the outer normal derivative of G with respect to the variable y. Observe 
that the term au/av does not appear in equation (28): we introduced the 
corrector <Px precisely to achieve this. 

Suppose now u E C2 (U) solves the boundary-value problem 

(29) {-Au = f in U 
u = g on au, 

for given continuous functions f, g. Plugging into (28), we obtain 
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THEOREM 12 (Representation formula using Green's function). If 
u E C2 (U) solves problem (29), then 

(30) u(x) = - { g(y) aaG (x, y) dS(y) + 1 J(y)G(x, y) dy (x EU). 
lau v u 

Here we have a formula for the solution of the boundary-value problem 
(29), provided we can construct Green's function G for the given domain U. 
This is in general a difficult matter and can be done only when Uhas simple 
geometry. Subsequent subsections identify some special cases for which an 
explicit calculation of G is possible. 

Interpreting Green's function. Fix x E U. Then regarding G as a 
function of y, we may symbolically write 

{ -b.G = 8x in U 
G= 0 on au, 

8x denoting the Dirac measure giving unit mass to the point x. 

Before moving on to specific examples, let us record the general assertion 
that G is symmetric in the variables x and y: 

THEOREM 13 (Symmetry of Green's function). For all x, y EU, x =I- y, 
we have 

G(y, x) = G(x, y). 

Proof. Fix x, y E U, x =I- y. Write 

v(z) := G(x, z), w(z) := G(y, z) (z E U). 

Then b.v(z) = 0 (z =I- x), b.w(z) = 0 (z =I- y) and w = v = 0 on 
au. Thus our applying Green's identity on V := U - [B(x, c:) u B(y, c:)] for 
sufficiently small c: > 0 yields 

(31) f av w - aw vdS(z) = f aw v - av wdS(z), 
laB(x,e) av av laB(y,e) av av 

v denoting the inward pointing unit vector field on aB ( x, c:) u a B (y, c:). Now 
w is smooth near x, whence 

I [ aaw v dSI < cc:n-l sup !vi = o(l) as c---+ 0. 
JaB(x,e) V 8B(x,e) 
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On the other hand, v(z) = <t>(z -x)-</>x(z), where <f>x is smooth in U. Thus 

. l av . l a<.1> hm -8 w dS = hm -8 (x - z)w(z) dS = w(x), 
e-+O 8B(x,e) V e-+O 8B(x,e) V 

by calculations as in the proof of Theorem 1. Thus the left-hand side of (31) 
converges to w(x) as e---+ 0. Likewise the right-hand side converges to v(y). 
Consequently 

G(y, x) = w(x) = v(y) = G(x, y). D 

b. Green's function for a half-space. In this and the next subsection 
we will build Green's functions for two regions with simple geometry, namely 
the half-space JR+. and the unit ball B(O, 1). Everything depends upon our 
explicitly solving the corrector problem (26) in these regions, and this in 
turn depends upon some clever geometric reflection tricks. 

First let us consider the half-space 

lRi = {x =(xi, ... ,xn) E Rn I Xn > 0}. 

Although this region is unbounded, and so the calculations in the previous 
section do not directly apply, we will attempt nevertheless to build Green's 
function using the ideas developed earlier. Later of course we must check 
directly that the corresponding representation formula is valid. 

DEFINITION. If x =(xi, ... , Xn-1' Xn) E JR+., its reflection in the plane 
aJR+ is the point 

X = (x1, ... 'Xn-1, -xn)· 

We will solve problem (26) for the half-space by setting 

</>x(y) := <I>(y - x) = <I>(y1 - Xi, ... ' Yn-l - Xn-I, Yn + Xn) (x, y E JRi). 

The idea is that the corrector <f>x is built from <I> by "reflecting the singular
ity" from x E JR+. to x ¢:.JR+. We note 

and thus 

as required. 
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DEFINITION. Green's function for the half-space R+. is 

G(x,y) := ~(y- x) - ~(y- x) (x,y ER~, x #- y). 

Then 

Consequently if y E aR+' 
00 2~ 1 
-8 ( x, y) = -Gyn ( x, y) = - ( ) I I . v nan x-yn 

Suppose now u solves the boundary-value problem 

(32) { ~u = 0 in R+. 
u = g on 8R+.. 

Then from (30) we expect 

(33) ( ) 2xn l g(y) d u x = y 
na(n) aRn Ix - Yin 

+ 

to be a representation formula for our solution. The function 

K(x y ·= 2xn 1 
' ) · na ( n) Ix - y In ( x E R~, y E 8R~) 

is Poisson's kernel for R+., and (33) is Poisson's formula. 

We must now check directly that formula (33) does indeed provide us 
with a solution of the boundary-value problem (32). 

THEOREM 14 (Poisson's formula for half-space). Assume g E C(Rn-l )n 
L00 (Rn-l ), and define u by (33). Then 

(i) u E C00 (R+.) n L00 (R+.), 

(ii) ~u = 0 in R+., 

and 
(iii) lim u(x) = g(x0 ) for each point x 0 E 8R+. 

x-x0 
xeR+ 
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Proof. 1. For each fixed x, the mapping y 1---+ G(x, y) is harmonic, except 
for y = x. As G(x, y) = G(y, x), x 1---+ G(x, y) is harmonic, except for x = y. 
Thus x 1---+ - g;: (x, y) = K(x, y) is harmonic for x E JR+., y E oJR+.. 

2. A direct calculation, the details of which we omit, verifies 

(34) 1 = { K(x,y) dy 
JaRn + 

for each x E JR+. As g is bounded, u defined by (33) is likewise bounded. 
Since x 1---+ K ( x, y) is smooth for x =I- y, we easily verify as well u E C 00 (JR+.), 
with 

Llu(x) = { LlxK(x, y)g(y) dy = 0 (x E JR~). 
JaRn + 

3. Now fix x0 E oJR+., e > 0. Choose 8 > 0 so small that 

(35) lg(y) - g(x0 )1 < £ if IY - x0 1 < 8, y E 8JR~. 

Then if Ix - x0 1 < ~' x E JR+., 

(36) 

lu(x) - g(x0 )1 = r K(x, y)[g(y) - g(x0 )] dy 
JaRn + 

< r K(x, y)lg(y) - g(x0 )1 dy 
JaR+nB(x0,8) 

+ r K(x, y)lg(y) - g(x0 )1 dy 
J 8R7+ -B(xO ,8) 

=:l+J. 

Now (34), (35) imply 

I < e f K(x, y) dy = e. 
JaRn + 

F\irthermore if Ix - x0 1 <~and IY - x01>8, we have 

0 8 1 0 
IY- x I< IY- xi+ 2 < IY- xi+ 2IY- x I; 

and so IY- xi> !IY- x0 1. Thus 

J < 2llgllv)() f K(x, y) dy 
j 8R1+ -B(xO ,8) 

< 2n+2llYll£<X>Xn r IY - xo1-n dy 
na(n) laR+-B(x0,8) 

---+ 0 as Xn---+ o+. 
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Combining this calculation with estimate (36), we deduce lu(x )-g(x0 ) I < 2c:, 
provided Ix - x0 1 is sufficiently small. D 

c. Green's function for a ball. To construct Green's function for the 
unit ball B(9, 1), we will again employ a kind of reflection, this time through 
the sphere 8B(O, 1). 

DEFINITION. If x E Rn - {O}, the point 

is called the point dual to x with respect to 8B(O, 1). The mapping x ~ x 
is inversion through the unit sphere 8B(O, 1). 

We now employ inversion through the sphere to compute Green's func
tion for the unit ball U = B 0 (o, 1). Fix x E B 0 (o, 1). Remember that we 
must find a corrector function </>x = </>x (y) solving 

(37) { ll.¢x = o in B 0 (o, 1) 
</>x = <t>(y - x) on 8B(O, 1); 

then Green's function will be 

(38) G(x, y) = <I>(y - x) - </>x(y). 

The idea now is to "invert the singularity" from x E B 0 (o, 1) to x ¢:. 
B(O, 1). Assume for the moment n > 3. Now the mapping y ~ <t>(y- x) is 
harmonic for y =f:. x. Thus y ~ lxl2-n<t>(y- x) is harmonic for y =f:. x, and so 

(39) 

is harmonic in U. Furthermore, if y E 8B(O, 1) and x =f:. 0, 

2 - 2 2 ( 2 2y . x 1 ) 
lxl IY - xi = lxl IYI - lxl2 + lxl2 

= lxl2 - 2y. x + 1 = Ix - Yl2. 

Thus (lxlly- xl)-(n-2) =Ix -y1-(n-2). Consequently 

(40) ¢x(y) = <t>(y - x) (y E 8B(O, 1)), 

as required. 
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DEFINITION. Green's function for the unit ball is 

(41) G(x, y) := cI>(y - x) - cI>(lxl(Y - x)) (x, y E B(O, 1), x #- y). 

The same formula is valid for n = 2 as well. 

Assume now u solves the boundary-value problem 

(42) 

Then using ( 30), we see 

{ ~u = 0 in B 0 ( 0, 1) 
u = g in 8B(O, 1). 

(43) l ac 
u(x) = - g(y)-8 (x, y) dS(y). 

8B(O,I) V 

According to formula (41), 

But 

and furthermore 

- -1 Yilxl2 - Xi 
cI>(lxl(Y - x))yi· = na(n) (lxlly - xl)n 

if y E 8B(O, 1). Accordingly 

ac n 
av (x, y) = LYiGyi (x, y) 

i=l 

1 Yilxl2 - Xi 
na(n) Ix - yin 

-1 1 n 2 
= ( ) I In LYi((Yi - Xi) - Yilxl +Xi) 

nan x -y i=I 

-1 l - lxl2 
na(n) Ix - yin· 

Hence formula ( 43) yields the representation formula 

u(x) = 1 - lxl2 [ g(y) dS(y). 
na(n) laB(O,I) Ix - Yin 

Suppose now instead of ( 42) u solves the boundary-value problem 

(44) { ~u = 0 in B 0 (0, r) 
u = g on 8B(O, r) 
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for r > 0. Then u(x) = u(rx) solves (42), with g(x) = g(rx) replacing g. 
We change variables to obtain Poisson's formula 

(45) u(x) = r2 
- lxl2 f g(y) dS(y) (x E B 0 (o, r)). 

na(n)r laB(O,r) Ix - Yin 

The function 

r2 - lxl2 1 
K(x y) ·= (x E B 0 (0, r), y E 8B(O, r)) 

' · na(n)r Ix· - yin 

is Poisson's kernel for the ball B(O, r). 

We have established ( 45) under the assumption that a smooth solution 
of ( 44) exists. We next assert that this formula in fact gives a solution: 

THEOREM 15 (Poisson's formula for ball). Assume g E C(8B(O, r)) and 
define u by ( 45). Then 

(i) u E C 00 (B0 (0, r)), 

(ii) Llu=O inB0 (0,r), 

and 
(iii) lim u(x) = g(x0 ) for each point x0 E aB(O, r). 

x-x0 

xEB0 (0,r) 

The proof is similar to that for Theorem 14 and is left as an exercise. 

2.2.5. Energy methods. 

Most of our analysis of harmonic functions thus far has depended upon 
fairly explicit representation formulas entailing the fundamental solution, 
Green's functions, etc. In this concluding subsection we illustrate some 
"energy" methods, which is to say techniques involving the £ 2-norms of 
various expressions. These ideas foreshadow later theoretical developments 
in Parts II and III. 

a. Uniqueness. Consider first the boundary-value problem 

(46) { -Llu = f in U 
u=g onau. 

We have already employed the maximum principle in §2.2.3 to show 
uniqueness, but now we set forth a simple alternative proof. Assume U is 
open, bounded, and au is C1. 
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THEOREM 16 (Uniqueness). There exists at most one solution u E 

C2 (U) of (46). 

Proof. Assume u is another solution and set w := u - u. Then /j.w = 0 in 
U, and so an integration by parts shows 

0 = - L wl:l.w dx = L 1Dwl2 dx. 

Thus Dw = 0 in U, and, since w = 0 on 8U, we deduce w = u - u = 0 in 
U. D 

b. Dirichlet's principle. Next let us demonstrate that a solution of the 
boundary-value problem (46) for Poisson's equation can be characterized as 

the minimizer of an appropriate functional. For this, we define the energy 
functional 

I[w] := 1 !1Dwl2 - wf dx, 
u2 

w belonging to the admissible set 

A := { w E C2(U) I w = g on 8U}. 

THEOREM 17 (Dirichlet's principle). Assume u E C 2(U) solves (46). 
Then 

(47) I[u] =min I[w]. 
wEA 

Conversely, if u E A satisfies ( 4 7), then u solves the boundary-value problem 
(46). 

In other words if u E A, the PDE -/j.u = f is equivalent to the statement 
that u minimizes the energy I [ · ] . 

Proof. 1. Choose w E A. Then ( 46) implies 

0 = L (-l:l.u - f)(u - w) dx. 

An integration by parts yields 

0= funu-D(u-w)-f(u-w)dx, 
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and there is no boundary term since u - w = g - g = 0 on 8U. Hence 

L IDul2 -uf dx = L Du· Dw-wf dx 

< L ~IDul2 dx + L ~IDwl2 - wf dx, 

where we employed the estimates 

following from the Cauchy-Schwarz and Cauchy inequalities (§B.2). Rear
ranging, we conclude 

(48) I[u] < I[w] (w EA). 

Since u EA, (47) follows from (48). 

2. Now, conversely, suppose (47) holds. Fix any v E Cgo(U) and write 

Since u + TV E A for each T, the scalar function i ( ·) has a minimum at zero, 
and thus 

i' (0) = 0 (' = d:) , 
provided this derivative exists. But 

Consequently 

0 = i'(O) = L Du· Dv -vf dx = L (-flu - f)vdx. 

This identity is valid for each function v E cgo(U) and so -~u = I in 
U. D 

Dirichlet's principle is an instance of the calculus of variations applied 
to Laplace's equation. See Chapter 8 for more. 
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2.3. HEAT EQUATION 

Next we study the heat equation 

(1) Ut - Au= 0 

and the nonhomogeneous heat equation 

(2) Ut - Au= f, 

subject to appropriate initial and boundary conditions. Here t > 0 and 
x E U, where U c Rn is open. The unknown is u : [J x [O, oo) ---+ JR, u = 

u(x, t), and the Laplacian A is taken with respect to the spatial variables x = 

(xi, ... , Xn): Au= Axu = L:~1 Uxixi· In (2) the function f: Ux [O, oo)---+ 1R . . 
is given. 

A guiding principle is that any assertion about harmonic functions yields 
an analogous (but more complicated) statement about solutions of the heat 
equation. Accordingly our development will largely parallel the correspond
ing theory for Laplace's equation. 

Physical interpretation. The heat equation, also known as the diffusion 
equation, describes in typical applications the evolution in time of the density 
u of some quantity such as heat, chemical concentration, etc. If V c U is 
any smooth subregion, the rate of change of the total quantity within V 
equals the negative of the net flux through av: 

.!!:_ { u dx = - { F · v dS, 
dt lv lav 

F being the flux density. Thus 

(3) Ut = -divF, 

as V was arbitrary. In many situations F is proportional to the gradient 
of u but points in the opposite direction (since the flow is from regions of 
higher to lower concentration): 

F = -aDu (a > 0). 

Substituting into (3), we obtain the PDE 

Ut = a div( Du) = aAu, 

which for a = 1 is the heat equation. 

The heat equation appears as well in the study of Brownian motion. 
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2.3.1. Fundamental solution. 

a. Derivation of the fundamental solution. As noted in §2.2.1 an 
important first step in studying any PDE is often to come up with some 
specific solutions. 

We observe that the heat equation involves one derivative with respect 
to the time variable t, but two derivatives with respect to the space vari
ables Xi (i = 1, ... , n). Consequently we see that if u solves (1), then so 
does u(..Xx, ..\2t) for ,\ E JR. This scaling indicates the ratio rt2 (r = !xi) is 
important for the heat equation and suggests that we search for a solution 

of (1) having the form u(x, t) = v(rt2 ) = v( lxr) (t > 0, x E 1Rn), for some 
function v as yet undetermined. 

Although this approach eventually leads to what we want (see Problem 
13), it is quicker to seek a solution u having the special structure 

(4) u(x, t) = t~ v(t~) (x'E Rn, t > 0), 

where the constants o:, f3 and the function v : 1Rn ---+ 1R must be found. We 
come to ( 4) if we look for a solution u of the heat equation invariant under 
the dilation scaling 

u(x, t) ~ ..xo:u(..Xf3x, ..\t). 

That is, we ask that 
u(x, t) = ..xo:u(..Xf3x, ..Xt) 

for all,\> 0, x E 1Rn, t > 0. Setting,\= t-1, we derive (4) for v(y) := 
u(y, 1). 

Let us insert ( 4) into ( 1) and thereafter compute 

(5) o:t-(o:+l)v(y) + f3t-(o:+l)y · Dv(y) + t-(0:+2!3) ~v(y) = 0 

for y := t-f3x. In order to transform (5) into an expression involving the 
variable y alone, we take f3 = ! . Then the terms with t are identical, and 
so (5) reduces to 

(6) 
1 

o:v + '2y · Dv + ~v = 0. 

We simplify further by guessing v to be radial~ that is, v(y) = w(lyl) for 
some w: 1R---+ JR. Thereupon (6) becomes 

1 n-1 
o:w + -rw' + w" + w' = 0 

2 r ' 
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for r = IYI, '= fr. Now if we set o: =~'this simplifies to read 

Thus 
1 

rn-1w' + -rnw = a 
2 

for some constant a. Assuming liIDr-oo w, w' = 0, we conclude a 0, 
whence 

I 1 w = --rw. 
2 

But then for some constant b 

(7) 

~ 
Combining ( 4), (7) and our choices for o:, /3, we conclude that t~2 e- 4t 

solves the heat equation ( 1). 

This computation motivates the following 

DEFINITION . . The function 

(x E Rn, t > 0) 

(x E Rn, t < 0) 

is called the fundamental solution of the heat equation. 

Notice that <I> is singular at the point (0, 0). We will sometimes write 
<I>(x, t) = <I>(lxl, t) to emphasize that the fundamental solution is radial in 
the variable x. The choice of the normalizing constant ( 47r )-n/2 is dictated 
by the following 

LEMMA (Integral of fundamental solution). For each time t > 0, 

f <I>(x, t) dx = 1. 
}Rn 

Proof. We calculate 

r <P(x,t)dx= ( \ /2 r e-~dx }Rn 47rt n }Rn 

= _1_ [ e-lzl2 dz 
7rn/2 }Rn 

1 n 100 2 
= n/2 II e-zi dzi = i. 

7r . 1 -oo 
i= 

D 
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A different derivation of the fundamental solution of the heat equation 
appears in §4.3.1. 

b. Initial-value problem. We now employ <I> to fashion a solution to the 
initial-value (or Cauchy) problem 

(8) { Ut - Llu = 0 in Rn x (0, oo) 
u = g on Rn x {t = O}. 

Let us note that the function ( x, t) ~ <I> ( x, t) solves the heat equation 
away from the singularity at (0, 0), and thus so does (x, t) ~ <I>(x - y, t) for 
each fixed y E Rn. Consequently the convolution 

(9) 
u(x, t) = J. <I>(x - y, t)g(y) dy 

Jlln 

1 { lx-yl2 

= (47rt)n/2 }Jlln e--4t-g(y) dy (x E Rn, t > 0) 

should also be a solution. 

THEOREM 1 (Solution of initial-value problem). Assume g E C(Rn) n 
L00 (Rn), and define u by (9). Then 

(i) u E C00 (Rn x (O,oo)), 

(ii) Ut(x, t) - Llu(x, t) = 0 (x E Rn, t > 0), 

and 
(iii) lim u(x, t) = g(x0 ) for each point x0 E Rn. 

(x,t)-+(x0 ,0) 
xEllln, t>O 

Proof. 1. Since the function tn1
12 e- 1 ~~2 is infinitely differentiable, with uni

formly bounded derivatives of all orders, on Rn x [8, oo) for each 8 > 0, we 
see that u E C00 (Rn x (0, oo)). Furthermore 

(10) 
Ut(X, t) - Llu(x, t) = { [(<I>t - Llx<I>)(x - y, t)]g(y) dy 

}llln 
= 0 (x E Rn, t > 0), 

since <I> itself solves the heat equation. 

2. Fix x0 E Rn, c > 0. Choose 8 > 0 such that 

(11) lg(y) - g(x0 )1 < c if IY - x0 1 < 8, y E Rn. 
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Then if Ix - x0 1 < ~'we have, according to the lemma, 

Now 

lu(x, t) - g(x0 )1 = I [ <I>(x - y, t)[g(y) - g(x0 )] dyl 
}JRn 

< [ <I>(x - y, t)lg(y) - g(x0 )1 dy 
JB(xO,o) 

+ [ <I>(x - y, t) lg(y) - g(x0 ) I dy 
}JRn-B(xO,o) 

=:l+J. 

I < c { <I> ( x - y, t) dy = c, 
}JRn 

owing to (11) and the lemma. Furthermore, if Ix - x01 < ~ and IY- x01 > 8, 
then 

as t--+ o+. 

Hence if Ix- x01 < ~ and t > 0 is small enough, lu(x, t) - g(x0)1 < 2c. D 

Interpretation of fundamental solution. In view of Theorem 1 we 
sometimes write 

{ <I>t - ~<I> = 0 
<I> = 80 

in ]Rn x (0, oo) 
on Rn x { t = 0}, 

80 denoting the Dirac measure on Rn giving unit mass to the point 0. 

Infinite propagation speed. Notice that if g is bounded, continuous, 
g > 0, g ¢ 0, then 

1 l _!x-yl 2 

u(x, t) = ( ) 12 e 4t g(y) dy 
47rt n JRn 
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is in fact positive for all points x E JRn and times t > 0. We interpret this 
observation by saying the heat equation forces infinite propagation speed 
for disturbances. If the initial temperature is nonnegative and is positive 
somewhere, the temperature at any later time (no matter how small) is 
everywhere positive. (We will learn in §2.4.3 that the wave equation in 
contrast supports finite propagation speed for disturbances.) 

c. Nonhomogeneous problem. Now let us turn our attention to the 
nonhomogeneous initial-value problem 

(12) { Ut - ~u = f in lRn x (O,oo) 
u = 0 on R.n x { t = 0}. 

How can we produce a formula for the solution? If we recall the moti
vation leading up to (9), we should note further that the mapping (x, t) ~ 
4.>(x-y, t-s) is a solution of the heat equation (for given y E JRn, 0 < s < t). 
Now for fixed s, the function 

solves 

u = u(x, t; s) = f 4.>(x - y, t - s)f (y, s) dy 
}JRn 

{ 
Ut(·; s) - ~u(·; s) = 0 

u(·;s) = f(·,s) 
in JRn x (s, oo) 
on R.n x {t = s }, 

which is just an initial-value problem of the form (8), with the starting time 
t = 0 replaced by t = s and g replaced by f ( ·, s). Thus u( ·; s) is certainly 
not a solution of (12). 

However Duhamel 's principle* asserts that we can build a solution of 
(12) out of the solutions of (128 ), by integrating with respect to s. The idea 
is to consider 

u(x,t) = fo' u(x,t;s)ds (x E Rn, t > 0). 

Rewriting, we have 

u(x, t) = ft f 4.>(x - y, t - s)f(y, s) dyds Jo }JRn 
(13) 

Lt 1 l -~ 
= ( ( ) ) 12 e 4<t-s) f (y, s) dyds, 

0 47r t - S n JRn 

for x E JRn, t > 0. 

To confirm that formula (13) works, let us for simplicity assume f E 

Cl (R.n x [O, oo)) and f has compact support. 

*Duhamel's principle has wide applicability to linear ODE and PDE and does not depend 
on the specific structure of the heat equation. It yields, for example, the solution of the nonho
mogeneous transport equation, obtained by different means in §2.1.2. We will invoke Duhamel's 
principle for the wave equation in §2.4.2. 
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THEOREM 2 (Solution of nonhomogeneous problem). Define u by (13). 
Then 

(i) u E C~(Rn x (0, oo)), 

(ii) Ut(x, t) - ~u(x, t) = J(x, t) (x E Rn, t > 0), 

and 
(iii) lim u(x, t) = 0 for each point x0 E Rn. 

(x,t)--+(x0 ,0) 
xER.n, t>O 

Proof. 1. Since <I> has a singularity at (0, 0), we cannot directly justify 
differentiating under the integral sign. We instead proceed somewhat as in 
the proof of Theorem 1 in §2.2.1. 

First we change variables, to write 

u(x, t) = ft f <t>(y, s)f(x - y, t - s) dyds. 
lo lJR.n 

As f E C~(Rn x [O, oo)) has compact support and <I> = <t>(y, s) is smooth 
near s = t > 0, we compute 

and 

Ut(x, t) = ft f <t>(y, s)ft(x - y, t - s) dyds 
lo lJR.n 

+ [ <t>(y, t)f(x - y, 0) dy lJR.n 

Uxix;(x,t)= ft { <.I>(y,s)fxix;(x-y,t-s)dyds (i,j=l, ... ,n). 
lo lJR.n 

Thus Ut, n;u, and likewise u, Dxu, belong to C(Rn x (0, oo)). 

2. We then calculate 
(14) 

ut(x, t) - ~u(x, t) = ft f <t>(y, s)[( 8
8 - ~x)f(x - y, t - s)] dyds 

lo lJR.n t 

+ [ <t>(y, t)f (x - y, 0) dy 
lJR.n 

=Lt f <t>(y, s)[(- 8
8 - ~y)f(x - y, t - s)] dyds 

e lJRn S 

+ re [ <t>(y, s)[(-aa - ~y)f(x - y, t - s)] dyds 
lo lJR.n s 

+ [ <t>(y, t)f (x - y, 0) dy. 
lJR.n 

=: Ie+Je +K. 
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Now 

(15) IJel < (ll!tllvX> + llD2 /11£00 ) re { <I>(y, s) dyds < eC, Jo }Rn 

by the lemma. Integrating by parts, we also find 

(16) 

Jc= it f [( 8
8 - ~y)<I>(y, s)] f(x - y, t - s) dyds 

e }Rn S 

+ { <l>(y, e)f (x - y, t - e) dy 
}Rn 

- { <l>(y, t)f (x - y, 0) dy 
}Rn 

= f <I>(y, e)f (x - y, t - e) dy - K, 
}Rn 

since cI> solves the heat equation. Combining (14)-(16), we ascertain 

Ut(x, t) - ~u(x, t) = lim f <I>(y, e)f (x - y, t - e) dy 
e-+O }Rn 

= f(x, t) (x E Rn, t > 0), 
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the limit as e ---+ 0 being computed as in the proof of Theorem 1. Finally 
note llu(·, t)llLoo < tll/llLoo ---+ 0. D 

Solution of homogeneous problem with general initial data. We 
can of course combine Theorems 1 and 2 to discover that 

(17) u(x, t) = f <I>(x - y, t)g(y) dy + ft f <I>(x - y, t - s)f (y, s) dyds 
}Rn Jo }Rn 

is, under the hypotheses on g and f as above, a solution of 

(18) { Ut - ~u = f in Rn x (0, oo) 
u = g on Rn x {t = O}. 

2.3.2. Mean-value formula. 

First we recall some useful notation from §A.2. Assume Uc Rn is open 
and bounded, and fix a time T > 0. 
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1 
t 

The region UT 

DEFINITIONS. 

(i) We define the parabolic cylinder 

UT:= u x (O,T). 

(ii) The parabolic boundary of UT is 

rT := uT - uT. 

We interpret UT as being the parabolic interior of [! x [O, T): note care
fully that UT includes the top u x {t = T}. The parabolic boundary rT 
comprises the bottom and vertical sides of U x [O, T), but not the top. 

We want next to derive a kind of analogue to the mean-value property for 
harmonic functions, as discussed in §2.2.2. There is no such simple formula. 
However let us observe that for fixed x the spheres a B ( x, r) are level sets of 
the fundamental solution 4>(x-y) for Laplace's equation. This suggests that 
perhaps for fixed ( x, t) the level sets of fundamental solution 4> ( x - y, t - s) 
for the heat equation may be relevant. 

DEFINITION. For fixed x E Rn, t ER, r > 0, we define 

E(x, t; r) := { (y, s) E JRn+l I s < t, tf>(x - y, t - s) > r1,,}. 



2.3. HEAT EQUATION 

(x, t) 

·················· ·················· .................. .................. 
·················· ·················· .................. .................. 
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A "heat ball" 
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E(x, t;r) 

This is a region in space-time, the boundary of which is a level set of 
<I> ( x -y, t - s). Note that the point ( x, t) is at the center of the top. E ( x, t; r) 
is sometimes called a "heat ball" . 

THEOREM 3 (A mean-value property for the heat equation). Let u E 

C~(UT) solve the heat equation. Then 

(19) 1 Jh lx-yl2 
u(x, t) = -4 u(y, s) ( )2 dyds 

rn E(x,t; r) t - s 

for each E(x, t; r) CUT. 

Formula (19) is a sort of analogue for the heat equation of the mean-value 
formulas for Laplace's equation. Observe that the right-hand side involves 
only u(y, s) for times s < t. This is reasonable, as the value u(x, t) should 
not depend upon future times. 

Proof. Shift the space and time coordinates so that x = 0 and t = 0. Upon 
mollifying if necessary, we may assume u is smooth. Write E(r) = E(O, O; r) 
and set 

(20) 

</>(r) := _!_Jr f u(y, s) IY!2 dyds 
rn }E(r) s 

=Jr { u(ry, r 2s) IYr dyds. 
jE(l) s 

We compute 

c/l(r) =Ji t Uy;Yi l~l2 +2ru,1~2 
dyds 

E(l) i=l 

1 Jh n IYl2 IYl2 
= n+l L UyiYi-2 + 2us- dyds 

r E(r) i=l s s 

=:A+B. 
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Also, let us introduce the useful function 

(21) n IYl 2 
1jJ := - 2 log(-47rs) + 48 + nlogr 

and observe 1jJ = 0 on 8E(r), since ~(y, -s) = r-n on 8E(r). We utilize 
(21) to write 

B = rn~l j" { 4u8 t Yi'l/Jyi dyds 
jE(r) i=l 

= - n~l j" { 4nus'l/J + 4 t UsyiYi'l/J dyds; 
r jE(rj i=l 

there is no boundary term since 1jJ = 0 on 8E(r). Integrating by parts with 
respect to s, we discover 

1 J'l 2n n = ------=t1 -4nu8 1jJ - -L UyiYi dyds - A. 
rn E(r) s i=l 

Consequently, since u solves the heat equation, 

¢'(r) = A+B 

n 1 j" { 2n 
= L rn+I j J 4nuyi'l/JYi - -;uyiYi dyds 

i=l E(r) 

= 0, according to (21). 

Thus¢ is constant, and therefore 

¢(r) = lim¢(t) = u(O,O) (lim _.!_ j" f IYl2 dyds) = 4u(O,O), 
t-+0 t-+O tn } E(t) S 

as 

_.!_ j" f 1llE dyds = j" f 1llE dyds = 4. 
tn j E(t) s2 j E(I) s2 

We omit the details of this last computation. D 
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1 
t 
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Strong maximum principle for the heat equation 

2.3.3. Properties of solutions. 

a. Strong maximum principle, uniqueness. First we employ the mean
value property to give a quick proof of the strong maximum principle. 

THEOREM 4 (Strong maximum principle for the heat equation). Assume 
u E C~(Ur) n C(Ur) solves the heat equation in Ur. 

(i) Then 

(ii) Furthermore, if U is connected and there exists a point (xo, to) E Ur 
such that 

then 

u(xo, to) = Il!ax u, 
UT 

u is constant in Ut0 • 

Assertion (i) is the maximum principle for the heat equation and (ii) 
is the strong maximum principle. Similar assertions are valid with "min" 
replacing "max" . 

Interpretation. So if u attains its maximum (or minimum) at an interior 
point, then u is constant at all earlier times. This accords with our strong 
intuitive understanding of the variable t as denoting time: the solution will 
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be constant on the time interval [O, to] provided the initial and boundary 
conditions are constant. However, the solution may change at times t >to, 
provided the boundary conditions alter after to. The solution will however 
not respond to changes in boundary conditions until these changes happen. 

Take note that whereas all this is obvious on intuitive, physical grounds, 
such insights do not constitute a proof. The task is to deduce such behavior 
from the PDE. 

Proof. 1. Suppose there exists a point (xo, to) E Ur with u(xo, to) = M := 
maxvT u. Then for all sufficiently small r > 0, E(xo, to; r) C Ur; and we 
employ the mean-value property to deduce 

1 j}, lxo - Yl 2 
M = u(xo, to)= 4 n u(y, s) ( )2 dyds < M, 

r E(xo,to; r) to - s 

since 

1 = _1_ jr { lxo - Yl 2 d d 
4rn J E(xo,to;r) (to - s)2 y s. 

Equality holds only if u is identically equal to M within E(xo, to; r). Con
sequently 

u(y, s) = M for all (y, s) E E(xo, to; r). 

Draw any line segment Lin Ur connecting (xo, to) with some other point 
(yo, so) E Ur, with so < to. Consider 

ro := min{s >so I u(x, t) = M for all points (x, t) EL, s < t <to}. 

Since u is continuous, the minimum is attained. Assume ro > so. Then 
u(zo, ro) = M for some point (zo, ro) on Ln Ur and sou= Mon E(zo, ro; r) 
for all sufficiently small r > 0. Since E(zo, ro; r) contains L n {r0 - a< t < 
ro} for some small a> 0, we have a contradiction. Thus ro =so, and hence 
u =Mon L. 

2. Now fix any point x E U and any time 0 < t < to. There exist points 
{ xo, x1, ... , Xm = x} such that the line segments in JR.n connecting Xi-1 to Xi 

lie in U for i = 1, ... , m. (This follows since the set of points in U which can 
be so connected to xo by a polygonal path is nonempty, open and relatively 
closed in U.) Select times to> ti > · · · > tm = t. Then the line segments in 
JR.n+l connecting (xi-1' ti-1) to (xi, ti) (i = 1, ... , m) lie in Ur. According 
to step 1, u =Mon each such segment and so u(x, t) = M. D 
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Infinite propagation speed again. The strong maximum principle im
plies that if U is connected and u E Ct(Ur) n C(Ur) satisfies 

{ 

Ut - Llu = 0 in Ur 
u = 0 on 8U x [O, T] 
u = g on U x { t = 0} 

where g > 0, then u is positive everywhere within Ur if g is positive some
where on U. This is another illustration of infinite propagation speed for 
disturbances. 

An important application of the maximum principle is the following 
uniqueness assertion. 

THEOREM 5 (Uniqueness on bounded domains). Let g E C(rr), f E 

C(Ur). Then there exists at most one solution u E Cf(Ur) n C(Ur) of the 
initial/boundary-value problem 

(22) { 
Ut - Llu = f in Ur 

u = g on rr. 

Proof. If u and u are two solutions of (22), apply Theorem 4 to w ·
±(u - u). D 

We next extend our uniqueness assertion to the Cauchy problem, that 
is, the initial-value problem for U = Rn. As we are no longer on a bounded 
region, we must introduce some control on the behavior of solutions for large 
lxl. 
THEOREM 6 (Maximum principle for the Cauchy problem). Suppose 
u E Cf (Rn x (0, T]) n C(lRn x [O, T]) solves 

(23) { 
Ut - Llu = 0 in Rn X (0, T) 

u = g on Rn X { t = O} 

and satisfies the growth estimate 

(24) u(x, t) < Aealxl 2 (x E ]Rn, 0 < t < T) 

for constants A, a> 0. Then 

sup u = supg. 
JR.n X (O,r) JR.n 
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Proof. 1. First assume 

(25) 4aT < 1, 

in which case 

(26) 4a(T + c-) < 1 

for some E > 0. Fix y E Rn, µ > 0, and define 

µ lz-yi2 

v(x t) := u(x t) - e 4(T+e-t) (x E Rn, t > 0). 
' ' (T + E - t )n/2 

A direct calculation (cf. §2.3.1) shows 

Vt - ~v = 0 in Rn x (0, T]. 

Fix r > 0 and set U := B 0 (y, r), Ur= B 0 (y, r) x (0, T]. Then according to 
Theorem 4, 

(27) 

2. Now if x E Rn, 

µ l:i:-yi 2 

v(x 0) = u(x 0) - e4(T+e) 
' ' (T + c-)n/2 (28) 

< u(x, 0) = g(x); 

and if Ix - YI = r, 0 < t < T, then 

µ r2 
v(x t) = u(x t) - e4(T+e-t) 

' ' (T + E - t )n/2 

r2 
< Aealxl 2 _ µ e4(T+e-t) by (24) 

(T + E - t)n/2 

< Aea(IYl+r) 2 _ µ e4C.;::e). 
(T + c-)n/2 

Now according to (26), 4(Ti+c) = a+1 for some 'Y > 0. Thus we may continue 
the calculation above to find 

(29) v(x, t) < Aea(IYl+r)2 - µ(4(a + 1))nf2e<a+-y)r2 < supg, 

for r selected sufficiently large. Thus (27)-(29) imply 

v(y, t) <sup g 
JRn 

JRn 

for ally E Rn, 0 < t < T, provided (25) is valid. Letµ~ 0. 

3. In the general case that (25) fails, we repeatedly apply the result 
above on the time intervals [O, Ti], [Ti, 2Ti, ], etc., for Ti = 8~. D 
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THEOREM 7 (Uniqueness for Cauchy problem). Let g E C(IRn), f E 

C(IRn x [O, T]). Then there exists at most one solution u E Cf(IRn x (0, T]) n 
C(IRn x [O, T]) of the initial-value problem 

(30) { 
Ut - ~u = f in Rn x (0, T) 

u=g onIRnx{t=O} 

satisfying the growth estimate 

(31) 

for constants A, a > 0. 

Proof. If u and u both satisfy (30), (31), we apply Theorem 6 to w := 

±(u-u). D 

Nonphysical solutions. There are in fact infinitely many solutions of 

(32) { 
Ut - ~u = 0 in IRn x (0, T) 

u = 0 on IRn x { t = 0}; 

see for instance John [J2, Chapter 7]. Each of these solutions besides u _ 0 
grows very rapidly as lxl ---+ oo. 

There is an interesting point here: although u = 0 is certainly the "physi
cally correct" solution of (32), this initial-value problem in fact admits other, 
"nonphysical", solutions. Theorem 7 provides a criterion which excludes the 
"wrong" solutions. We will encounter somewhat analogous situations in our 
study of Hamilton-Jacobi equations and conservation laws, in Chapters 3, 
10 and 11. 

b. Regularity. We next demonstrate that solutions of the heat equation 
are automatically smooth. 

THEOREM 8 (Smoothness). Suppose u E Cf(Ur) solves the heat equa
tion in Ur. Then 

u E C 00 (Ur). 

This regularity assertion is valid even if u attains nonsmooth boundary 
values on rr. 

Proof. 1. Recall from §A.2 that we write 

C(x, t; r) = {(y, s) I Ix - YI < r, t - r2 < s < t} 
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C'' 

C' 

c 

to denote the closed circular cylinder of radius r, height r 2 , and top center 
point (x, t). 

Fix (xo, to) E Ur and chooser> 0 so small that C := C(xo, to; r) C Ur. 
Define also the smaller cylinders C' := C(xo, to; ~r), C" := C(xo, to; ~r), 
which have the same top center point (x0 , t0 ). 

Choose a smooth cutoff function ( = ( ( x, t) such that 

{ 
0 < ( < 1, ( = 1 on C', 

( = 0 near the parabolic boundary of C. 

Extend ( - 0 in (1Rn x [O, to]) - C. 

2. Assume temporarily that u E C00 (Ur) and set 

v(x, t) := ((x, t)u(x, t) (x E IRn, 0 < t <to). 

Then 
Vt = (ut +(tu, Llv = (Llu + 2D( · Du+ ull(. 

Consequently 

(33) v=O onIRnx{t=O}, 

and 

(34) Vt - Llv =(tu - 2D( ·Du- ull( =: f 

in IRn x (0, to). Now set 

v(x, t) := ft { <P(x - y, t - s)](y, s) dyds. 
Jo lntn 

According to Theorem 2 

( 35) { Vt - Llv = ] 
v=O 

in IRn x (0, to) 
on IRn x { t = O}. 
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Since lvl, liil <A for some constant A, Theorem 7 implies v =ii; that is, 

(36) v(x, t) = ft f <P(x - y, t - s)](y, s) dyds. 
Jo lntn 

Now suppose (x, t) EC". As ( = 0 off the cylinder C, (34) and (36) imply 

u(x, t) = J la «P(x - y, t - s )[((.(y, s) - ~((y, s ))u(y, s) 

- 2D((y, s) · Du(y, s)] dyds. 

Note in this equation that the expression in the square brackets vanishes in 
some region near the singularity of <P. Integrate the last term by parts: 

(37) 
u(x, t) = J la[«P(x - y, t - s)((.(y, s) + ~((y, s)) 

+ 2Dy<P(x - y, t - s) · D((y, s)]u(y, s) dyds. 

We have proved this formula assuming u E C 00 • If u satisfies only the 
hypotheses of the theorem, we derive (37) with uc = 'T/c * u replacing u, 'T/c 
being the standard mollifier in the variables x and t, and let c ~ 0. 

3. Formula (37) has the form 

(38) u(x, t) = j la K(x, t, y, s)u(y, s) dyds ((x, t) E C"), 

where 
K(x, t, y, s) = 0 for all points (y, s) EC', 

since ( = 1 on C'. Note also K is smooth on C - C'. In view of expression 
(38), we see u is C 00 within C" = C(x0 , t0 ; ~r). D 

c. Local estimates for solutions of the heat equation. Let us now 
record some estimates on the derivatives of solutions to the heat equa
tion, paying attention to the differences between derivatives with respect 
to Xi (i = 1, ... , n) and with respect tot. 

THEOREM 9 (Estimates on derivatives). There exists for each pair of 
integers k, l = 0, 1,... a constant Ck,l such that 

max ID~D~ul < k+~~ +2 llullL1(C(x,t;r)) 
C(x,t; r/2) r n 

for all cylinders C(x, t; r/2) C C(x, t; r) C Ur and all solutions u of the heat 
equation in Ur. 



62 2. FOUR IMPORTANT LINEAR PDE 

Proof. 1. Fix some point in Ur. Upon shifting the coordinates, we may 
as well assume the point is (0, 0). Suppose first that the cylinder C(l) := 

C(O,O; 1) lies in Ur. Let C (!) := C (0,0; !). Then, as in the proof of 
Theorem 8, 

u(x, t) =Jr { K(x, t, y, s)u(y, s) dyds ((x, t) EC(!)) 
lc(I) 

for some smooth function K. Consequently 

(39) 
ID!D~u(x, t)I <Jr r ID~D!K(x, t, y, s)llu(y, s)I dyds 

lc(I) 

< CkzllullL1(c(1)) 

for some constant ckl· 

2. Now suppose the cylinder C(r) := C(O, O; r) lies in Ur. Let C(r/2) = 

C(O, O; r /2). We rescale by defining 

v(x, t) := u(rx, r 2t). 

Then Vt - Ll v = 0 in the cylinder C ( 1). According to ( 39), 

But D~D~v(x, t) = r2l+k D~D~u(rx, r 2t) and llvllL1(C(l)) = rn~2 llullL1(C(r))· 
Therefore 

max ID!D~ul < 2z+~~ +2 llullL1(C(r))· C(r/2) r n 
D 

If u solves the heat equation within Ur, then for each time 0 < t < T, 
the mapping x i-+ u(x, t) is analytic. (See Mikhailov [M).) However the 
mapping t i-+ u( x, t) is not in general analytic. 

2.3.4. Energy methods. 

a. Uniqueness. We investigate again the initial/boundary-value problem 

(40) { 
Ut - Llu = f in Ur 

u = g on rr. 

We earlier invoked the maximum principle to show uniqueness and now
by analogy with §2.2.5-provide an alternative argument based upon inte
gration by parts. We assume as usual that U c Rn is open and bounded 
and that au is C1. The terminal time T > 0 is given. 
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THEOREM 10 (Uniqueness). There exists only one solution u E C?(Ur) 
of the initial/boundary-value problem ( 40). 

Proof. 1. If u is another solution, w := u - u solves 

(41) 

2. Set 

Then 

and so 

{ 
Wt - ~w = 0 in Ur 

w = 0 on rr. 

e(t) := L w2(x, t) dx (0 < t < T). 

e(t) = 2 fu wwtdx (= !) 
= 2 L wt:l.wdx 

= -2 L 1Dwl2 dx < 0, 

e ( t) < e ( 0) = 0 ( 0 < t < T). 

Consequently w = u - u = 0 in Ur. D 

Observe that the foregoing is a time-dependent variant of the proof of 
Theorem 16 in §2.2.5. 

b. Backwards uniqueness. A rather more subtle question asks about 
uniqueness backwards in time for the heat equation. For this, suppose u 
and u are both smooth solutions of the heat equation in Ur, with the same 
boundary conditions on au: 

(42) { 
Ut - ~u = 0 in Ur 

u = g on au x [O, T], 

(43) { iit - Llu = O in Ur 
u = g on au x [O, T], 

for some function g. Note carefully that we are not supposing u = u at time 
t = 0. 
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THEOREM 11 (Backwards uniqueness). Suppose u,u E C2 (Ur) solve 
( 42), ( 43). If 

u(x, T) = u(x, T) (x E U), 

then 
u = u within Ur. 

In other words, if two temperature distributions on U agree at some time 
T > 0 and have had the same boundary values for times 0 < t < T, then 
these temperatures must have been identically equal within U at all earlier 
times. This is not at all obvious. 

Proof. 1. Write w := u - u and, as in the proof of Theorem 10, set 

As before 

(44) 

Furthermore 

(45) 

e(t) := fu w2 (x, t) dx (0 < t < T). 

e(t) = -4 fu Dw · Dwtdx 
= 4 fu Liwwtdx 
= 4 fu (Liw)2 dx by {41). 

Now since w = 0 on 8U, 

Thus ( 44) and ( 45) imply 

(e(t))2 = 4 (fu IDwl2 dx) 2 

< (fu w2 dx) (4 fu(Liw) 2 dx) 
= e(t)e(t). 
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Hence 

(46) e(t)e(t) > (e(t))2 (o < t < T). 

2. Now if e(t) = 0 for all 0 < t < T, we are done. Otherwise there exists 
an interval [ti, t2] C [O, T], with 

(47) 

3. Now write 

(48) f (t) :=log e(t) (ti < t < t2). 

Then 

! .. ( ) _ e(t) e(t)2 0 t -----> 
e(t) e(t)2 -

by (46), 

and so f is convex on the interval (ti, t2)· Consequently if 0 < r < 1, 
ti < t < t2, we have 

/((1 - r)ti +rt) < (1 - r)/(ti) + r J(t). 

Recalling (48), we deduce 

e((l - r)ti +rt) < e(ti)i-r e(t)7", 

and so 
0 < e((l - r)ti + rt2) < e(ti)i-r e(t2)7" (0 < r < 1). 

But in view of (47) this inequality implies e(t) = 0 for all times ti < t < t2, 
a contradiction. D 

2.4. WAVE EQUATION 

In this section we investigate the wave equation 

(1) Utt - i'.lu = 0 

and the nonhomogeneous wave equation 

(2) Utt - ~U = f, 

subject to appropriate initial and boundary conditions. Here t > 0 and 
x E U, where U C Rn is open. The unknown is u : [J x [O, oo) ---+ R, 
u = u(x, t), and the Laplacian Ll is taken with respect to the spatial variables 
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x = (xi, ... , xn)· In (2) the function f : U x [O, oo) --+IR is given. A common 
abbreviation is to write 

Du:= Utt - ~u. 

We shall discover that solutions of the wave equation behave quite differ
ently than solutions of Laplace's equation or the heat equation. For example, 
these solutions are generally not 0 00 , exhibit finite speed of propagation, etc. 

Physical interpretation. The wave equation is a simplified model for a 
vibrating string (n = 1), membrane (n = 2), or elastic solid (n = 3). In 
these physical interpretations u(x, t) represents the displacement in some 
direction of the point x at time t > 0. 

Let V represent any smooth subregion· of U. The acceleration within V 
is then 

!2 i udx = i Uttdx 

and the net contact force is 

- { F · vdS, lav 
where F denotes the force acting on V through 8V and the mass density is 
taken to be unity. Newton's law asserts that the mass times the acceleration 
equals the net force: 

f Utt dx = - f F · v dS. lv lav 
This identity obtains for each subregion V and so 

Utt= -divF. 

For elastic bodies, Fis a function of the displacement gradient Du, whence 

Utt+ divF(Du) = 0. 

For small Du, the linearization F(Du) ~ -aDu is often appropriate; and so 

Utt - a~u = 0. 

This is the wave equation if a = 1. 

This physical interpretation strongly suggests it will be mathematically 
appropriate to specify two initial conditions, on the displacement u and the 
velocity Ut, at time t = 0. 
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2.4.1. Solution by spherical means. 

We began §§2.2.1 and 2.3.1 by searching for certain scaling invariant 
solutions of Laplace's equation and the heat equation. For the wave equation 
however we will instead present the (reasonably) elegant method of solving 
( 1) first for n = 1 directly and then for n > 2 by the method of spherical 
means. 

a. Solution for n = 1, d'Alembert's formula. We first focus our atten
tion on the initial-value problem for the one-dimensional wave equation in 
all of IR: 

(3) { Utt - Uxx = 0 in IR X (O,oo) 
u = g, Ut = h on IR x { t = 0}, 

where g, hare given. We desire to derive a formula for u in terms of g and 
h. 

Let us first note that the PDE in (3) can be "factored", to read 

(4) 

Write 

(5) v(x, t) := ( ! -:x) u(x, t). 

Then ( 4) says 
Vt(X, t) + Vx(x, t) = 0 (x E IR, t > 0). 

This is a transport equation with constant coefficients. Applying formula 
(3) from §2.l.1 (with n = 1, b = 1), we find 

(6) v(x, t) = a(x - t) 

for a(x) := v(x, 0). Combining now (4)-(6), we obtain 

Ut(X, t) - ux(x, t) = a(x - t) in IR x (0, oo ). 

This is a nonhomogeneous transport equation; and so formula (5) from §2.1.2 
(with n = 1, b = -1, f(x, t) = a(x - t)) implies for b(x) := u(x, 0) that 

u(x, t) = l a(x + (t - s) - s) ds + b(x + t) 

11x+t = 2 a(y) dy + b(x + t). 
x-t 

(7) 
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We lastly invoke the initial conditions in (3) to compute a and b. The 
first initial condition in (3) gives 

b(x) = g(x) (x E IR), 

whereas the second initial condition and (5) imply 

a(x) = v(x, 0) = Ut(x, 0) - ux(x, 0) = h(x) - g'(x) (x E IR). 

Our substituting into (7) now yields 

11x+t 
u(x, t) = 2" x-t h(y) - g'(y) dy + g(x + t). 

Hence 

(8) 
1 11x+t 

u(x, t) = -[g(x + t) + g(x - t)] + - h(y) dy (x E IR, t > 0). 
2 2 x-t 

This is d 'Alembert's formula. 

We have derived formula (8) assuming u is a (sufficiently smooth) solu
tion of (3). We need to check that this really is a solution. 

THEOREM 1 (Solution of wave equation, n = 1). Assume g E C2 (IR), 
h E C1 (IR), and define u by d'Alembert's formula (8). Then 

( i) u E C2 (IR x [ 0, oo)), 

(ii) Utt - Uxx = 0 in IR x (0, oo), 

and 
(iii) lim u(x, t) = g(x0 ), lim Ut(x, t) = h(x0 ) 

(x,t)-(x0 ,o) (x,t)-(x0 ,o) 
t>O t>O 

for each point x 0 E IR. 

The proof is a straightforward calculation. 

Remarks. (i) In view of (8), our solution u has the form 

u(x, t) = F(x + t) + G(x - t) 

for appropriate functions F and G. Conversely any function of this form 
solves Utt - Uxx = 0. Hence the general solution of the one-dimensional wave 
equation is a sum of the general solution of Ut - ux = 0 and the general 
solution of Ut + Ux = 0. This is a consequence of the factorization ( 4). See 
Problem 19. 



2.4. WAVE EQUATION 69 

(ii) We see from (8) that if g E Ck and h E Ck-l, then u E Ck but is not 
in general smoother. Thus the wave equation does not cause instantaneous 
smoothing of the initial data, as does the heat equation. 

A reflection method. To illustrate a further application of d'Alembert's 
formula, let us next consider this initial/boundary-value problem on the 
half-line IR+ = {x > O}: 

{ 
Utt - Uxx = 0 in IR+ X (0, 00) 

u = g, Ut = h on IR+ x { t = 0} 
u=O on{x=O}x(O,oo), 

(9) 

where g, h are given, with g(O) = h(O) = 0. 

We convert (9) into the form (3) by extending u, g, h to all of IR by odd 
reflection. That is, we set 

_ { u(x, t) (x > 0, t > 0) 
u(x t) := 

' -u(-x, t) (x < 0, t > 0), 

_ { g(x) (x > 0) 
g(x) := 

-g(-x) (x < 0), 

- { h(x) (x > 0) 
h(x) := 

-h(-x) (x < 0). 

Then (9) becomes 

{ 
Utt = Uxx in IR X ( 0, 00) 

u = g, Ut = h on IR x { t = 0}. 

Hence d'Alembert's formula (8) implies 

1 11x+t -
u(x, t) = 2[g(x + t) + g(x - t)] + 2 x-t h(y) dy. 

Recalling the definitions of u, g, h above, we can transform this expression 
to read for x > 0, t > 0: 

(10) { 
![g(x + t) + g(x - t)] + ! J;~t h(y) dy if x > t > 0 

u(x, t) = +t 
![g(x + t) - g(t - x)] + ! f~x+t h(y) dy if 0 < x < t. 

If h = 0, we can understand formula (10) as saying that an initial dis
placement g splits into two parts, one moving to the right with speed one 
and the other to the left with speed one. The latter then reflects off the 
point x = 0, where the vibrating string is held fixed. 

Note that our solution does not belong to C 2 , unless g" (0) = 0. D 
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b. Spherical means. Now suppose n > 2, m > 2, and u E cm(IRn x 
[O, oo)) solves the initial-value problem 

(11) {
Utt - ~U = 0 

U = g, Ut = h 

in Rn X (0, oo) 

on Rn x { t = 0}. 

We intend to derive an explicit formula for u in terms of g, h. The plan 
will be to study first the average of u over certain spheres. These averages, 
taken as functions of the time t and the radius r, turn out to solve the 
Euler-Poisson-Darboux equation, a PDE which we can for odd n convert 
into the ordinary one-dimensional wave equation. Applying d'Alembert's 
formula, or more precisely its variant (10), eventually leads us to a formula 
for the solution. 

NOTATION. (i) Let x E Rn, t > 0, r > 0. Define 

U(x; r, t) := f u(y, t) dS(y), 
8B(x,r) 

(12) 

the average of u(·, t) over the sphere 8B(x, r). 

(ii) Similarly, 

(13) 
G(x; r) := f g(y) dS(y) 

8B(x,r) 

H(x; r) := j h(y) dS(y). 
8B(x,r) 

For fixed x, we hereafter regard U as a function of r and t and discover 
a partial differential equation that U solves: 

LEMMA 1 (Euler-Poisson-Darboux equation). Fix x E Rn, and let u 
satisfy (11). Then U E Cm(lR+ x [O, oo)) and 

(14) {
Utt - Urr - n-:;1 Ur = 0 in R+ x (0, oo) 

U = G, Ut = H on R+ x {t = O}. 

The partial differential equation in (14) is the Euler-Poisson-Darboux 
equation. (Note that the term Urr+ n-:; 1Ur is the radial part of the Laplacian 
~ in polar coordinates.) 

Proof. 1. As in the proof of Theorem 2 in §2.2.2 we compute for r > 0 

(15) Ur(x; r, t) = r f ~u(y, t) dy. 
n B(x,r) 
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From this equality we deduce limr-o+ Ur(x; r, t) = 0. We next differentiate 
(15), to discover after some computations that 

(16) Urr(x; r, t) = f 6.u dS + (.!. - 1) f 6.u dy. 
8B(x,r) n B(x,r) 

Thus limr-o+ Urr(x; r, t) = ~6.u(x, t). Using formula (16), we can similarly 
compute Urrr, etc., and so verify that U E cm(lR+ x [O, oo)). 

2. Continuing the calculation above, we see from (15) that 

Thus 

and so 

Ur= !:.-f Utt dy by (11) 
n B(x,r) 

= l _l_ [ Uttdy. 
na(n) rn-1 J B(x,r) 

n-1 1 1 r Ur = ( ) Utt dy, 
nan B(x,r) 

(rn-lur)r = ~ ) r Utt dS 
na n J 8B(x,r) 

= rn-lf Utt dS = rn-1uu. 
8B(x,r) 

D 

c. Solution for n = 3, 2, Kirchhoff's and Poisson's formulas. The 
plan in the ensuing subsections will be to transform the Euler-Poisson
Darboux equation (14) into the usual one-dimensional wave equation. As 
the full procedure is rather complicated, we pause here to handle the simpler 
cases n = 3, 2, in that order. 

Solution for n = 3. Let us therefore hereafter take n = 3, and suppose 
u E C2 (IR3 x [O, oo)) solves the initial-value problem (11). We recall the 
definitions (12), (13) of U, G, Hand then set 

(17) U := rU, 

(18) G := rG, iI := rH. 

We now assert that U solves 

(19) { 
_ Utt -: Ur:.r = £!. 
U = G, Ut = H 

U=O 

in IR+ x (0, oo) 
on IR+ x {t = O} 
on {r = O} x (0, oo). 
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Utt= rUtt 

= r [urr + ~ur] by (14), with n = 3 

= rUrr + 2Ur = (U + rUr)r = Urr• 

Notice also that Grr(O) = 0. Applying formula {10) to (19), we find for 
O<r<t 

- 1 - - 11r+t -
{20) U(x; r, t) = -2 [G(r + t) - G(t - r)] + 2 H(y) dy. 

-r+t 

Since {12) implies u(x, t) = limr-o+ U(x; r, t), we conclude from (17), (18), 
(20) that 

( ) 1. U(x; r, t) 
ux,t = im ---

r-o+ r 

= lim [G(t + r) - G(t - r) + _!_ {t+r iI(y) dy] 
r-o+ 2r 2r lt-r 

= G'(t) + iI(t). 

Owing then to {13), we deduce 

(21) u(x, t) =: (tj gdS) + tj hdS. 
t 8B(x,t) 8B(x,t) 

But 

f g(y) dS(y) = f g(x + tz) dS(z); 
8B(x,t) 8B(0,1) 

and so 

! (f gdS) = f Dg(x + tz) · zdS(z) 
8B(x,t) 8B(O,l) 

= f Dg(y) · (y - x) dS(y). 
8B(x,t) t 

Returning to (21), we therefore conclude 

(22) u(x, t) = j th(y) + g(y) + Dg(y) · (y-x) dS(y) (x E IR3, t > 0). 
8B(x,t) 

This is Kirchhoff's formula for the solution of the initial-value problem (11) 
in three dimensions. 
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Solution for n = 2. No transformation like (17) works to convert the 
Euler-Poisson-Darboux equation into the one-dimensional wave equation 
when n = 2. Instead we will take the initial-value problem (11) for n = 2 
and simply regard it as a problem for n = 3, in which the third spatial 
variable x3 does not appear. 

Indeed, assuming u E C2 (IR2 x [O, oo)) solves (11) for n = 2, let us write 

(23) 

Then (11) implies 

(24) { _Utt-=- ~u = ~ in IR3 x (0, oo) 
u = g, Ut = h on IR3 x { t = O}, 

for 
g(xi, x2, x3) := g(xi, x2), h(xi, x2, x3) := h(xi, x2). 

If we write x = (xi, x2) E IR2 and x = (xi, x2, 0) E IR3 , then (24) and 
Kirchhoff's formula (in the form (21)) imply 

u(x, t) = u(x, t) 

(25) 8 ( f -) f - -= - t gdS +t hdS, 
Ot afJ(x,t) afJ(x,t) 

where B(x, t) denotes the ball in IR3 with center x, radius t > 0 and where 
dS denotes two-dimensional surface measure on 8B(x, t). We simplify (25) 
by observing 

f - 1 l -gdS= - 2 gdS 
8B(x,t) 47rt 8B(x,t) 

= 4 2t2 { g(y)(l + ID1(y)l2)1/2 dy, 
7r j B(x,t) 

where 1(y) = (t2 - IY - xl2)112 for y E B(x, t). The factor "2" enters 
since 8B(x, t) consists of two hemispheres. Observe that (1 + ID112)112 = 

t(t2 - IY - xl2)-1!2. Therefore 

f gdS= - 1 { g(y) dy 
8B(x,t) 27rt J B(x,t) ( t2 - IY - xl2) 112 

= !f g(y) dy 
2 B(x,t) (t2 - IY - xl2)1/2 . 
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Consequently formula (25) becomes 

(26) 

u(x t) = !~ (t2f g(y) dy) 
' 2 at B(x,t) (t2 - IY - xl2)1/2 

t2f h(y) d +- y 
2 B(x,t) (t2 - IY - xl2)112 . 

But 2f g(y) d f g(x+tz) d t y = t z, 
B(x,t) (t2 - IY - xl2)1l 2 B(0,1) (1 - lzl2)1/2 

and so 

a (t2j g(y) d ) 
8t B(x,t) (t2 - IY - xl2)1/2 y 

f g(x + tz) d f Dg(x + tz) · z d 
= z+t z 

B(0,1) (1 - lzl2)1/2 B(0,1) (1 - lzl2)112 

= tf g(y) dy + tf Dg(y). (y - x) dy. 
B(x,t) (t2 - ly - xl2)1/2 B(x,t) (t2 - ly - xl2)1/2 

Hence we can rewrite (26) and obtain the relation 

(27) u(x, t) = !f tg(y) + t2h(y) + tDg(y) . (y - x) dy 
2 B(x,t) (t2 - IY - xl2)1/2 

for x E IR2 , t > 0. This is Poisson's formula for the solution of the initial
value problem (11) in two dimensions. 

The trick of solving the problem for n = 3 first and then dropping to 
n = 2 is the method of descent. 

d. Solution for odd n. In this subsection we solve the Euler-Poisson
Darboux PDE for odd n > 3. We first record some technical facts. 

LEMMA 2 (Some useful identities). Let</> : IR ---+ IR be ck+l. Then for 
k = 1, 2, ... 

(i) (~) (:fr)k-1 (r2k-1¢(r)) = (:fr)k (r2k~(r)), 

(ii) (: fr)k-1 (r2k-1¢(r)) = ~J,:J fijri+l~(r), 
where the constants fij (j = 0, ... , k - 1) are independent of¢. 

Furthermore, 
(iii) fiS = 1 . 3. s ... (2k - 1). 
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The proof by induction is left as an exercise. 

Now assume 
n > 3 is an odd integer 

and set 
n = 2k + 1 (k > 1). 

Henceforth suppose u E Ck+l (Rn x [O, oo)) solves the initial-value prob
lem (11). Then the function u defined by (12) is ck+l. 

NOTATION. We write 

U(r, t) := (~ tr)k-l (r2k-1U(x; r, t)) 

(28) G(r) := (~ tr)k-l (r2k-1G(x; r)) (r > 0, t > 0). 

H(r) := (~ tr)k-1 (r2k-1 H(x; r)) 

Then 

(29) U(r, 0) = G(r), Ut(r, 0) = H(r). 

Next we combine Lemma 1 and the identities provided by Lemma 2 to 
demonstrate that the transformation (28) of U into [Jin effect converts the 
Euler-Poisson-Darboux equation into the wave equation. 

LEMMA 3 (U solves the one-dimensional wave equation). We have 

Proof. If r > 0, 

in R+ x (0, oo) 
on R+ x {t = O} 
on {r = O} x (0, oo). 

Urr = ( !2) G ! r-cr2k-1U) 

= (!_Q_)k (r2kUr) by Lemma 2(i) 
r8r 

= (!_Q_)k-1[r2k-1Urr+2kr2k-2Ur] 
r8r 

= G! r-l [r2k-l (urr + n ~ 1ur) J (n = 2k + 1) 

= ( ~ ! ) k-(r2k-IUtt) =Utt, 



76 2. FOUR IMPORTANT LINEAR PDE 

the next-to-last equality holding according to (14). Using Lemma 2(ii) we 
conclude as well that fj = 0 on { r = 0}. D 

In view of Lemma 3, (29), and formula (10), we conclude for 0 < r < t 
that 

(30) 
- 1 - - 11t+r -
U(r, t) = -[G(r + t) - G(t - r)] + - H(y) dy 

2 2 t-r 

for all r E IR, t > 0. But recall u(x, t) = limr--+O U(x; r, t). Furthermore 
Lemma 2 (ii) asserts 

- (1 {) )k-1 
U(r, t) = °i- or (r2k- 1U(x; r, t)) 

k-1 . 
= ~ {3~ri+l {)J U(x· r t) 
~ J ori ' ' ' 
J=O 

and so 

1. U(r, t) 1. U( ) ( ) im k = im x; r, t = u x, t . 
r--+O (30 r r--+O 

Thus (30) implies 

( ) = __!__ l" [ G ( t + r) - G ( t - r) _.!_ lt+r H- ( ) d ] 
U X, t k Im 2 + 2 y y 

(30 r--+O r r t-r 

1 - -
= k[G'(t) + H(t)]. 

f3o 

Finally then, since n = 2k + 1, (30) and Lemma 2(iii) yield this repre
sentation formula: 

u(x, t) = __!__ [(a{)) (~ {){)) n
2

J (tn-2 / g ds) 
In t t t 8B(x,t) 

+ ( 1 {)) n;-
3 

(tn-2f hds)] t ot 8B(x,t) 

(31) 

where n is odd and In= 1 · 3 · 5 · · · (n - 2), 

for x E IRn, t > 0. 

We note that 13 = 1, and so (31) agrees for n = 3 with (21) and thus 
with Kirchhoff's formula (22). 

It remains to check that formula (31) really provides a solution of (11). 
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THEOREM 2 (Solution of wave equation in odd dimensions). Assume n 
is an odd integer, n > 3, and suppose also g E cm+1(Rn), h E cm(Rn), for 
m = n!l · Define u by (31). Then 

(i) u E C2 (Rn x [O, oo) ), 

(ii) Utt - ~u = 0 in Rn x (0, oo), 

and 
(iii) lim u(x, t) = g(x0 ), lim Ut(x, t) = h(x0 ) 

(x,t)-(x0 ,o) (x,t)-(x0 ,o) 
xERn, t>O xERn, t>O 

for each point x0 E Rn. 

Proof. 1. Suppose first g = 0, so that 

n-3 

1 ( 1 a )-2 ( n-2 ) u(x, t) = - --8 t H(x; t) . 
In t t 

(32) 

Then Lemma 2(i) lets us compute 

Utt= ]:_ (! aa) n:;• (tn-l Ht). 
In t t 

From the calculation in the proof of Theorem 2 in §2.2.2, we see as well that 

Consequently 

Ht= !f ~hdy. 
n B(x,t) 

1 18 -2-n-1 ( ) 
Utt = -- ~hdy 

na( n hn ( tat) L(x,t) 

- 1 !~ -2 ! ~hdS n-3 ( ) 

- na( n hn C 8t) t foB(x,t) . 

On the other hand, 

~H(x;t) = ~xf h(x + y)dS(y) = f ~hdS. 
8B(O,t) 8B(x,t) 

Consequently (32) and the calculations above imply Utt = ~u in Rn x (0, oo ). 

A similar computation works if h = 0. 

2. We leave it as an exercise to confirm, using Lemma 2(ii)-(iii), that u 
takes on the correct initial conditions. D 
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Remarks. (i) Notice that to compute u(x, t) we need only have information 
on g, h and their derivatives on the sphere {) B ( x, t), and not on the entire 
ball B(x, t). 

(ii) Comparing formula (31) with d'Alembert's formula (8) (n = 1), we 
observe that the latter does not involve the derivatives of g. This suggests 
that for n > 1, a solution of the wave equation (11) need not for times t > 0 
be as smooth as its initial value g: irregularities in g may focus at times 
t > 0, thereby causing u to be less regular. (We will see later in §2.4.3 that 
the "energy norm" of u does not deteriorate for t > 0.) 

(iii) Once again (as in the case n = 1) we see the phenomenon of finite 
propagation speed of the initial disturbance. 

(iv) A completely different derivation of formula (31) (using the heat 
equation!) is in §4.3.3. D 

e. Solution for even n. Assume now 

n is an even integer. 

Suppose u is a cm solution of (11), m = nt2 • We want to fashion a repre
sentation formula like (31) for u. The trick, as above for n = 2, is to note 
that 

(33) u(xi, ... , Xn+I, t) := u(xi, ... , Xn, t) 

solves the wave equation in Rn+l x (0, oo ), with the initial conditions 

u = g, Ut = Ti on Rn+l x { t = O}, 

where 

(34) { g(xi, ... , Xn+1) := g(xi, ... , Xn) 

h(xi, ... , Xn+1) := h(xi, ... , Xn)· 

As n + 1 is odd, we may employ (31) (with n + 1 replacing n) to secure 
a representation formula for u in terms of g, Ti. But then (33) and (34) yield 
at once a formula for u in terms of g, h. This is again the method of descent. 

To carry out the details, let us fix x E Rn, t > 0, and write x 
(xi, ... , Xn, 0) E Rn+l. Then (31), with n + 1 replacing n, gives 

[ 
n-2 ( ) 1 0 1 {) - 2- n-1 - -

u(x,t) = - - -- t gdS 
'Yn+l &t C &t) f IJB(x,t) 

n-2 ( )] 
18 -2- 1 - -+ -- tn- hdS , c {)t) f 8fJ(X,t) 

(35) 
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B(x, t) denoting the ball in Rn+l with center x and radius t and dB denoting 
n-dimensional surface measure on al3(x, t). Now 

(36) f - 1 l -gdS = gdS. 
8B(x,t) ( n + 1 )a( n + 1 )tn 8B(x,t) 

Note that ai3(x, t) n {Yn+1 > O} is the graph of the function 1(y) ·
(t2 - IY - xl 2)112 for y E B(x, t) c Rn. Likewise al3(x, t) n {Yn+l < O} 
is the graph of -1. Thus (36) implies 

(37) f -- gdS = (n + l)a~n + l)t" J, g(y)(l + ID1(Y)l2)1/2 dy, 
8B(x,t) B(x,t) 

the factor "2" entering because al3(x, t) comprises two hemispheres. Note 
that (1 + ID1(Y)l2)112 = t(t2 - ly - xl2)-1!2. Our substituting this into (37) 
yields 

f gdS= 2 f, g(y) dy 
8B(x,t) (n + l)o(n + l)tn-1 B(x,t) (t2 - ly - xl2)1/2 

_ 2ta(n) f g(y) dy 
- (n + l)o(n + 1) B(x,t) (t2 - IY - xl 2)112 · 

We insert this formula and the similar one with h in place of g into (35) 
and find 

u(x, t) = 

1 2o(n) [a (1 a) n22 
( nf g(y) d ) 

ln+I (n + l)o(n + 1) at tat t B(x,t) (t2 - ly - xl2)1/2 y 

( 1 a)n22 
( nf h(y) d )] 

+ tat t B(x,t) (t2 - IY - xl2)112 y . 

Since ln+I = 1 · 3 · 5 · · · (n - 1) and o(n) = r(;), we may compute 

In = 2 · 4 · · · ( n - 2) · n. 

Hence the resulting representation formula for even n is 

u(x t) - _!__ [(~) (! ~) n 22 (tnf g(y) d ) 
' - In at tat B(x,t) (t2 - IY - xl2)112 y 

(38) (1 a) n22 
( nf h(y) d )] 

+ tat t B(x,t) (t2 - IY - xl2)1/2 y ' 

where n is even and In = 2 · 4 · · · ( n - 2) · n, 

for x E Rn, t > 0. 

Since 12 = 2, this agrees with Poisson's formula (27) if n = 2. 
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THEOREM 3 (Solution of wave equation in even dimensions). Assume n 
is an even integer, n > 2, and suppose also g E cm+1(IRn), h E cm(IRn), 
form= n!2 • Define u by (38). Then 

(i) u E C2 (Rn x [O, oo)), 

(ii) Utt - Llu = 0 in Rn x (0, oo), 

and 
(iii) lim u(x, t) = g(x0), lim Ut(x, t) = h(x0) 

(x,t)--+(x0 ,0) (x,t)--+(x0 ,0) 
xERn, t>O xERn, t>O 

for each point x0 E Rn. 

This follows from Theorem 2. Observe, in contrast to formula (31), that 
to compute u(x, t) for even n we need information on u = g, Ut =hon all 
of B(x, t) and not just on 8B(x, t). 

Huygens' principle. Comparing (31) and (38), we observe that if n is odd 
and n > 3, the data g and h at a given point x E Rn affect the solution u only 
on the boundary {(y, t) I t > 0, Ix - YI = t} of the cone C = {(y, t) I t > 0, 
lx-yl < t}. On the other hand, if n is even, the data g and h affect u within 
all of C. In other words, a "disturbance" originating at x propagates along 
a sharp wavefront in odd dimensions, but in even dimensions it continues 
to have effects even after the leading edge of the wavefront passes. This is 
Huygens' principle. 

2.4.2. N onhomogeneous problem. 

We next investigate the initial-value problem for the nonhomogeneous 
wave equation 

(39) { 
Utt - Ll u = f in Rn X (0, oo) 

u = 0, Ut = 0 on Rn x { t = O}. 

Motivated by Duhamel's principle (introduced earlier in §2.3.1), we define 
u = u(x, t; s) to be the solution of 

Now set 

(41) 

{ Utt(·; s) - ~u(·; s) = 0 
u(·; s) = 0, Ut(·; s) = f(·, s) 

in Rn x (s, oo) 
on Rn x { t = s }. 

u(x, t) := lot u(x, t; s) ds (x E IRn, t > 0). 

Duhamel's principle asserts this is a solution of 

(42) { Utt - ~u = f in Rn x (0, oo) 
u = 0, Ut = 0 on Rn x { t = O}. 
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THEOREM 4 (Solution of nonhomogeneous wave equation). Assume that 
n > 2 and f E C[n/2J+1 (IRn x [O, oo)). Define u by (41). Then 

(i) u E C2 (1Rn x [O, oo)), 

(ii) Utt - Llu = f in Rn x (0, oo), 

and 
(iii) lim u(x, t) = 0, lim Ut(X, t) = 0 for each point x0 E IRn. 

(x,t)-+(x0 ,0) (x,t)-+(x0 ,0) 
xERn, t>O xERn, t>O 

Proof. 1. If n is odd, [~] + 1 = n!1 . According to Theorem 2, we have 
u(·, ·; s) E C2 (1Rn x [s, oo)) for each s > 0, and sou E C2 (1Rn x [0, oo)). If n 
is even, [ ~] + 1 = n!2 • Hence u E C2 (IRn x [O, oo)), according to Theorem 3. 

2. We then compute 

ut(x, t) = u(x, t; t) + fo1 
ui(x, t; s) ds = fo1 

ut(x, t; s) ds, 

uu(x, t) = u1(x, t; t) + fo1 
utt(x, t; s) ds = f(x, t) + fo1 

uti(x, t; s) ds. 

Furthermore 

~u(x, t) = fo1 ~u(x, t; s) ds = fo1 
uu(x, t; s) ds. 

Thus 
Utt(x, t) - Llu(x, t) = f (x, t) (x E IRn, t > 0), 

and clearly u(x, 0) = ut(x, 0) = 0 for x E IRn. D 

The solution of the general nonhomogeneous problem is consequently 
the sum of the solution of (11) (given by formulas (8), (31) or (38)) and the 
solution of ( 42) (given by ( 41)). 

Examples. (i) Let us work out explicitly how to solve ( 42) for n = 1. In 
this case d'Alembert's formula (8) gives 

1 lx+t-s 1 1t lx+t-s 
u(x, t; s) = 2 f(y, s) dy, u(x, t) = 2 f(y, s) dyds. 

x-t+s 0 x-t+s 

That is, 

(43) u(x, t) = 2
1 ft {x+s f(y, t - s) dyds (x E IR, t > 0). 

Jo lx-s 
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(ii) For n = 3, Kirchhoff's formula (22) implies 

u(x, t; s) = (t - s)f f(y, s) dS, 
8B(x,t-s) 

so that 

u(x, t) = ft (t - s) (J f(y, s) dS) ds 
Jo 8B(x,t-s) 

= _.!:._ ft f f(y, s) dSds 
47r lo laB(x,t-s) (t - s) 

= _.!:._ ft f f(y, t - r) dSdr. 
47r lo laB(x,r) r 

Therefore 

(44) u(x, t) = _.!:._ f f(y, t - ly - xi) dy (x E R3 , t > 0) 
47r J B(x,t) IY - xi 

solves (42) for n = 3. The integrand on the right is called a retarded potential. 
D 

2.4.3. Energy methods. 

The explicit formulas (31) and (38) demonstrate the necessity of making 
more and more smoothness assumptions upon the data g and h to ensure 
the existence of a C2 solution of the wave equation for larger and larger 
n. This suggests that perhaps some other way of measuring the size and 
smoothness of functions may be more appropriate. Indeed we will see in this 
subsection that the wave equation is nicely behaved (for all n) with respect 
to certain integral "energy" norms. 

a. Uniqueness. Let U c Rn be a bounded, open set with a smooth 
boundary 8U, and as usual set Ur = U x (0, T], rr = Ur - Ur, where 
T>O. 

We are interested in the initial/boundary-value problem 

(45) {
Utt - ~u = f in Ur 

u = g on rr 
Ut = h on U x { t = 0}. 

THEOREM 5 (Uniqueness for wave equation). There exists at most one 
function u E C 2 (Ur) solving (45). 
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Cone of dependence 

Proof. ff u is another such solution, then w := u - u solves 

{ 
Wtt - ~w = 0 in Ur 

w = 0 on rr 
Wt = 0 on U x { t = 0}. 

Define the "energy" 

E(t) := ~ L w;(x, t) + IDw(x, t)l2 dx (0 < t < T). 

We compute 

E. ( ) { D D d (· -- ddt) t = JU WtWtt + W · Wt X 

= Lwt(Wu-flw)dx=O. 
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There is no boundary term since w = 0, and hence Wt = 0, on au x [O, T]. 
Thus for all 0 < t < T, E(t) = E(O) = 0, and so Wt, Dw = 0 within Ur. 
Since w = 0 on U x { t = O}, we conclude w = u - u = 0 in Ur. D 

b. Domain of dependence. As another illustration of energy methods, 
let us examine again the domain of dependence of solutions to the wave 
equation in all of space. For this, suppose u E C2 solves 

Utt - ~u = 0 in Rn x (O,oo). 

Fix xo E Rn, to> 0 and consider the backwards wave cone with apex (xo, to) 

K(xo, to) := {(x, t) I 0 < t <to, Ix - xol <to - t}. 
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THEOREM 6 (Finite propagation speed). If u = Ut = 0 on B(xo, to) x 
{t = O}, then u = 0 within the cone K(xo, to). 

In particular, we see that any "disturbance" originating outside B(xo, to) 
has no effect on the solution within K(x0 , t0 ) and consequently has finite 
propagation speed. We already know this from the representation formulas 
(31) and (38), at least assuming g = u and h = Ut on Rn x {t = O} are suf
ficiently smooth. The point is that energy methods provide a much simpler 
proof. 

Proof. Define the local energy 

Then 

(46) 

Now 

(47) 

e(t) := ~ [ u~(x, t) + IDu(x, t)1 2 dx (0 < t <to). 
J B(xo,to-t) 

e(t) = [ UtUtt +Du. Dut dx - ~ [ u~ + 1Dul2 dS 
J B(xo,to-t) J 8B(xo,to-t) 

= [ Ut(Utt - ~u) dx 
J B(xo,to-t) 

+ f ou Ut dS - ~ f u~ + IDul2 dS 
j 8B(xo,to-t) OV 2 j 8B(xo,to-t) 

1 OU 12 1 2 = -0 Ut - -ut - -IDul dS. 
8B(x0 ,t0 -t) V 2 2 

OU 
-Ut av 

by the Cauchy-Schwarz and Cauchy inequalities (§B.2). Inserting (47) into 
(46), we find e(t) < O; and so e(t) < e(O) = 0 for all 0 < t < to. Thus Ut, 
Du - 0, and consequently u = 0 within the cone K(xo, to). D 

A generalization of this proof to more complicated geometry appears 
later, in §7.2.4. See also §12.1 for a similar calculation for a nonlinear wave 
equation. 

2.5. PROBLEMS 

In the following exercises, all given functions are assumed smooth, unless 
otherwise stated. 
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1. Write down an explicit formula for a function u solving the initial
value problem 

{ 
Ut + b ·Du+ cu= 0 in Rn x (0, oo) 

u = g on Rn x {t = O}. 

Here c E R and b E Rn are constants. 

2. Prove that Laplace's equation Llu = 0 is rotation invariant; that is, if 
0 is an orthogonal n x n matrix and we define 

v(x) := u(Ox) (x E Rn), 

then Llv = 0. 

3. Modify the proof of the mean-value formulas to show for n > 3 that 

f 1 f, ( 1 1) u(O) = gdS+ - - f dx, 
8B(O,r) n(n - 2)o(n) B(O,r) lxln-2 rn-2 

provided 

{ -Llu = J 
u=g 

inB0 (0,r) 
on 8B(O, r). 

4. Give a direct proof that if u E C 2 (U) n C(U) is harmonic within a 
bounded open set U, then 

max u = max u. o au 

(Hint: Define uc := u + clxl 2 for E > 0, and show uc cannot attain its 
maximum over [J at an interior point.) 

5. We say v E C2(U) is subharmonic if 

-Llv < 0 in U. 

(a) Prove for subharmonic v that 

v(x) < f vdy for all B(x, r) c U. 
B(x,r) 

(b) Prove that therefore ma.xv v = maxau v. 

( c) Let </> : R --+ R be smooth and convex. Assume u is harmonic 
and v := </>(u). Prove vis subharmonic. 

(d) Prove v := 1Dul2 is subharmonic, whenever u is harmonic. 
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6. Let U be a bounded, open subset of Rn. Prove that there exists a 
constant C, depending only on U, such that 

whenever u is a smooth solution of 

{ -Llu = f in U 
u =g on au. 

(Hint: -Ll(u + I~~ .X) < 0, for .X :=ma.xv I/I-) 
7. Use Poisson's formula for the ball to prove 

n 2 r - lxl n 2 r + lxl 
r - (r + lxl)n-1 u(O) < u(x) < r - (r - lxl)n-1 u(O) 

whenever u is positive and harmonic in B 0 (o, r). This is an explicit 
form of Harnack's inequality. 

8. Prove Theorem 15 in §2.2.4. (Hint: Since u = 1 solves (44) for g = 1, 
the theory automatically implies 

{ K(x, y) dS(y) = 1 
laB(0,1) 

for each x E B 0 (o, 1).) 

9. Let u be the solution of 

{ Llu = 0 
u=g 

in Rn + onaR+ 
given by Poisson's formula for the half-space. Assume g is bounded 
and g(x) = lxl for x E aR+, lxl < 1. Show Du is not bounded near 
x = 0. (Hint: Estimate u(Aen1-u(O).) 

10. (Reflection principle) 

(a) Let u+ denote the open half-ball {x E Rn I lxl < 1, Xn > 
O}. Assume u E C2(U+) is harmonic in u+, with u = 0 on 
au+ n {xn = O}. Set 

v(x) := { u(x) ~f Xn > 0 
-u(x1, ... , Xn-1' -xn) if Xn < 0 

for x EU= B0(0, 1). Prove v E C2(U) and thus vis harmonic 
within U. 
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(b) Now assume only that u E C 2 (U+) n C(U+). Show that v is 
harmonic within U. (Hint: Use Poisson's formula for the ball.) 

11. (Kelvin transform for Laplace's equation) The Kelvin transform /Cu= 
u of a function u : IRn ~ IR is 

u(x) := u(x)lxln-2 = u(x/lxl)lxl2-n (x -1- 0), 

where x = x/lxl 2 . Show that if u is harmonic, then so is u. 
(Hint: First show that Dxx(Dxx)T = lxl4 /. The mapping x ~ x is 
conj ormal, meaning angle preserving.) 

12. Suppose u is smooth and solves Ut - Llu = 0 in IRn x (0, oo ). 

(a) Show uA(x, t) := u(.Xx, .X2t) also solves the heat equation for 
each.XE IR. 

(b) Use (a) to show v(x, t) := x · Du(x, t) + 2tut(x, t) solves the heat 
equation as well. 

13. Assume n = 1 and u(x, t) = v(Jt). 

(a) Show 
Ut = Uxx 

if and only if 

z 
v" + -v' = 0 2 . 

Show that the general solution of ( *) is 

v(z) = c 1• e-•2
/ 4 ds + d. 

(b) Differentiate u(x, t) = v(Jt) with respect to x and select the 
constant c properly, to obtain the fundamental solution 4> for 
n = 1. Explain why this procedure produces the fundamental 
solution. (Hint: What is the initial condition for u?) 

14. Write down an explicit formula for a solution of 

{ Ut - Llu + cu = f in IRn x ( 0, oo) 
u = g on Rn x {t = O}, 

where c E IR. 
15. Given g : [O, oo) ~ IR, with g(O) = 0, derive the formula 

x lt 1 -:c2 u(x t) = -- e 4<t-s) g(s) ds 
' y'4:;r o (t - s)3/2 
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for a solution of the initial/boundary-value problem 

{

Ut-Uxx = 0 
u = 0 
u = g 

in IR+ x ( 0, oo) 
on IR+ x { t = 0} 
on {x = O} x [O, oo). 

(Hint: Let v(x, t) := u(x, t) - g(t) and extend v to {x < O} by odd 
reflection.) 

16. Give a direct proof that if U is bounded and u E C?(Ur) n C(Ur) 
solves the heat equation, then 

(Hint: Define uc := u - Et for E > 0, and show uc cannot attain its 
maximum over Ur at a point in Ur.) 

17. We say v E C? (Ur) is a subsolution of the heat equation if 

Vt - Llv < 0 in Ur. 

(a) Prove for a subsolution v that 

v(x, t) < 1 n j' f v(y, s) ix - y~~ dyds 
4r j E(x,t;r) t - s 

for all E(x, t; r) C Ur. 

(b) Prove that therefore ma.xvT v = maxrT v. 

( c) Let ¢ : IR ~ IR be smooth and convex. Assume u solves the heat 
equation and v := ¢(u). Prove vis a subsolution. 

(d) Prove v := 1Dul2 + u; is a subsolution, whenever u solves the 
heat equation. 

18. (Stokes' rule) Assume u solves the initial-value problem 

{ 
Utt - Llu = 0 in IRn x (0, oo) 

u = 0, Ut = h on IRn X { t = 0}. 

Show that v := Ut solves 

{ 
Vtt - Llv = 0 in Rn X (0, oo) 

v = h, Vt= 0 on IRn x {t = O}. 

This is Stokes ' rule. 

19. (a) Show the general solution of the PDE U:i:y = 0 is 

u(x, y) = F(x) + G(y) 
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for arbitrary functions F, G. 

(b) Using the change of variables { = x + t, TJ = x - t, show 
Utt - Uxx = 0 if and only if U{TJ = 0. 

(c) Use (a) and (b) to rederive d'Alembert's formula. 

(d) Under what conditions on the initial data g, his the solution u 
a right-moving wave? A left-moving wave? 

20. Assume that for some attenuation function o = o(r) and delay func
tion f3 = f3(r) > 0, there exist for all profiles </> solutions of the wave 
equation in (Rn - { 0}) x R having the form 

u(x, t) = a(r)</>(t - {3(r)). 

Here r = lxl and we assume {3(0) = 0. 

Show that this is possible only if n = 1 or 3, and compute the form of 
the functions o, f3. 
(T. Morley, SIAM Review 27 (1985), 69-71) 

21. (a) Assume E = (E1 , E 2 , E 3 ) and B = (B1, B 2 , B 3 ) solve Maxwell's 
equations 

22. 

Show 

{ 
Et= curlB, Bt = - curlE 

divB = divE = 0. 

Eu - ~E = 0, Btt - ~B = 0. 

(b) Assume that u = ( u1 , u2 , u3 ) solves the evolution equations of 
linear elasticity 

Utt - µ~u - (,\ + µ)D(div u) = 0 in R3 x (0, oo). 

Show w := div u and w := curl u each solve wave equations, 
but with differing speeds of propagation. 

Let u denote the density of particles moving to the right with speed 
one along the real line and let v denote the density of particles moving 
to the left with speed one. If at rate d > 0 right-moving particles 
randomly become left-moving, and vice versa, we have the system of 
PDE 

{ 
Ut + Ux = d( V - U) 

Vt - Vx = d(u - v). 

Show that both w := u and w := v solve the telegraph equation 

Wtt + 2dwt - Wxx = 0. 
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23. 

2. FOUR IMPORTANT LINEAR PDE 

Let S denote the square lying in IR x (0, oo) with corners at the points 
(0, 1), (1, 2), (0, 3), (-1, 2). Define 

{
-1 

f(x, t) := 
0
1 

for ( x, t) E S n { t > x + 2} 

for ( x, t) E S n { t < x + 2} 

otherwise. 

Assume u solves 

{
Utt - Uxx = J 
U = 0,Ut = 0 

in IR x (0, oo) 

on IR x { t = 0}. 

Describe the shape of u for times t > 3. 

(J. G. Kingston, SIAM Review 30 (1988), 645-649) 

24. (Equipartition of energy) Let u solve the initial-value problem for the 
wave equation in one dimension: 

{ 
Utt - Uxx = 0 in IR X ( 0, 00) 

u = g, Ut = h on IR x { t = 0}. 

Suppose g, h have compact support. The kinetic energy is k(t) ·
! J~00 u~(x, t) dx and the potential energy is p(t) := ! J~00 u;(x, t) dx. 
Prove 

(a) k(t) + p(t) is constant in t, 

(b) k ( t) = p( t) for all large enough times t. 
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Chapter 3 

In this chapter we investigate general nonlinear first-order partial differ
ential equations of the form 

F(Du, u, x) = 0, 

where x E U and U is an open subset of Rn. Here 

F : Rn x R x [J ---+ R 

is given, and u: [J---+ R is the unknown, u = u(x). 

NOTATION. Let us write 

F = F(p, z, x) = F(pi, ... ,pn, z, Xi, ... ' Xn) 

for p E Rn, z E R, x E U. Thus "p" is the name of the variable for which 
we substitute the gradient Du(x), and "z" is the variable for which we 
substitute u(x). We also assume hereafter that Fis smooth and set 

{ 
DpF = ( Fp1 , ••• , FPn) 

DzF = Fz 

DxF = (Fx1 , • • ·, Fxn). 
D -91 
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We are concerned with discovering solutions u of the PDE F(Du, u, x) = 
0 in U, usually subject to the boundary condition 

u = g on r, 

where r is some given subset of au and g: r ~IR is prescribed. 

Nonlinear first-order partial differential equations arise in a variety of 
physical theories, primarily in dynamics (to generate canonical transforma
tions), continuum mechanics (to record conservation of mass, momentum, 
energy, etc.) and optics (to describe wavefronts). Although the strong 
nonlinearity generally precludes our deriving any simple formulas for so
lutions, we can, remarkably, often employ calculus to glean fairly detailed 
information about solutions. Such techniques, discussed in §§3. l and 3.2, 
are typically only local. In §§3.3 and 3.4 we will for the important cases 
of Hamilton-Jacobi equations and conservation laws derive certain global 
representation formulas for appropriately defined weak solutions. 

3.1. COMPLETE INTEGRALS, ENVELOPES 

3.1.1. Complete integrals. 

We begin our analysis of the nonlinear first-order PDE 

(1) F(Du, u, x) = 0 

by describing some simple classes of solutions and then learning how to build 
from them more complicated solutions. 

Suppose first A c IRn is an open set. Assume for each parameter a = 
(ai, ... , an) EA we have a 0 2 solution u = u(x; a) of the PDE (1). 

NOTATION. We write 

(2) 

DEFINITION. A 0 2 function u = u(x; a) is called a complete integral in 
U x A provided 

(i) u(x; a) solves the PDE (1) for each a E A 

and 

(ii) rank(Dau, n;au) = n (x E U, a E A). 
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Interpretation. Condition (ii) ensures u(x; a) "depends on all then inde
pendent parameters ai, ... , an". To see this, suppose B C Rn-l is open, 
and for each b E B assume v = v(x; b) (x E U) is a solution of (1). Suppose 
also there exists a C1 mapping 'ljJ : A ~ B, 'ljJ = ( 'ljJ1 , ... , 1/Jn- l), such that 

(3) u(x; a) = v(x; 'l/;(a)) (x E U, a E A). 

That is, we are supposing the function u(x; a) "really depends only on the 
n - 1 parameters bi, ... , bn-1". But then 

n-1 

Uxiai(x;a) = Lvxibk(x;'l/;(a))'lfJ!/a) (i,j = l, ... ,n). 
k=l 

Consequently 

n-1 ( 1/J!~ 1/J!!) 
det(D;au) = L Vx 1bk1 ••• Vxnbkn det = 0, 

ki, ... ,kn=l ,,/,kn ,,/,kn 
Cf/ ai Cf/ an 

since for each choice of ki, ... , kn E { 1, ... , n - 1}, at least two rows in the 
corresponding matrix are equal. As 

n-1 

Uai(x;a) = Lvbk(x;'l/;(a))'l/J!/a) (j = l, ... ,n), 
k=l 

a similar argument shows that the determinant of each n x n submatrix of 
(Dau, D';au) equals zero, and thus this matrix has rank strictly less than n. 

Example 1. Clairout 's equation from differential geometry is the PDE 

(4) x · Du + f (Du) = u, 

where f : Rn ~ R is given. A complete integral is 

(5) u(x; a) =a· x + f (a) (x E U) 

D 

Example 2. The eikonal* equation from geometric optics is the PDE 

(6) IDul = 1. 

A complete integral is 

(7) u(x;a,b) = a·x+b (x EU) 

for x E U, a E 8B(O, 1), b ER. D 

•€1,~v =image (Greek). 
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Example 3. The Hamilton-Jacobi equation from mechanics is in its sim
plest form the partial differential equation 

(8) Ut + H(Du) = 0, 

where H: Rn~ R. Here u depends on x = (xi, ... , Xn) E Rn and t ER. 
As before we have sett= Xn+I and written Du= Dxu = (ux 1 , ••• , Uxn). A 
complete integral is 

(9) u(x, t; a, b) =a· x - tH(a) + b (x E Rn, t > 0) 

where a E Rn, b E R. D 

3.1.2. New solutions from envelopes. 

We next demonstrate how to build more complicated solutions of our 
nonlinear first-order PDE (1), solutions which depend on an arbitrary func
tion of n -1 variables and not just on n parameters. We will construct these 
new solutions as envelopes of complete integrals or, more generally, of other 
m-parameter families of solutions. 

DEFINITION. Let u = u(x; a) be a C 1 function of x EU, a EA, where 
U c Rn and A c Rm are open sets. Consider the vector equation 

(10) Dau(x;a) = 0 (x EU, a EA). 

Suppose that we can solve (10) for the parameter a as a C 1 function of x, 

(11) a= <f>(x); 

thus 

(12) Dau(x; <f>(x)) = 0 (x EU). 

We then call 

(13) v(x) := u(x; <f>(x)) (x EU) 

the envelope of the functions {u(·; a)}aEA· 

By forming envelopes, we can build new solutions of our nonlinear first
order partial differential equation: 

THEOREM 1 (Construction of new solutions). Suppose for each a E A 
as above that u = u(·; a) solves the partial differential equation (1). Assume 
further that the envelope v, defined by (12) and (13) above, exists and is a 
C 1 function. Then v solves (1) as well. 

The envelope v defined above is sometimes called a singular integral of 
(1). 
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Proof. We have v(x) = u(x; <f>(x)); and so for i = 1, ... , n 

m 

Vxi(x) = Uxi(x; <f>(x)) + L Ua;(x, <f>(x))</{i(x) 
j=l 

= Uxi (x; <f>(x) ), according to (12). 

Hence for each x E U, 

F(Dv(x), v(x), x) = F(Du(x; <f>(x)), u(x; <f>(x)), x) = 0. D 

The geometric meaning is that for each x E U, the graph of v is tangent 
to the graph of u(·; a) for a= <f>(x). Thus Dv = Dxu(·; a) at x, for a= <f>(x). 

Example 4. Consider the PDE 

(14) 

A complete integral is 

u(x, a) = ±(1 - Ix - al2)1/2 (Ix - al < 1). 

We compute 
D _ =f(x - a) _ 0 aU- -

(1 - Ix - al2)1/2 

provided a = 4>( x) = x. Thus v = ± 1 are singular integrals of ( 14). D 

To generate still more solutions of the PDE (1) from a complete integral, 
we vary the above construction. Choose any open set A' c Rn- I and any 
C1 function h: A'--+ R, so that the graph of h lies within A. Let us write 

a= (ai, ... , an) = (a', an) for a'= (ai, ... , an-1) E Rn-I_ 

DEFINITION. The general integral (depending on h) is the envelope v' = 

v'(x) of the functions 

u'(x;a') = u(x;a',h(a')) (x EU, a' EA'), 

provided this envelope exists and is C1 . 

In other words, in computing the envelope we are now restricting only 
to parameters a of the form a = (a', h( a')), for some explicit choice of the 
function h. Thus from a complete integral, which depends upon n arbitrary 
constants ai, ... , an, we build (whenever the foregoing construction works) 
a solution depending on an arbitrary function h of n - 1 variables. 
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Example 5. Let H(p) = IPl 2, h = 0 in Example 3 above. Then 

u'(x, t; a)= x ·a - tlal 2 . 

We calculate the envelope by setting Dau' = x - 2ta = 0. Hence a = ;t, 
and so 

' x Ix 12 lxl2 v (x t) = x · - - t - = -
' 2t 2t 4t 

(x E lRn, t > 0) 

solves the Hamilton-Jacobi equation v~ + 1Dv'l2 = 0. D 

Remark. It is tempting to believe that once we can find as above a solution 
of (1) depending on an arbitrary function h, we have found all the solutions 
of (1). But this need not be so. Suppose our PDE has the structure 

F(Du, u, x) = F1 (Du, u, x)F2(Du, u, x) = 0. 

Ifu1(x,a) isacompleteintegralofthePDEF1(Du,u,x) = Oand we succeed 
in finding a general integral corresponding to any function h, we will still 
have missed all the solutions of the PDE F2(Du, u, x) = 0. 

3.2. CHARACTERISTICS 

3.2.1. Derivation of characteristic ODE. 

We return to our basic nonlinear first-order PDE 

(1) F(Du, u, x) = 0 in U, 

subject now to the boundary condition 

(2) u = g on r, 

where r c {)U and g: r ~JR are given. We hereafter suppose that F, g are 
smooth functions. 

We develop next the method of characteristics, which solves (1), (2) by 
converting the PDE into an appropriate system of ODE. This is the plan. 
Suppose u solves (1), (2) and fix any point x E U. We would like to calculate 
u(x) by finding some curve lying within U, connecting x with a point x0 Er 
and along which we can compute u. Since (2) says u = g on r, we know 
the value of u at the one end x0 . We hope then to be able to calculate u all 
along the curve, and so in particular at x. 
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Finding the characteristic ODE. How can we choose a path in U so all 
this will work? Let us suppose the curve is described parametrically by the 
function x(s) = (x1(s), ... , xn(s)), the parameters lying in some subinterval 
I c R. Assuming u is a C2 solution of (1), we define also 

(3) z(s) := u(x(s)). 

In addition, set 

(4) p(s) := Du(x(s)); 

that is, p(s) = (p1 (s), ... ,pn(s)), where 

(5) 

So z( ·) gives the values of u along the curve and p( ·) records the values of 
the gradient Du. We must choose the function x( ·) in such a way that we 
can compute z(·) and p(·). 

For this, first differentiate (5): 

(6) ii(s) = t Ux;x; (x(s) )xi (s) ( = ! ) . 
j=l 

This expression is not too promising, since it involves the second derivatives 
of u. On the other hand, we can also differentiate the PDE (1) with respect 
to Xi: 

n 

(7) L Fp; (Du, u, x)ux;xi + Fz(Du, u, x)uxi + Fxi (Du, u, x) = 0. 
j=l 

We are able to employ this identity to get rid of the second derivative terms 
in ( 6), provided we first set 

(8) xJ(s) = Fp;(p(s),z(s),x(s)) (j = 1, ... ,n). 

Assuming now (8) holds, we evaluate (7) at x = x(s), obtaining thereby 
from (3), (4) the identity: 

n 

L Fp; (p(s), z(s), x(s) )uxix; (x(s)) 
j=l 

+ Fz(p(s), z(s), x(s) )pi(s) + Fxi (p(s), z(s), x(s )) = 0. 
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Substitute this expression and (8) into (6): 

(9) 
ji(s) = -Fxi(p(s), z(s),x(s)) 

- Fz(p(s), z(s), x(s))pi(s) (i = 1, ... , n). 

Finally we differentiate (3): 

n n 

(10) z(s) = Luxj(x(s))xi(s) = Lil(s)Fpj(p(s),z(s),x(s)), 
j=l j=l 

the second equality holding by (5) and (8). 

The characteristic equations. We summarize by rewriting equations 
(8)-(10) in vector notation: 

(a) p(s) = -DxF(p(s), z(s), x(s)) - DzF(p(s), z(s), x(s))p(s) 

(11) (b) z(s) = DpF(p(s),z(s),x(s)) · p(s) 

(c) x(s) = DpF(p(s), z(s), x(s)). 

Furthermore, 

(12) F(p(s), z(s), x(s)) = 0. 

These identities hold for s E I. 

The important system (11) of 2n + 1 first-order ODE comprises the 
characteristic equations of the nonlinear first-order PDE (1). The functions 
p(·) = (p1 (·), ... ,pn(·)), z(·), x(·) = (x1 (·), ... ,xn(·)) are called the charac
teristics. We will sometimes refer to x( ·) as the projected characteristic: it 
is the projection of the full characteristics (p( · ), z( · ), x( ·)) c R2n+l onto the 
physical region U C Rn. 

We have proved: 

THEOREM 1 (Structure of characteristic ODE). Let u E C 2 (U) solve 
the nonlinear, first-order partial differential equation (1) in U. Assume x( ·) 
solves the ODE (ll)(c), where p(·) = Du(x(·)), z(·) = u(x(·)). Then p(·) 
solves the ODE (ll)(a) and z(·) solves the ODE (ll)(b), for those s such 
that x(s) E U. 

We still need to discover appropriate initial conditions for the system 
of ODE (11), in order that this theorem be useful. We accomplish this in 
§3.2.3 below. 
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Remark. The characteristic ODE are truly remarkable in that they form 
an exact system of equations for x(·), z(·) = u(x(·)), and p(·) = Du(x(·)), 
whenever u is a smooth solution of the general nonlinear PDE (1). The 
key step in the derivation is our setting :i = DpF, so that-as explained 
above-the terms involving second derivatives drop out. We thereby obtain 
closure and in particular are not forced to introduce ODE for the second 
and higher derivatives of u. 

3.2.2. Examples. 

Before continuing our investigation of the characteristic equations (11), 
we pause to consider some special cases for which the structure of these 
equations is especially simple. We illustrate as well how we can sometimes 
actually solve the characteristic ODE and thereby explicitly compute solu
tions of certain first-order PDE, subject to appropriate boundary conditions. 

a. F linear. Consider first the situation that our PDE (1) is linear and 
homogeneous and thus has the form 

(13) F(Du, u, x) = b(x) · Du(x) + c(x)u(x) = 0 (x EU). 

Then F(p, z, x) = b(x) · p + c(x)z, and so 

DpF = b(x). 

In this circumstance equation ( 11) ( c) becomes 

(14) :i(s) = b(x(s)), 

an ODE involving only the function x(·). Furthermore equation (ll)(b) 
becomes 

(15) z(s) = b(x(s)). p(s). 

Then equation (12) simplifies (15), yielding 

(16) z(s) = -c(x(s))z(s). 

This ODE is linear in z(·), once we know the function x(·) by solving (14). 
In summary, 

(17) {
(a) :i(s) = b(x(s)) 

(b) z(s) = -c(x(s))z(s) 

comprise the characteristic equations for the linear, first-order PDE (13). 
(We will see later that the equation for p( ·) is not needed.) D 
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Example 1. We demonstrate the utility of equations (17) by explicitly 
solving the problem 

(18) { 
X1Ux2 - X2Ux 1 = U in U 

u = g on r, 

where u is the quadrant {x1 > 0, X2 > O} and r = {x1 > 0, x2 = O} c au. 
The PDE in (18) is of the form (12), for b = (-x2, x1) and c = -1. Thus 
the equations (17) read 

(19) { ~1 = -x2, ±2 = xl 
z = z. 

Accordingly we have 

{ x
1(s) = x0 coss, x2 (s) = x0 sins 

z ( s) = z0 es = g ( x0 ) es, 

where x0 > 0, 0 < s < ~· Fix a point (xi, x2) E U. We select s > 0, 
x0 > 0 so that (xi,x2) = (x1(s),x2(s)) = (x0 coss,x0 sins). That is, x0 = 
(x~ + x~) 1 12 , s = arctan ( ~) . Therefore 

u(x) = u(x1(s),x2(s)) = z(s) = g(xo)es = g((x~ +x~)1/2)earctan(i7). 
D 

b. F quasilinear. The partial differential equation (1) is quasilinear should 
it have the form 

(20) F(Du,u,x) = b(x,u(x)) · Du(x) + c(x,u(x)) = 0. 

In this circumstance F(p, z, x) = b(x, z) · p + c(x, z), whence 

DpF = b(x, z). 

Hence equation ( 11) ( c) reads 

x(s) = b(x(s), z(s)), 

and ( 11) (b) becomes 

z(s) = b(x(s ), z(s)) . p(s) = -c(x(s ), z(s) ), by (12). 

Consequently 

(21) {
(a) x(s) = b(x(s), z(s)) 

(b) z(s) = -c(x(s),z(s)) 

are the characteristic equations for the quasilinear first-order PDE (20). 
(Once again we do not require the equation for p( ·).) D 
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Example 2. The characteristic ODE (21) are in general difficult to solve, 
and so we work out in this example the simpler case of a boundary-value 
problem for a semilinear PDE: 

(22) { 
Ux1 + Ux2 = u2 in U 

u = g on r. 

Now U is the half-space {x2 > O} and r = {x2 = O} =au. Here b = (1, 1) 
and c = -z2• Then (21) becomes 

{ ±1 =1, ±2 = 1 
z = z2 • 

Consequently 

{ 
x1 (s) = x 0 + s, x2 (s) = s 
z(s) - zo - g(xo) 

- 1-szO - 1-sg(xO) ' 

where x 0 E IR, s > 0, provided the denominator is not zero. 

Fix a point (xi, x2) E U. We select s > 0 and x0 E IR so that (xi, x2) = 

(x1(s), x2(s)) = (x0 + s, s); that is, x0 = x1 - x2, s = x2. Then 

u(x) = u(x1 (s),x2(s)) = z(s) = 1 g(x? O) 
-sg x 

This solution of course makes sense only if 1 - x2g(x1 - x2) =/:- 0. D 

c. F fully nonlinear. In the general case, we must integrate the full 
characteristic equations (11), if possible. 

Example 3. Consider the fully nonlinear problem 

(23) { 
Ux 1 Ux2 = U in U 

u = x~ on r, 

where U = {x1 > O}, r = {x1 = O} =au. Here F(p, z, x) = P1P2 - z, and 
hence the characteristic ODE (11) become 

{ 
pl = pl' p2 = p2 
z = 2plp2 

±1 = p2' ±2 = pl. 

We integrate these equations to find 
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where x0 E IR, s E IR, and z0 = (x0) 2 . 

We must determine p0 = (p~,pg). Since u = x~ on r, pg= Ux2(0,x0 ) = 
2x0. Furthermore the PDE Ux 1 Ux2 = u itself implies p~pg = z0 = (x0)2, and 
so p~ = x2° . Consequently the formulas above become 

{ 
x1 ( s) = 2x0 (es - 1), x2 ( s) = x; (es + 1) 
z(s) = (xo)2e2s 

pl ( s) = x2o es' p2 ( s) = 2xo es. 

Fix a point (xi, x2) E U. Selects and x0 so that (xi, x2) = (x1(s), x2(s)) 
= (2x0 (es - 1) x 0 (es + 1)). This equality implies x0 = 4x2 -x1 es = xi +4x2 • 

' 2 4 ' 4x2-x1 ' 
and so 

D 

3.2.3. Boundary conditions. 

We return now to developing the general theory and intend in the sec
tion following to invoke the characteristic ODE (11) actually to solve the 
boundary-value problem (1), (2), at least in a small region near an appro
priate portion r of au. 
a. Straightening the boundary. To simplify subsequent calculations, 
it is convenient first to change variables, so as to "flatten out" part of the 
boundary au. To accomplish this, we first fix any point x0 E au. Then 
utilizing the notation from §C.l, we find smooth mappings 4>, '1' : IRn---+ Rn 
such that .. = 4>-1 and 4> straightens out au near x0 . (See the illustration 
in §C.1.) 

Given any function u : U ---+ IR, let us write V := 4>(U) and set 

(24) v(y) := u('W(y)) (y E V). 

Then 

(25) u(x) = v(4>(x)) (x EU). 

Now suppose that u is a C 1 solution of our boundary-value problem (1), (2) 
in U. What PDE does v then satisfy in V? 

According to ( 25), we see 

n 

Uxi(x) = Lvyk(4>(x))<I>~i(x) (i = l, ... ,n); 
k=l 
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that is, 
Du(x) = Dv(y)D~(x). 

Thus (1) implies 

(26) F(Dv(y)D~(\J!(y)), v(y), \J!(y)) = F(Du(x), u(x), x) = 0. 

This is an expression having the form 

G(Dv(y), v(y), y) = 0 in V. 

In addition v = h on Ll, where Ll := ~(r) and h(y) := g(\J!(y)). 

In summary, our problem (1), (2) transforms to read 

{ G ( Dv, v, y) = 0 in V 
(27) v = h on Ll, 

for G, h as above. The point is that if we change variables to straighten out 
the boundary near x0 , the boundary-value problem (1), (2) converts into a 
problem having the same form. 

b. Compatibility conditions on boundary data. In view of the fore
going computations, if we are given a point x0 E r, we may as well assume 
from the outset that r is flat near XO, lying in the plane { Xn = 0}. 

We intend now to utilize the characteristic ODE to construct a solution 
( 1), ( 2), at least near x0 , and for this we must discover appropriate initial 
conditions 

(28) p(O) = p0 , z(O) = z0 , x(O) = x0 . 

Now clearly if the curve x( ·) passes through x 0 , we should insist that 

(29) z0 = g(x0 ). 

What should we require concerning p(O) = p0? Since (2) implies 
u(xi, ... Xn-1' 0) = g(xi, ... , Xn-1) near x0 , we may differentiate to find 

Uxi (x0 ) = Yxi (x0 ) (i = 1, ... , n - 1). 

As we also want the PDE (1) to hold, we should therefore insist p0 

(p~, ... , p~) satisfies these relations: 

{ P? = 9xi (x0 ) 
(30) 

F(p0 , z0 , x0 ) = 0. 

(i=l, ... ,n-1) 

These identities provide n equations for then quantities p0 = (p~, ... ,p~). 

We call (29) and (30) the compatibility conditions. A triple (p0 , z0 , x0 ) E 

IR2n+l verifying (29), (30) is admissible. Note z0 is uniquely determined 
by the boundary condition and our choice of the point x0 , but a vector p0 

satisfying (30) may not exist or may not be unique. 
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c. N oncharacteristic boundary data. So now assume as above that 
XO E r, that r near XO lies in the plane { Xn = 0}, and that the triple 
(p0 ,z0 ,x0 ) is admissible. We are planning to construct a solution u of (1), 
(2) in U near x0 by integrating the characteristic ODE {11). So far we 
have ascertained x(O) = x0 , z(O) = z0 , p(O) = p0 are appropriate boundary 
conditions for the characteristic ODE, with x( ·) intersecting r at x0 . But 
we will need in fact to solve these ODE for nearby initial points as well 
and must consequently now ask if we can somehow appropriately perturb 
(p0 , z0 , x 0 ), keeping the compatibility conditions. 

In other words, given a point y = (yi, ... , Yn-1' 0) E r, with y close to 
x0 , we intend to solve the characteristic ODE 

(a) i>(s) = -DxF(p(s),z(s),x(s))- DzF(p(s),z(s),x(s))p(s) 

(31) (b) z(s) = DpF(p(s),z(s),x(s)) · p(s) 

(c) x(s) = DpF(p(s), z(s), x(s)), 

with the initial conditions 

(32) p(O) = q(y), z(O) = g(y), x(O) = y. 

Our task then is to find a function q(·) = (q1 (·), ... , qn(·)), so that 

(33) q(xo) =Po 

and (q(y), g(y), y) is admissible; that is, the compatibility conditions 

{ qi(y)=gxi(y) (i=l, ... ,n-1) 
(34) F(q(y), g(y), y) = 0 

hold for all y E r close to XO. 

LEMMA 1 (N oncharacteristic boundary conditions). There exists a unique 
solution q ( ·) of ( 33), ( 34) for all y E r sufficiently close to x 0 , provided 

(35) FPn (p0 , z0 , x0 ) =/:- 0. 

We say the admissible triple (p0 , z0 , x0 ) is nonchamcteristic if (35) holds. 
We henceforth assume this condition. 

Proof. Our problem is to find qn(y) so that 

F(q(y),g(y),y) = 0, 

where qi(y) = 9xi (y) for i = 1, ... , n-1. Since F(p0 , z0 , x0 ) = 0, the Implicit 
Function Theorem (§C. 7) implies we can indeed locally and uniquely solve 
for qn (y), provided that the noncharacteristic condition ( 35) is valid. D 
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General noncharacteristic condition. If r is not fiat near x0 , the con
dition that r be noncharacteristic reads 

(36) 

v(x0 ) denoting the outward unit normal to 8U at x0 . See Problem 7. 

3.2.4. Local solution. 

Remember that our aim is to use the characteristic ODE to build a 
solution u of (1), (2), at least near r. So as before we select a point x0 Er 
and, as shown in §3.2.3, may as well assume that near x0 the surface r is fiat, 
lying in the plane { Xn = 0}. Suppose further that (p0 , z0 , x 0 ) is an admissible 
triple of boundary data, which is noncharacteristic. According to Lemma 1 
there is a function q(·) so that p0 = q(x0 ) and the triple (q(y),g(y),y) is 
admissible, for all y sufficiently close to x0 . 

Given any such point y = (y1, ... , Yn-1, 0), we solve the characteristic 
ODE (31), subject to initial conditions {32). 

NOTATION. Let us write 

{ 
p(s) _ p(y, s) _ p(yi, ... , Yn-1' s) 

z(s) - z(y, s) - z(yi, ... , Yn-1' s) 

x(s) = x(y, s) = x(yi, ... , Yn-1' s) 

to display the dependence of the solution of (31), {32) on sandy. Also, we 
will henceforth when convenient regard x0 as lying in Rn-1. D 

LEMMA 2 (Local invertibility). Assume we have the noncharacteristic 
condition FPn (p0 , z0 , x0 ) =/:- 0. Then there exist an open interval I C R 
containing 0, a neighborhood W of x0 in r c Rn- 1, and a neighborhood V 
of x0 in Rn, such that for each x E V there exist unique s E I, y E W such 
that 

x = x(y, s). 

The mappings x ~ s, y are C2 . 

Proof. We have x(x0 , 0) = x0 . Consequently the Inverse Function Theorem 
(§C.6) gives the result, provided det Dx(x0 , 0) =I- 0. Now 

x(y, 0) = (y, 0) (y E r); 

and so if i = 1, ... , n - 1, 

_j ( 0 ) { 6ij ;i,-yi x 'o = o 
(j = 1, ... , n - 1) 
(j = n). 
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Furthermore equation ( 31) ( c) implies 

~(x0 , 0) = FP; (p0 , z0 , x0 ). 

Thus 

Dx(x0 ,o) = 
0 1 
0 ... 0 FPn (po' zO' xo) nxn 

whence det Dx(x0 , 0) =I- 0 follows from the noncharacteristic condition (35). 
D 

In view of Lemma 2 for each x E V, we can locally uniquely solve the 
equation 

(37) 

Finally, let us define 

(38) 

{ x = x(y,s), 

for y = y(x), s = s(x). 

{ 
u(x) := z(y(x), s(x)) 

p(x) := p(y(x), s(x)) 

for x EV ands, y as in (37). 

We come finally to our principal assertion, namely, that we can locally 
weave together the solutions of the characteristic ODE into a solution of the 
PDE. 

THEOREM 2 (Local Existence Theorem). The function u defined above 
is C 2 and solves the PDE 

F(Du(x), u(x), x) = 0 (x E V), 

with the boundary condition 

u(x) = g(x) (x E r n V). 

Proof. 1. First of all, fix y E r close to x0 and, as above, solve the charac
teristic ODE (31), (32) for p(s) = p(y, s), z(s) = z(y, s), and x(s) = x(y, s). 

2. We assert that if y E r is sufficiently close to x0 , then 

(39) f(y,s) := F(p(y,s),z(y,s),x(y,s)) = 0 (s E /). 
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To see this, note 

(40) f(y, 0) = F(p(y, 0), z(y, 0), x(y, 0)) = F(q(y), g(y), y) = 0, 

by the compatibility condition {34). Furthermore 

n n 

fs(Y, s) = L Fp;fl + Fvi + L Fx;xi 
j=l j=l 

n n 

= LFp;(-Fx; - Fzpi) + Fz(LFP;pi) 
j=l j=l 

n 

+ LFx;(Fpj) according to (31) 
j=l 

=0. 

This calculation and ( 40) prove ( 39). 

3. In view of Lemma 2 and (37)-(39), we have 

F(p(x), u(x), x) = 0 (x E V). 

To conclude, we must therefore show 

(41) p(x) = Du(x) (x EV). 

In order to prove (41), let us first demonstrate for s EI, y E W that 

(42) 

and 

n 

Z8 (y,s) = LiJ(y,s)x~(y,s) 
j=l 

n 

(43) zyi (y, s) = LiJ (y, s)~i (y, s) (i = 1, ... , n - 1). 
j=l 

These formulas are obviously consistent with the equality ( 41) and will later 
help us prove it. The identity (42) results at once from the characteristic 
ODE {31)(b),(c). To establish (43), fix y Er, i E {1, ... , n - 1}, and set 

(44) 
n 

ri(s) := Zyi(y,s) - LiJ(y,s)xii(y,s). 
j=l 
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We first note ri(O) 9xi(y) - qi(y) = 0 according to the compatibility 
condition (34). In addition, we can compute 

n 

(45) ri(s) = Zyis - L~xti + ilxiiS" 
j=l 

To simplify this expression, let us first differentiate the identity ( 42) with 
respect to Yi: 

(46) 
n 

Zsyi = L JJii x~ +pi x~Yi · 
j=l 

Substituting (46) into (45), we discover 
n n 

(47) ri(s) = LPii~ - ~xii= LJJiiFPj - (-Fxj - FzJl)xii, 
j=l j=l 

according to (31)(a). Now differentiate (39) with respect to Yi= 
n n 

L FPJJJii + FzZyi + L Fxi xii = 0. 
j=l j=l 

We employ this identity in (47), thereby obtaining 
n 

(48) ri(s) = Fz( Lil xii - Zyi) = -Fzri(s). 
j=l 

Hence ri(·) solves the linear ODE (48), with the initial condition ri(O) = 0. 
Consequently ri(s) = 0 (s E J, i = 1, ... , n - 1), and so identity (43) is 
verified. 

4. We finally employ (42), (43) in proving (41). Indeed, if j = 1, ... , n, 

n-1 

Uxj = Z8 Sxj + L ZyiY~j by (38) 
i=l 

n n-1 n 

= Lpkx!sxi + L Lpkx:iy~i 
k=l i=l k=l 

n n-1 

- "'"" k ( k "'"" k i - L...JP XsSxi + L...JXyiYxi) 
k=l i=l 

n n 

"'"" k k "'"" k . = L...JP XXj = L...JP 8jk = P'. 
k=l k:::!:l 

by ( 42), ( 43) 

This assertion at last establishes ( 41) and so finishes up the proof. D 
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3.2.5. Applications. 

We turn now to various special cases, to see how the local existence 
theory simplifies in these circumstances. 

a. F linear. Recall that a linear, homogeneous, first-order PDE has the 
form 

(49) F(Du,u,x) = b(x) · Du(x) + c(x)u(x) = 0 (x EU). 

Our noncharacteristic assumption (36) at a point x0 Er as above becomes 

(50) b(x0 ) · v(x0 ) # 0 

and thus does not involve z0 or p0 at all. Furthermore if we specify the 
boundary condition 

(51) u = g on r, 
we can uniquely solve equation (34) for q(y) if y Er is near x0 . Thus we can 
apply the Local Existence Theorem 2 to construct a unique solution of (49), 
(51) in some neighborhood V containing x0 . Note carefully that although we 
have utilized the full characteristic equations (31) in the proof of Theorem 
2, once we know the solution exists, we can use the reduced equations (17) 
(which do not involve p( ·)) to compute the solution. Observe also that the 
projected characteristics x( ·) emanating from distinct points on r cannot 
cross, owing to uniqueness of solutions of the initial-value problem for the 
ODE (17)(a). 

Example 4. Suppose the trajectories of the ODE 

(52) x(s) = b(x(s)) 

are as drawn for Case 1. We are thus assuming the vector field b vanishes 
within U only at one point, which we will take to be the origin 0, and h·v < 0 
on r :=au. 

Case 1: flow to an attracting point 
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Can we solve the linear boundary-value problem 

(53) { b·Du=O inU 
u = g on r? 

Invoking Theorem 2, we see that there exists a unique solution u defined 
near rand indeed that u(x(s)) = u(x(O)) = g(x0 ) for each solution of the 
ODE (52), with the initial condition x(O) = x 0 Er. However, this solution 
cannot be smoothly continued to all of U (unless g is constant): any smooth 
solution of (53) is constant on trajectories of (52) and thus takes on different 
values near x = 0. 

Case 2: flow across a domain 

But now suppose the trajectories of the ODE (52) look like the illustra
tion for Case 2. We are assuming that each trajectory of the ODE (except 
those through the characteristic points A, B) enters U precisely once, some
where through the set 

r := {x Eau I b(x) ·v(x) < O}, 

and exits U precisely once. In this circumstance we can find a smooth 
solution of (53) by setting u to be constant along each flow line. 

Assume finally the flow looks like Case 3. We can now define u to be 
constant along trajectories, but then u will be discontinuous (unless g( B) = 
g(D) ). Note that the point D is characteristic and that the local existence 
theory fails near D. D 
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Case 3: flow with characteristic points 

b. F quasilinear. Should F be quasilinear, the PDE (1) is 

(54) F(Du, u, x) = b(x, u) ·Du+ c(x, u) = 0. 

The noncharacteristic assumption (36) at a point x0 E r reads b(x0 , z0 ) · 

v(x0 ) =f. 0, where z0 = g(x0 ). As in the preceding example, if we specify the 
boundary condition 

(55) u = g on r, 

we can uniquely solve the equations (34) for q(y) if y E r near x0 . Thus 
Theorem 2 yields the existence of a unique solution of (54), (55) in some 
neighborhood V of x0 . We can compute this solution in V using the reduced 
characteristic equations (21), which do not explicitly involve p(·). 

In contrast to the linear case, however, it is possible that the projected 
characteristics emanating from distinct points in r may intersect outside V; 
such an occurrence usually signals the failure of our local solution to exist 
within all of U. 

Example 5 (Characteristics for conservation laws). As an instance of a 
quasilinear first-order PDE, we turn now to the scalar conservation law 

(56) 
G(Du, Ut, u, x, t) = Ut +div F(u) 

= Ut + F ' ( u) · Du = 0 

in U =Rn x (0, oo ), subject to the initial condition 

(57) u = g on r = Rn x { t = O}. 
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Here F : R ---+ Rn, F = (F1, ... , Fn), and, as usual, we have set t = 
Xn+l· Also, "div" denotes the divergence with respect to the spatial variables 
(xi, ... ' Xn), and Du= Dxu = (ux1' ... 'Uxn). 

Since the direction t = Xn+l plays a special role, we appropriately modify 
our notation. Writing now q = (P,Pn+1) and y = (x, t), we have 

G(q, z, y) = Pn+l + F'(z) · p, 

and consequently 

DqG = (F'(z), 1), DyG = 0, DzG = F"(z) · p. 

Clearly the noncharacteristic condition (35) is satisfied at each point y0 = 
(XO, 0) E r. Furthermore equation ( 21 )(a) becomes 

(58) 
(i = 1, ... , n) 

Hence xn+1(s) = s, in agreement with our having written Xn+l = t above. 
In other words, we can identify the parameter s with the time t. 

Equation (21)(b) reads z(s) = 0. Consequently 

(59) z(s) = z0 = g(x0 ); 

and (58) implies 

(60) x(s) = F'(g(x0 ))s + x 0 . 

Thus the projected characteristic y(s) = (x(s), s) 
(s > 0) is a straight line, along which u is constant. 

(F'(g(x0 ))s + x 0 ,s) 

Crossing characteristics. But suppose now we apply the same reasoning 
to a different initial point z0 Er, where g(x0 ) =/:- g(z0 ). The projected char
acteristics may possibly then intersect at some time t > 0. Since Theorem 1 
tells usu= g(x0 ) on the projected characteristic through x 0 and u = g(z0 ) 

on the projected characteristic through z0 , an apparent contradiction arises. 
The resolution is that the initial-value problem (56), (57) does not in general 
have a smooth solution, existing for all times t > 0. D 

We will discuss in §3.4 the interesting possibility of extending the local 
solution (guaranteed to exist for short times by Theorem 2) to all times 
t > 0, as a kind of "weak" or "generalized" solution. 
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An implicit formula. We can eliminate s from equations (59), (60) to 
derive an implicit formula for u. Indeed given x E Rn and t > 0, we see that 
since s = t, 

u(x(t), t) = z(t) = g(x(t) - tF'(z0 )) = g(x(t) - tF'(u(x(t), t))). 

Hence 

(61) u = g(x - tF'(u)). 

This implicit formula for u as a function of x and t is a nonlinear analogue of 
equation (3) in §2.l. It is easy to check that (61) does indeed give a solution, 
provided 

1 + tDg(x - tF'(u)) · F"(u) =I- 0. 

In particular if n = 1, we require 

1 + tg'(x - tF'(u))F"(u) =/:- 0. 

Note that if F" > 0, but g' < 0, then this will definitely be false at some 
time t > 0. This failure of the implicit formula (61) reflects also the failure 
of the characteristic method. D 

c. F fully nonlinear. The form of the full characteristic equations can 
be quite complicated for fully nonlinear first-order PDE, but sometimes a 
remarkable mathematical structure emerges. 

Example 6 (Characteristics for the Hamilton-Jacobi equation). We look 
now at the general Hamilton-Jacobi PDE 

(62) G(Du, Ut, u, x, t) = Ut + H(Du, x) = 0, 

where Du= Dxu = (ux17 ••• , Uxn)· Then writing q = (P,Pn+1), y = (x, t), 
we have 

G(q, z, y) = Pn+I + H(p, x); 

and so 

DqG = (DpH(p, x), 1), DyG = (DxH(p, x), 0), DzG = 0. 

Thus equation ( 11) ( c) becomes 

(63) { ±i(s) = Hpi(p(s),x(s)) (i = 1, ... ,n) 
±n+l(s) = 1. 
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In particular we can identify the parameter s with the time t. Equation 
( 11) (a) for the case at hand reads 

{ ji(s) = -Hxi(p(s),x(s)) (i = 1, ... ,n) 
pn+I(s) = O; 

the equation ( 11) (b) is 

z(s) = DpH(p(s),x(s)) · p(s) + pn+1(s) 

= DpH(p(s),x(s)) · p(s) - H(p(s),x(s)). 

In summary, the characteristic equations for the Hamilton-Jacobi equation 
are 

(64) {
(a) p(s) = -DxH(p(s),x(s)) 

(b) z(s) = DpH(p(s),x(s)) · p(s) - H(p(s),x(s)) 

(c) x(s) = DpH(p(s),x(s)) 

for p(·) = (p1(·), ... ,pn(·)), z(·), and x(·) = (x1(·), ... ,xn(·)). 

The first and third of these equalities, 

(65) { x = DpH(p,x) 

P = -DxH(p,x), 

are called Hamilton's equations. We will discuss these ODE and their rela
tionship to the Hamilton-Jacobi equation in much more detail, just below 
in §3.3. Observe that the equation for z( ·) is trivial, once x( ·) and p( ·) have 
been found by solving Hamilton's equations. D 

As for conservation laws (Example 5), the initial-value problem for the 
Hamilton-Jacobi equation does not in general have a smooth solution u 
lasting for all times t > 0. 

3.3. INTRODUCTION TO HAMILTON-JACOBI 
EQUATIONS 

In this section we study in some detail the initial-value problem for the 
Hamilton-Jacobi equation: 

(1) { ut+H(Du) =0 inRn x (O,oo) 
u = g on Rn x { t = O}. 

Here u : Rn x [O, oo) ---. R is the unknown, u = u(x, t), and Du= Dxu = 
( Ux 1 , ••• , Uxn). We are given the Hamiltonian H : Rn ---. R and the initial 
function g : Rn ---. R. 
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Our goal is to find a formula for an appropriate weak or generalized 
solution, existing for all times t > 0, even after the method of characteristics 
has failed. 

3.3.1. Calculus of variations, Hamilton's ODE. 

Remember from §3.2.5 that two of the characteristic equations associated 
with the Hamilton-Jacobi PDE 

Ut + H(Du,x) = 0 

are Hamilton's ODE 
{ x = DpH(p, x) 

i> = -DxH(p,x), 

which arise in the classical calculus of variations and in mechanics. (Note 
the x-dependence in H here.) In this section we recall the derivation of 
these ODE from a variational principle. We will then discover in §3.3.2 that 
this discussion contains a clue as to how to build a weak solution of the 
initial-value problem (1). 

a. The calculus of variations. Assume that L : Rn x Rn ~ R is a given 
smooth function, hereafter called the Lagrangian. 

NOTATION. We write 

and 

{ DvL = (Lv1 • • • Lvn) 

DxL = (Lx 1 • • • Lxn). 

Thus in the formula (2) below "v" is the name of the variable for which 
we substitute w(s), and "x" is the variable for which we substitute w(s). 

D 

Now fix two points x, y E Rn and a time t > 0. We introduce then the 
action functional 

(2) J[w(·)] := l L(W(s), w(s)) ds ( = ! ) , 
defined for functions w(·) = (w1(·), w2(·), ... , wn(·)) belonging to the ad
missible class 

A:= {w(·) E C 2 ([0, t];Rn) I w(O) = y, w(t) = x}. 
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w(.} 

y 

0 
t 

A problem in the calculus of variations 

Thus a C2 curve w( ·) lies in A if it starts at the point y at time 0 and 
reaches the point x at time t. 

A basic problem in the calculus of variations is to find a curve x( ·) E A 
satisfying 

(3) J[x(·)] = min J[w(·)]. 
w(·)EA 

That is, we are asking for a function x( ·) which minimizes the functional 
I[·] among all admissible candidates w(·) EA. 

We assume next that there in fact exists a function x( ·) E A satisfying 
our calculus of variations problem and will deduce some of its properties. 

THEOREM 1 (Euler-Lagrange equations). The function x(·) solves the 
system of Euler-Lagrange equations 

(4) - :s (DvL(:i(s),x(s))) + DxL(:i(s),x(s)) = 0 (0 < s < t). 

This is a vector equation, consisting of n coupled second-order equations. 

Proof. 1. Choose a smooth function y : [O, t] ---+ Rn, y(.) = (y1 (.), ... , yn(.)), 
satisfying 

(5) y(O) = y(t) = 0, 

and define for T E R 

(6) w(·) := x(·) + ry(·). 

Then w(·) EA and so 
J[x(·)] < J[w(·)]. 
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Thus the real-valued function 

i(T) := J[x(·) +Ty(·)] 

has a minimum at T = 0, and consequently 

(7) i' ( 0) = 0 (' = ~) ' 
provided i' ( 0) exists. 

2. We explicitly compute this derivative. Observe 

i(r) = l L(X(s) + .,-Y(s),x(s) + ry(s)) ds, 

and so 

t n 

i'(r) = 1 L L.,(X + r:Y,x + ry)i/ + Lx,(X + ry, x + ry)yi ds. 
0 i=l 

Set T = 0 and remember (7): 

{t n 

0 = i' (0) = Jn L Lvi (x, x)i/ + Lxi (x, x)yi ds. 
0 i=l 

We recall (5) and then integrate by parts in the first term inside the integral, 
to discover 

This identity is valid for all smooth functions y( ·) = (y1 ( · ), ... , yn( ·)) satis
fying the boundary conditions (5), and so for 0 < s < t 

_dd (Lv.(x,x))+Lxi(x,x)=O (i=l, ... ,n). 
S I 

D 

Critical points. We have just demonstrated that any minimizer x( ·) E A 
of I[·] solves the Euler-Lagrange system of ODE. It is of course possible 
that a curve x(·) E A may solve the Euler-Lagrange equations without 
necessarily being a minimizer: in this case we say x( ·) is a critical point of 
I[·]. So every minimizer is a critical point, but a critical point need not be 
a m1n1m1zer. 
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Example. If L(v, x) = !mlvl2 - <f>(x), where m > 0, the corresponding 
Euler-Lagrange equation is 

m:i(s) = f(x(s)) 

for f := -D<f>. This is Newton's law for the motion of a particle of mass m 
moving in the force field f generated by the potential ¢. (See Feynman
Leighton-Sands [F-L-S, Chapter 19].) D 

b. Hamilton's equations. We now transform the Euler-Lagrange equa
tions, a system of n second-order ODE, into Hamilton's equations, a system 
of 2n first-order ODE. We hereafter assume the C2 function x( ·) is a critical 
point of the action functional and thus solves the Euler-Lagrange equations 
(4). 

First we set 

(8) p(s) := DvL(x(s), x(s)) (0 < s < t); 

p( ·) is called the generalized momentum corresponding to the position x( ·) 
and velocity x( · ). We next make this important hypothesis: 

(9) 

Suppose for all x, p E Rn that the equation 

p = DvL(v,x) 

can be uniquely solved for v as a smooth 

function of p and x, v = v(p, x). 

We will examine this assumption in more detail later: see §3.3.2. 

DEFINITION. The Hamiltonian H associated with the Lagrangian Lis 

H(p, x) := p · v(p, x) - L(v(p, x), x) (p, x E Rn), 

where the function v(·) is defined implicitly by (9). 

Example (continued). The Hamiltonian corresponding to the Lagrangian 
L(v, x) = !mlvl2 - </>(x) is 

1 
H(p, x) = 2m IPl2 + </>(x). 

The Hamiltonian is thus the total energy, the sum of the kinetic and potential 
energies (whereas the Lagrangian is the difference between the kinetic and 
potential energies). D 

Next we rewrite the Euler-Lagrange equations in terms of p(·),x(·): 
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THEOREM 2 (Derivation of Hamilton's ODE). The functions x(·) and 
p( ·) satisfy Hamilton's equations: 

(lO) { x(s) = DpH(p(s),x(s)) 
i>(s) = -DxH(p(s), x(s)) 

for 0 < s < t. Furthermore, 

the mapping s ~ H (p( s), x( s)) is constant. 

The equations (10) comprise a coupled system of 2n first-order ODE for 
x(·) = (x1(·), ... ,xn(·)) and p(·) = (p1(·), ... ,pn(·)) (defined by (8)). 

Proof. First note from (8) and (9) that x(s) = v(p(s), x(s)). 
Let us hereafter write v(·) = (v1(·), ... ,vn(·)). We compute for i = 

1, ... , n that 
n 

Hxi(p,x) = LPkV!i(p,x) - Lvk(v(p,x),x)v!i(p,x) - Lxi(v(p,x),x) 
k=l 

= -Lxi (q, x) according to (9) 

and 
n 

i ~ k k Hpi(p,x) = v (p,x) + L.tPkVpi(p,x) - Lvk(v(p,x),x)vpi(p,x) 
k=l 

= vi(p, x), again by (9). 

Thus 

and likewise 

Hxi (p(s), x(s)) = -Lxi (v(p(s), x(s)), x(s)) = -Lxi (x(s ), x(s)) 

= - ! ( Lvi ( x( s), x( s))) according to ( 4) 

= -pi(s). 

Finally, observe 
n 

: H(p,x) = LHPi(p,x)pi + Hxi(p,x)xi 
s . 1 

i= 

n 

= LHPi(p,x)(-Hxi(p,x)) + Hxi(p,x)Hpi(p,x) = 0. 
i=l 

D 

See Arnold [Arl, Chapter 9] for more on Hamilton's ODE and Hamilton
Jacobi PDE in classical mechanics. We are employing here different notation 
than is customary in mechanics: our notation is better overall for PDE the
ory. 
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3.3.2. Legendre transform, Hopf-Lax formula. 

Now let us try to find a connection between the Hamilton-Jacobi PDE 
and the calculus of variations problem (2)-( 4). To simplify further, we also 
drop the x-dependence in the Hamiltonian, so that afterwards H = H(p). 
We start by reexamining the definition of the Hamiltonian in §3.3.1. 

a. Legendre transform. We hereafter suppose the Lagrangian L : Rn ~ 
R satisfies these conditions: 

(11) 

and 

(12) 

the mapping v ~ L(v) is convex 

. L(v) 
hm -

1 
-

1 
= +oo. 

lvl--+oo V 

The convexity implies Lis continuous. 

DEFINITION. The Legendre transform of Lis 

(13) L*(p) := sup {p · v - L(v)} (p E Rn). 
qEJRn 

This is also referred to as the Fenchel transform. 

Motivation for Legendre transform. Why do we make this definition? 
For some insight let us note in view of (12) that the "sup" in (13) is really 
a "max"; that is, there exists some v* E Rn for which 

L*(p) = p · v* - L(v*) 

and the mapping v ~ p · v - L( v) has a maximum at v = v*. But then p = 
D L( v*), provided L is differentiable at v*. Hence the equation p = D L( v) 
is solvable (although perhaps not uniquely) for v in terms of p, v* = v(p). 
Therefore 

L*(p) = p · v(p) - L(v(p)). 

However, this is almost exactly the definition of the Hamiltonian H asso
ciated with L in §3.3.1 (where, recall, we are now assuming the variable x 
does not appear). We consequently henceforth write 

(14) H=L*. 

Thus (13) tells us how to obtain the Hamiltonian H from the Lagrangian L. 

Now we ask the converse question: given H, how do we compute L? 
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THEOREM 3 (Convex duality of Hamiltonian and Lagrangian). Assume 
L satisfies (11), (12) and define H by (13), (14). 

(i) Then 
the mapping p ~ H (p) is convex 

and 
. H(p) 

hm I I = +oo. 
IPl-oo P 

(ii) Furthermore 

(15) L=H*. 

Thus His the Legendre transform of L, and vice versa: 

L = H*, H = L*. 

We say Hand Lare dual convex functions. The identity (15) implies that 
the three statements 

(16) { 
p·v=L(v)+H(p) 

p = DL(v) 

v = DH(p) 

are equivalent provided H is differentiable at p and Lis differentiable at v: 
see Problem 11. 

Proof. 1. For each fixed v, the function p ~ p · v - L(v) is linear; and 
consequently the mapping 

p ~ H(p) = L*(p) = sup {p · v - L(v)} 
vEJRn 

is convex. Indeed, if 0 < T < 1, p, p E Rn, we have 

H(Tp + (1 - T)p) = sup{(Tp + (1 - T)p) · v - L(v)} 
v 

< Tsup{p · v - L(v)} 
v 

+ (1 - T) sup{p · v - L(v)} 
v 

= TH(p) + (1 - T)H(p). 

2. Fix any .X > 0, p -=f 0. Then 

H(p) = sup {p · v - L(v)} 
vEJRn 

> .Xlpl - L(.X 1:1) 
> .Xlpl - max L. 

B(O,.\) 
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Thus lim inf IPl--+oo lfi) > A for all A > 0. 

3. In view of (14) 
H(p)+L(v)>p·v 

for all p, v E Rn, and consequently 

L(v) > sup {p · v - H(p)} = H*(v). 
pEJR.n 

On the other hand 

H*(v) = sup {p · v - sup {p · r - L(r)}} 
pEJR.n rEJR.n 

= sup inf {p · (v - r) + L(r)}. 
pEJR.n rEJR.n 

Now since v 1-+ L(v) is convex, according to §B.l there exists s E Rn such 
that 

L(r)>L(v)+s·(r-v) (rERn). 

(If L is differentiable at q, take s = DL(v).) Putting p = s above, we 
compute 

H*(v) > inf {s · (v - r) + L(r)} = L(v). 
rEJR.n 

D 

b. Hopf-Lax formula. Let us now return to the initial-value problem (1) 
for the Hamilton-Jacobi equation and conclude from (64) in §3.2.5 that the 
corresponding characteristic equations are 

{ 
i> = 0 

z = DH (p) · p - H (p) 

x = DH(p). 

The first and third of these are Hamilton's ODE, which we in §3.3.1 derived 
from a minimization problem for associated Lagrangian L = H*. Remem
bering (16), we can therefore understand the second of the characteristic 
equations as asserting 

z = DH(p) · p - H(p) = L(x). 

But at least for such short times that (1) has a smooth solution u, we have 
z(t) = u(x(t), t) and consequently 

u(x, t) = l L(:ic(s)) ds + g(x(O)). 
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Our intention is to modify this expression, to make sense even for large 
times t > 0 when (1) does not have a smooth solution. The variational 
principle for the action discussed in §3.3. l provides the clue. Given x E Rn 
and t > 0, we therefore propose to minimize among curves w(·) satisfying 
w( t) = x the expression 

la' L(W(s)) ds + g(w(O)), 

which is the action augmented with the value of the initial data. We ac
cordingly now define 

(17) u(x, t) :=inf {la' L(W(s)) ds + g(w(O)) I w(t) = x}, 

the infimum taken over all C 1 functions w( · ). (Better justification for this 
guess will be provided much later, in Chapter 10.) 

We must investigate the sense in which the function u given by (17) 
actually solves the initial-value problem for the Hamilton-Jacobi PDE: 

(18) { 
Ut + H(Du) = 0 in Rn x (0, oo) 

u = g on Rn x { t = O}. 

Recall we are assuming H is smooth, 

(19) { 
H is convex and 
lim H(p) = +oo. 

IPl-oo IPI 

We henceforth suppose also 

(20) g: Rn-+ R is Lipschitz continuous; 

this means Lip(g) := sup Rn { lg(x)-g(y)I} < oo. 
x,yE lx-yl 

x:f.y 

First we note that formula (17) can be simplified: 

THEOREM 4 (Hopf-Lax formula). If x E Rn and t > 0, then the solution 
u = u(x, t) of the minimization problem (17) is 

(21) u(x, t) = min {tL (x - y) + g(y)}. 
yERn t 

DEFINITION. We call the expression on the right-hand side of (21) the 
Hopf-Lax formula. 
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Proof. 1. Fix any y E Rn and define w(s) := y + i(x - y) (0 < s < t). 
Then the definition (17) of u implies 

ft (x-y) u(x, t) <lo L(w(s)) ds + g(y) = tL t + g(y), 

and so 

u(x, t) < inf {tL (x - y) + g(y)}. 
yERn t 

2. On the other hand, if w(·) is any 0 1 function satisfying w(t) = x, we 
have 

LG l W(s)ds) < ~ l L(W(s))ds 

by Jensen's inequality (§B.l). Thus if we write y = w(O), we find 

(
x _ y) ft 

tL t + g(y) < lo L(w(s)) ds + g(y); 

and consequently 

inf {tL (x - y) + g(y)} < u(x, t). 
yERn t 

3. We have so far shown 

u(x, t) = inf {tL (x - y) + g(y)}, 
yERn t 

and leave it as an exercise to prove that the infimum above is really a 
m1n1mum. D 

We now commence a study of various properties of the function u defined 
by the Hopf-Lax formula (21). Our ultimate goal is showing this formula 
provides a reasonable weak solution of the initial-value problem (18) for the 
Hamilton-Jacobi equation. 

First, we record some preliminary observations. 

LEMMA 1 (A functional identity). For each x E Rn and 0 < s < t, we 
have 

(22) u(x, t) = min {(t - s)L (x - y) + u(y, s)}. 
yERn t - S 

In other words, to compute u(·, t), we can calculate u at times and then 
use u(·, s) as the initial condition on the remaining time interval [s, t]. 
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Proof. 1. Fix y E Rn, 0 < s < t and choose z E Rn so that 

(23) (y-z) u(y, s) = sL 8 + g(z). 

Now since Lis convex and x-;z = (1 - f) ~=; + f y~z, we have 

L(x~z)<(1-i)L(:=:)+iL(y~z)· 
Thus 

(x - z) (x - y) (y - z) u(x, t) < tL t + g(z) < (t - s)L t _ s + sL 8 + g(z) 

( x-y) = (t - s)L + u(y, s), 
t-s 

by (23). This inequality is true for each y E Rn. Therefore, since y ~ u(y, s) 
is continuous (according to the first part of the proof Lemma 2 below), we 
have 

(24) u(x, t) < min { (t - s)L (x - y) + u(y, s)}. 
yEJR.n t - S 

2. Now choose w such that 

(25) (x-w) u(x, t) = tL t + g(w), 

and set y := fx + (1- %) w. Then~=;= x-;w = y~w. Consequently 

( x-y) (t - s)L + u(y, s) 
t-s 

< (t-s)L (x~ w) +sL (y~ w) + g(w) 
(x-w) = tL t + g(w) = u(x, t), 

by (25). Hence 

(26) min {(t - s)L (x - y) + u(y, s)} < u(x, t). 
yEJR.n t - S 

D 
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LEMMA 2 (Lipschitz continuity). The Junction u is Lipschitz continuous 
in IRn x [O, oo ), and 

u = g on IRn X { t = O}. 

Proof. 1. Fix t > 0, x, x E IRn. Choose y E IRn such that 

(27) ( x-y) tL t + g(y) = u(x, t). 

Then 

u(X,t)- u(x,t) = mJn{tL (5' ~ z) + g(z) }- tL ( x ~ y)- g(y) 

< g(x - x + y) - g(y) < Lip(g)lx - xi. 

Hence 
u(x, t) - u(x, t) < Lip(g)lx - xi; 

and, interchanging the roles of x and x, we find 

(28) lu(x, t) - u(x, t)I < Lip(g)lx - xi. 

2. Now select x E IRn, t > 0. Choosing y = x in (21 ), we discover 

(29) u(x, t) < tL(O) + g(x). 

Furthermore, 

u(x, t) = min {tL (x - y) + g(y)} 
yEJRn t 

> g(x) +min {- Lip(g)lx - YI+ tL (x -y)} 
yEJRn t 

x-y 
= g(x) - tmax{Lip(g)lzl - L(z)} (z = ) 

zEJRn t 

= g(x) - t max max{w · z - L(z)} 
wEB(O,Lip(g)) zEJRn 

= g( x) - t max H. 
B(O,Lip(g}) 

This inequality and (29) imply 

lu(x, t) - g(x)I < Ct 

for 

(30) C := max(IL(O)I, max IHI). 
B(O,Lip(g)) 
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3. Finally select x E Rn, 0 < t < t. Then Lip(u(·, t)) < Lip(g) by (28) 
above. Consequently Lemma 1 and calculations like those employed in step 
2 above imply 

lu(x, t) - u(x, t)I <Cit - ti 
for the constant C defined by ( 30). D 

Now Rademacher's Theorem (which we will prove later, in §5.8.3) asserts 
that a Lipschitz function is differentiable almost everywhere. Consequently 
in view of Lemma 2 our function u defined by the Hopf-Lax formula (21) 
is differentiable for a.e. (x, t) E Rn x (0, oo ). The next theorem asserts u in 
fact solves the Hamilton-Jacobi PDE wherever u is differentiable. 

THEOREM 5 (Solving the Hamilton-Jacobi equation). Suppose x E Rn, 
t > 0, and u defined by the Hopf-Lax formula (21) is differentiable at a point 
(x, t) E Rn x (0, oo). Then 

Ut(x, t) + H(Du(x, t)) = 0. 

Proof. 1. Fix v E Rn, h > 0. Owing to Lemma 1, 

. { (x + hv - y) } u(x + hv, t + h) =~ii! hL h + u(y, t) 

< hL(v) + u(x, t). 

Hence 
u(x + hv, t: h) - u(x, t) < L(v). 

Let h -+ o+, to compute 

v · Du(x, t) + Ut(x, t) < L(v). 

This inequality is valid for all v E Rn, and so 

(31) Ut(x, t) + H(Du(x, t)) = Ut(x, t) + max{v · Du(x, t) - L(v)} < 0. 
vEJR.n 

The first equality holds since H = L *. 

2. Now choose z such that u(x, t) = tL (xt"z) + g(z). Fix h > 0 and set 
s - t - h y - !x + (1 - !) z Then x-z - y-z and thus - ' -t t . t - s' 
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That is, 
u(x,t)-u((l-%)x+%z,t-h) >L(x-z). 

h - t 

Let h -+ o+, to see that 

x- z (x -z) t · Du ( x, t) + Ut ( x, t) > L t . 

Consequently 

Ut(x, t) + H(Du(x, t)) = Ut(x, t) + max{v · Du(x, t) - L(v)} 
vERn 

> ut(x, t) + x ~ z · Du(x, t) - L ( x ~ z) 

>O. 

This inequality and (31) complete the proof. 

We summarize: 

D 

THEOREM 6 (Hopf-Lax formula as solution). The function u defined by 
the Hopf-Lax formula (21) is Lipschitz continuous, is differentiable a.e. in 
Rn x (0, oo), and solves the initial-value problem 

(32) { Ut + H (Du) = 0 
u=g 

a.e. in Rn x (0, oo) 
onRnx{t=O}. 

3.3.3. Weak solutions, uniqueness. 

a. Semiconcavity. In view of Theorem 6 above it may seem reasonable 
to define a weak solution of the initial-value problem (18) to be a Lipschitz 
function which agrees with g on Rn x {t = O} and solves the PDE a.e. on 
Rn x (0, oo ). However this turns out to be an inadequate definition, as such 
weak solutions would not in general be unique. 

Example. Consider the initial-value problem 

(33) { Ut + lux 12 = 0 in R X (0, oo) 
u = 0 on R x { t = O}. 

One obvious solution is 
u1(x, t) = 0. 

However the function 

{ 
0 if lxl > t 

u2 ( x, t) : = x - t if 0 < x < t 
-x - t if - t < x < 0 
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is Lipschitz continuous and also solves the PDE a.e. (everywhere, in fact, 
except on the lines x = 0, ±t). It is easy to see that actually there are 
infinitely many Lipschitz functions satisfying (33). D 

This example shows we must presumably require more of a weak solution 
than merely that it satisfy the PDE a.e. We will look to the Hopf-Lax 
formula (21) for a further clue as to what is needed to ensure uniqueness. 
The following lemma demonstrates that u inherits a kind of "one-sided" 
second-derivative estimate from the initial function g. 

LEMMA 3 (Semiconcavity). Suppose there exists a constant C such that 

(34) g(x + z) - 2g(x) + g(x - z) < Clzl2 

for all x,z E Rn. Define u by the Hopf-Laxforrnula (21). Then 

u(x + z, t) - 2u(x, t) + u(x - z, t) < Clzl 2 

for all x, z E Rn, t > 0. 

We say g is semiconcave provided (34) holds. It is easy to check that 
(34) is valid if g is C2 and SUPJR.n ID2gl < 00. Note that g is semiconcave if 
and only if the mapping x ~ g(x) - ~lxl 2 is concave for some constant C. 

Proof. Choose y E Rn so that u(x, t) = tL (x~y) + g(y). Then, putting 
y + z and y- z in the Hopf-Lax formulas for u(x + z, t) and u(x - z, t), we 
find 

u(x + z, t) - 2u(x, t) + u(x - z, t) 

< [tL(x~y) +g(y+z)]-2 [tL(x~y) +g(y)] 
+ [tL(x~y) +g(y-z)] 

= g(y + z) - 2g(y) + g(y - z) 

< Clzl 2 , by (34). 

D 

As a semiconcavity condition for u will turn out to be important, we 
pause to identify some other circumstances under which it is valid. We will 
no longer assume g to be semiconcave but will suppose the Hamiltonian H 
to be uniformly convex. 
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DEFINITION. A C2 convex function H : Rn -+ R is called uniformly 
convex (with constant (} > 0} if 

n 

(35) L HPiP;(P)~i~j > 91~1 2 for allp,~ E Rn. 
i,j=l 

We now prove that even if g is not semiconcave, the uniform convexity 
of H forces u to become semiconcave for times t > 0: this is a kind of mild 
regularizing effect for the Hopf-Lax solution of the initial-value problem 
(18). 

LEMMA 4 (Semiconcavity again). Suppose that H is uniformly convex 
(with constant(}) and u is defined by the Hopf-Lax formula (21). Then 

1 
u(x + z, t) - 2u(x, t) + u(x - z, t) < (}t lzl2 

for all x,z E Rn, t > 0. 

Proof. 1. We note first using Taylor's formula that (35) implies 

( Pl + P2 ) 1 1 (} 2 (36) H 2 < 2H(p1) + 2H(p2) - glP1 - P2I . 

Next we claim that for the Lagrangian L we have the estimate 

1 1 (VI + V2 ) 1 2 (37) 2L(v1) + 2L(v2) < L 2 + 89 1v1 - v2I 

for all v1, v2 E Rn. Verification is left as an exercise. 

2. Now choose y so that u(x, t) = tL (x~y) + g(y). Then using the 
same value of y in the Hopf-Lax formulas for u(x + z, t) and u(x - z, t), we 
calculate 

u(x + z, t) - 2u(x, t) + u(x - z, t) 

< [ tL ( x + ; - y) + g(y)] - 2 [ tL ( x ~ y) + g(y)] 

+ [tL(x-;-y) +g(y)] 

= 2t [~L ( x + ;-Y) + ~L ( x -;-Y) _ L ( x ~ Y)] 
1 2z 2 1 2 <2t- - <-lzl 

- 8() t - (}t ' 

the next-to-last inequality following from (37). D 
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b. Weak solutions, uniqueness. In this section we show that semi
concavity conditions of the sorts discovered for the Hopf-Lax solution u in 
Lemmas 3 and 4 can be utilized as uniqueness criteria. 

DEFINITION. We say that a Lipschitz continuous function u : Rn x 
[O, oo) ---+ R is a weak solution of the initial-value problem: 

(38) { Ut + H(Du) = 0 in Rn x (0, oo) 
u = g on Rn x { t = O} 

provided 
(a) u(x, 0) = g(x) (x E Rn), 

(b) Ut(x, t) + H(Du(x, t)) = 0 for a.e. (x, t) E Rn x (0, oo), 

and 
(c) u(x + z, t) - 2u(x, t) + u(x - z, t) < C (1 + t) lzl 2 

for some constant C > 0 and all x, z E Rn, t > 0. 

Next we prove that a weak solution of (38) is unique, the key point being 
that this uniqueness assertion follows from the inequality condition ( c). 

THEOREM 7 (Uniqueness of weak solutions). Assume His C2 and sat
isfies (19) and g satisfies (20). Then there exists at most one weak solution 
of the initial-value problem (38). 

Proof*. 1. Suppose that u and u are two weak solutions of (38) and write 
w := u-u. 

Observe now that at any point (y, s) where both u and u are differen
tiable and solve our PDE, we have 

Wt(Y, s) = Ut(Y, s) - Ut(Y, s) 
= -H(Du(y, s)) + H(Du(y, s)) 

= - [ ! H(rDu(y, s) + (1- r)Dii(y, s)) dr 

= - [ DH(rDu(y, s) + (1- r)Dii(y, s)) dr · (Du(y, s) - Dii(y, s)) 

=: -b(y, s) · Dw(y, s). 

Consequently 

(39) Wt + b · Dw = 0 a.e. 

*Omit on first reading. 



132 3. NONLINEAR FIRST-ORDER PDE 

2. Write v := ¢( w) > 0, where ¢ : JR ---+ [O, oo) is a smooth function to 
be selected later. We multiply (39) by <f>'(w) to discover 

(40) Vt + b · Dv = 0 a.e. 

3. Now choose E > 0 and define ue := 'T/e * u, ue := 'T/e * u, where 'T/e is the 
standard mollifier in the x and t variables. Then according to §C.4 

(41) 

and 

(42) Due ---+ Du, Due ---+ Du a.e., as E---+ 0. 

Furthermore inequality ( c) in the definition of weak solution implies 

(43) 

for an appropriate constant C and all E > 0, y E Rn, s > 2c. Verification is 
left as an exercise. 

4. Write 

(44) b,,(y, s) := [ DH(r Du"(y, s) + (1 - r)DU"(y, s)) dr. 

Then ( 40) becomes 

Vt+ be· Dv =(be - b) · Dv a.e.; 

hence 

(45) Vt+ div(vbe) = (divbe)v +{be - b) · Dv a.e. 

5. Now 

for some constant C, in view of (41), (43). Here we note that H convex 
implies D 2 H > 0. 
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6. Fix xo E Rn, to> 0, and set 

(47) R := max{IDH(p)l I IPI < max(Lip(u), Lip(u))}. 

Define also the cone 

C := { (x, t) I 0 < t < to, Ix - xol < R(to - t) }. 

Next write 

e(t) = f v(x, t) dx 
J B(xo,R(to-t)) 

and compute for a.e. t > 0: 

e( t) = { Vt dx - R { v dS 
J B(xo,R(to-t)) J 8B(xo,R(to-t)) 

= { -div(vbe) + (divbe)v +{be - b) · Dvdx 
J B(xo,R(to-t)) 

- R { v dS by ( 45) 
J 8B(xo,R(to-t)) 

= - f v(be · v+R)dS 
J 8B(xo ,R( to-t)) 

+ { (divbe)v +{be - b) · Dvdx 
J B(xo,R(to-t)) 

< { (divbe)v +(be - b) · Dvdx by (41), (44) 
J B(xo,R(to-t)) 

<c(1+!)e(t)+ f (be-b)·Dvdx 
t J B(xo,R(to-t)) 

by (46). The last term on the right-hand side goes to zero as E ~ 0, for a.e. 
t > 0, according to (41), (42) and the Dominated Convergence Theorem. 
Thus 

(48) e(t) < c ( 1 + ~) e(t) for a.e. 0 < t <to. 

7. Fix 0 < E < r < to and choose the function ¢( z) to equal zero if 

lzl < c[Lip(u) + Lip(u)] 

and to be positive otherwise. Since u = u on Rn x {t = O}, 

v=<P(w)=<P(u-u)=O at{t=c}. 
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Thus e(c) = 0. Consequently Gronwall's inequality (§B.2) and (48) imply 

e(r) < e(c-)ef; c(1+~ )ds = 0. 

Hence 
lu - iii < c-[Lip(u) +Lip( ii)] on B(xo, R(to - r)). 

This inequality is valid for all c > 0, and so u = u in B(xo, R(to - r)). 
Therefore, in particular, u( xo, to) = u( xo, to). D 

In light of Lemmas 3, 4 and Theorem 7, we have 

THEOREM 8 (Hopf-Lax formula as weak solution). Suppose H is C2 

and satisfies (19) and g satisfies (20). If either g is semiconcave or H is 
uniformly convex, then 

u(x, t) = min {tL (x - y) + g(y)} 
yEJRn t 

is the unique weak solution of the initial-value problem (38) for the Hamilton
Jacobi equation. 

Examples. (i) Consider the initial-value problem: 

(49) { 
Ut + !IDul2 = 0 in !Rn x (0, oo) 

u=lxl onIRnx{t=O}. 

Here H(p) = !IPl2 and so L(v) = !lvl2. The Hopf-Lax formula for the 
unique, weak solution of ( 49) is 

(50) u(x, t) = min {Ix - Yl2 + IYI}. 
yEJRn 2t 

Assume lxl > t. Then 

( Ix - Yl 2 ) y - x y 
Dy 2t + IYI = t + IYT (y # O); 

and this expression equals zero if x = y +tit, y = (lxl - t)fxj # 0. Thus 

u(x, t) = lxl - ~ if lxl > t. If lxl < t, the minimum in (50) is attained at 
y = 0. Consequently 

( ) _ { Ix I - t ;2 if Ix I > t 
u x, t - 1~~2 if lxl < t. 
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Observe that the solution becomes semiconcave at times t > 0, even though 
the initial function g(x) = lxl is not semiconcave. This accords with Lemma 
4. 

(ii) We next examine the problem with reversed initial conditions: 

(51) { 
Ut + ~1Dul 2 = 0 in IRn x (0, oo) 

u = -lxl on IRn x {t = 0}. 

Then 

u(x, t) = min {Ix; Yl2 - IYI}. 
yEJRn t 

Now 

D (Ix - Yl 2 _ I I) = Y - x _ J!_ 
y 2t y t IYI (y -I 0), 

and this equals zero if x = y - ~t, y = (lxl + t) 1 ~ 1 • Thus 

t 
u(x, t) = -lxl - "2 (x E IRn, t > 0). 

The initial function g(x) = -lxl is semiconcave, and the solution remains so 
for times t > 0. D 

In Chapter 10 we will again study Hamilton-Jacobi PDE and discover 
another and better notion of weak solution, applicable even if H is not 
convex. 

3.4. INTRODUCTION TO CONSERVATION LAWS 

In this section we investigate the initial-value problem for scalar conservation 
laws in one space dimension: 

(1) { 
Ut + F( U )x = 0 in IR x ( 0, 00) 

u = g on IR x { t = 0}. 

Here F : IR -+ IR and g : IR -+ IR are given and u : IR x [O, oo) -+ IR is 
the unknown, u = u(x, t). As noted in §3.2, the method of characteristics 
demonstrates that there does not in general exist a smooth solution of ( 1), 
existing for all times t > 0. By analogy with the developments in §3.3.3, we 
therefore look for some sort of weak or generalized solution. 
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3.4.1. Shocks, entropy condition. 

a. Integral solutions; Rankine-Hugoniot condition. We open our 
discussion by noting that since we cannot in general find a smooth solution 
of ( 1), we must devise some way to interpret a less regular function u as 
somehow "solving" this initial-value problem. But as it stands, the PDE 
does not even make sense unless u is differentiable. However, observe that 
if we temporarily assume u is smooth, we can as follows rewrite, so that the 
resulting expression does not directly involve the derivatives of u. The idea 
is to multiply the PDE in (1) by a smooth function v and then to integrate 
by parts, thereby transferring the derivatives onto v. 

More precisely, assume 

(2) v : IR x [O, oo) -+IR is smooth, with compact support. 

We call v a test function. Now multiply the PDE Ut + F(u)x = 0 by v and 
integrate by parts: 

(3) 
O = f 00100 

(ut + F(u)x) v dxdt lo -oo 

= - f 00100 
UVt dxdt -100 

uvdxlt=O - f 00100 
F(u)vx dxdt. lo -oo -oo lo -oo 

In view of the initial condition u = g on IR x { t = 0}, we thereby obtain the 
identity 

(4) f 00100 
UVt + F(u)vx dxdt + 100 

gvdxlt=O = 0. lo -oo -oo 

We derived this equality supposing u to be a smooth solution of (1), but 
the resulting formula has meaning even if u is only bounded. 

DEFINITION. We say that u E L00 (IR x (0, oo)) is an integral solution 
of (1), provided equality (4) holds for each test function v satisfying (2). 

Suppose then that we have an integral solution of (1). What can we 
deduce about this solution from the identities (4)? 

We partially answer this question by looking at a situation for which u, 
although not continuous, has a particularly simple structure. Let us in fact 
suppose in some open region V c IR x (0, oo) that u is smooth on either side 
of a smooth curve C. Let Vi be that part of V on the left of the curve and 
let V,. be that part on the right. We assume that u is an integral solution of 
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( 1), and that u and its first derivatives are uniformly continuous in Vi and 
in Vr. 

First of all, choose a test function v with compact support in Vi. Then 
(4) becomes 

(5) 0 = f 00 f 00 UVt + F(u)vx dxdt = - f 00 f 00 [ut + F(u)x]v dxdt, lo J_oo lo J_oo 

the integration by parts being justified since u is C1 in Vi and v vanishes 
near the boundary of \tl. The identity (5) holds for all test functions v with 
compact support in Vi, and so 

(6) Ut + F(u)x = 0 in Vl· 

Likewise, 

(7) Ut + F(u)x = 0 in Vr. 

Jump conditions along shocks. Now select a test function v with com
pact support in V, but which does not necessarily vanish along the curve C. 
Again employing (4), we deduce 

(8) 

0 = f 00 f 00 UVt + F( u )vx dxdt 
Jo 1-oo 

= J l UVt + F(u)vx dxdt +Ji. UVt + F(u)vx dxdt. 

Now since v has compact support within V, we have 

J l UVt + F(u)vxdxdt = - J l [ut + F(u)x]vdxdt 

(9) + L (u1v2 + F(u1)v1 )vdl 

= fc(uw2 + F(u1)v1 )vdl 

in view of (6). Here v = (v1 , v2 ) is the unit normal to the curve C, point
ing from Vi into Vr, and the subscript "l" denotes the limit from the left. 
Similarly, (7) implies 
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r 
c 

t 

R 

Rankine-Hugoniot condition 

the subscript "r" denoting the limit from the right. Adding this identity to 
( 9) and recalling ( 8) gives us 

fc!(F(u1) - F(u,.))v1 + (u1 - u,.)v2)vdl = 0. 

This equality holds for all test functions v as above, and so 

{10) (F(ul) - F(ur))v1 + (ui - Ur)v2 = 0 along C. 

Now suppose C is represented parametrically as {(x, t) I x = s(t)} for 
some smooth function s( ·) : [O, oo) --+ IR. We can then take v = ( v1, v2 ) = 
(1 + s2)-112(1, -s). Consequently (10) implies 

(11) F(ul) - F(Ur) = s(ul - Ur) 

in V, along the curve C. 

NOTATION. 

{ 
[[u]] = ul - Ur= jump in u across the curve C 

[[F(u))] = F(ul) - F(Ur) =jump in F(u) 

u = s = speed of the curve C. 
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Let us then rewrite (11) as the identity 

(12) [[F(u)]] = a[[u]] 

along the discontinuity curve. This is the Rankine-Hugoniot condition along 
the shock curve C. Observe that the speed a and the values ul, Ur, F(ul) and 
F( Ur) will generally vary along the curve C. The point is that even though 
these quantities may change, the expressions [[F(u)]] = F(ul) - F(ur) and 
a[[u]] = s(ul - Ur) must always exactly balance. 

Example 1 (Shock waves). Let us consider the initial-value problem for 
Burgers ' equation: 

(13) { 
Ut + ( ~2 ) x = 0 in IR x (0, oo) 

u = g on IR x { t = 0}, 

with the initial data 

(14) { 
1 ifx<O 

g(x) = 1 - x if 0 < x < 1 
0 if x>l. 

According to the characteristic equations (cf. §3.2.5) any smooth solution 
u of (13), (14) takes the constant value z0 = g(x0 ) along the projected 
characteristic 

y(s) = (g(x0 )s + x0 , s) (s > 0) 

for each x0 E IR. Thus 

u(x, t) := { ~=i 
if x < t, 0 < t < 1 
if t < x < 1, 0 < t < 1 
if x > 1, 0 < t < 1. 

Observe that for t > 1 this method breaks down, since the projected 
characteristics then cross. So how should we define u for t > 1? 

Let us set s(t) = 1!t and write 

{ 1 if x < s(t) 
u(x, t) := 0 if s(t) < x 

if t > 1. Now along the curve parameterized bys(·), ul = 1, we have Ur= 0, 
F(ul) = ~(ul)2 = ~' F(ur) = 0. Thus [[F(u)]] = ~ = a[[u]], as required by 
the Rankine-Hugoniot condition (12). D 
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Formation of a shock 

b. Shocks, entropy condition. 

We try now to solve a similar problem by the same techniques. 

Example 2 (Rarefaction waves and nonphysical shocks). Again consider 
the initial-value problem (13), for which now we take 

(15) { O if x<O 
g(x) = 1 if x > 0. 

The method of characteristics this time does not lead to any ambiguity 
in defining u but does fail to provide any information within the wedge 
{O < x < t}. To illustrate this lack of knowledge, let us first set 

{ o if x<~ 
u1(x, t) := . t 

1 if x > 2· 

It is easy to check that the Rankine-Hugoniot condition holds and, indeed, 
that u is an integral solution of (13), (15). However, we can create another 
such solution by writing 

u2(x,t) := U if x > t 
if O<x<t 
if x < 0. 

The function u2, called a rare/ action wave, is also a continuous integral 
solution of (13), (15). D 
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U=O 

A "nonphysical" shock 

u=O 

Rarefaction wave 

Thus we see that integral solutions are not in general unique. Presum
ably the class of integral solutions includes various "nonphysical" solutions, 
which we want somehow to exclude. Can we find some further criterion 
which ensures uniqueness? 

Entropy condition. Let us recall from §3.2.5 that for the general scalar 
conservation law of the form 

Ut + F(u)x = 0, 

the solution u, whenever smooth, takes the constant value z0 = g(x0 ) along 
the projected characteristic 

(16) y(s) = (F' (g(x0 ))s + x0 , s) (s > 0). 

Now we know that typically we will encounter the crossing of characteristics, 
and resultant discontinuities in the solution, if we move forward in time. 
However, we can hope that if we start at some point in JR x (0, oo) and 
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go backwards in time along a characteristic, we will not cross any others. 
In other words, let us consider the class of, say, piecewise-smooth integral 
solutions of (1) with the property that if we move backwards int along any 
characteristic, we will not encounter any lines of discontinuity for u. 

So now suppose at some point on a curve C of discontinuities that u has 
distinct left and right limits, Ul and Ur, and that a characteristic from the 
left and a characteristic from the right hit Cat this point. Then in view of 
(16) we deduce 

(17) F' ( ui) > (j > F' (Ur). 

These inequalities are called the entropy condition (from a rough analogy 
with the thermodynamic principle that physical entropy cannot decrease as 
time goes forward). A curve of discontinuity for u is called a shock provided 
both the Rankine-Hugoniot identity (12) and the entropy inequalities (17) 
hold. 

Let us further interpret the entropy condition under the additional as
sumption that 

(18) F is uniformly convex. 

This means F" > () > 0 for some constant (). Thus in particular F' is strictly 
increasing. Then (17) is equivalent to our requiring the inequality 

(19) 

along any shock curve. D 

Example 3. We again return to Burgers' equation (13), now for the initial 
function 

(20) { 
0 if x < 0 

g(x) = 1 if 0 < x < 1 
0 if x > 1. 

For 0 < t < 2, we may combine the analysis in Examples 1 and 2 above 
to find 

0 if x<O 
x if O<x<t 

(21) u(x, t) := t (0 < t < 2). 1 if t<x<l+~ 
0 if x>l+~ 
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4 

2 

U=O 

For times t > 2, we expect the shock wave parameterized bys(·) to continue, 
with u = x/t to the left of s(·), u = 0 to the right. This is compatible with 
the entropy condition (19). We calculate the behavior of the shock curve by 
applying the Rankin~Hugoniot jump condition (12). Now 

[[u)] = s~t), [[F(u))] = ~ ( s~t) r, IT= S(t) 

along the shock curve for t > 0. Thus (12) implies 

s(t) = 8~!) (t > 2). 

Additionally s(2) = 2, and so we can solve this ODE to find s(t) = (2t)112 

(t > 2). Hence we may augment (21) by setting 

u(x,t) = U 
See the illustration. 

if x < 0 
if 0 < x < (2t) 112 (t > 2). 
if x > (2t)112 

3.4.2. Lax-Oleinik formula. 

D 

We now try to obtain a formula for an appropriate weak solution of 
the initial-value problem (1), assuming as above that the flux function Fis 
uniformly convex. With no loss of generality we may as well also take 

(22) F(O) = 0. 
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As motivation, suppose now g E L 00 (IR) and define 

(23) h(x) :=fox g(y) dy (x E JR). 

Recall the Hopf-Lax formula from §3.3 and set 

where 

(25) L=F*. 

Thus w is the unique, weak solution of this initial-value problem for the 
Hamilton-Jacobi equation: 

(26) { Wt+F(wx) =0 inIR x (O,oo) 
w = h on IR x { t = 0}. 

For the moment assume w is smooth. We now differentiate the PDE 
and its initial condition with respect to x, to deduce 

{ Wxt + F(wx)x = 0 in IR X (0, oo) 
Wx = g on IR x { t = 0}. 

Hence if we set u = Wx, we discover u solves problem (1). 

The foregoing computation is only formal, as we know that w defined 
by (24) is not in general smooth. But recall from §3.3 that w is in fact 
differentiable a.e. Consequently 

(27) u(x, t) := ! [~Jfi { tL ( x ~ Y) + h(y)}] 
is defined for a.e. (x, t) and is presumably a leading candidate for some sort 
of weak solution of the initial-value problem (1). Our intention henceforth 
is to justify this expectation. 

First, we will need to rewrite the expression (27) into a more useful form. 

NOTATION. Since F is uniformly convex, F' is strictly increasing and 
onto. Write 

(28) G := (F')-1 

for the inverse of F 1• 
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THEOREM 1 (Lax-Oleinik formula). Assume F: IR-+ IR is smooth and 
uniformly convex and g E L 00 (IR). 

(i) For each time t > 0, there exists for all but at most countably many 
values of x E IR a unique point y(x, t) such that 

(ii) The mapping x I--? y(x, t) is nondecreasing. 

(iii) For each time t > 0, the function u defined by (27) is 

(29) u(x, t) = G ( x - ~(x, t)) 

for a.e. x. In particular, formula (29) holds for a.e. (x, t) E IR x 
(O,oo). 

DEFINITION. We call equation (29) the Lax-Oleinik formula for the 
solution (1), where his defined by (23) and L by (25). 

Proof. 1. First, we note 

L(v) =max (vp - F(p)) = vp* - F(p*), 
pElR 

where F'(p*) = v. But then p* = G(v) according to (28), and so 

L(v) = vG(v) - F(G(v)) (v E IR) 

(cf. §3.3.1). In particular, Lis C 2 • Furthermore 

(30) L'(v) = G(v) + vG'(v) - F'(G(v))G'(v) = G(v) 

by (28), and L"(v) = G'(v) > 0. This and (22) imply Lis nonnegative and 
strictly convex. 

2. Fix t > 0, XI < x2. As in §3.3 there exists at least one point YI E IR 
such that 

We next claim 
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To see this, we calculate x2 - YI = r(xI - YI)+ (1- r)(x2 - y) and XI - y = 
(1 - r)(xI - YI)+ r(x2 - y) for 

YI -y 
0 < T := < 1. 

X2 - XI+ YI - Y 

Since L" > 0, we thus have 

and hence 

L ( X2 ~ Y1) < TL ( X1 ~ Yl) + (l _ T )L ( X2 ; Y) , 
L ( X1 ; Y) < (1 _ T )L ( X1 ~ Yl) + TL ( X2 ; Y) ; 

(33) L ( X2 ~ Y1) + L ( X1 ; Y) < L ( X1 ~ Y1) + L ( X2 ; Y) . 

Now notice from (31) that 

We multiply (33) by t, add h(yI) + h(y) to both sides, and add the 
resulting expression to the above inequality to obtain (32). 

3. In view of (31), in computing the minimum of tL (x2;Y) + h(y) we 
need only consider those y > yi, where YI satisfies (31). Now for each x E IR 
and t > 0, define the point y(x, t) to equal the smallest of those points y 
giving the minimum of tL (x~y) + h(y). Then the mapping x ~ y(x, t) is 
nondecreasing and is thus continuous for all but at most countably many x. 
At a point x of continuity of y(·, t), y(x, t) is the unique value of y yielding 
the minimum. 

4. According to the theory developed in §3.3 for each fixed t > 0, the 
mapping 

x ~ w(x, t) :=~JC { tL ( x ~ y) + h(y)} 

= tL ( x - ~(x, t)) + h(y(x, t)) 

is differentiable a.e. Furthermore the mapping x ~ y(x, t) is monotone and 
consequently differentiable a.e. as well. Thus given t > 0, for a.e. x the 
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mappings x 1-+ L(x-yt(x,t)) and so also x 1-+ h(y(x, t)) are differentiable as 
well. 

Consequently formula (27) becomes 

u(x, t) = ! [tL ( x - ~(x, t)) + h(y(x, t))] 
= L' ( x - ~(x, t)) (1 - y.,(x, t)) + ! h(y(x, t)). 

But since y 1-+ tL (x~y) + h(y) has a minimum at y = y(x, t), the mapping 

z 1-+ tL ( x-yt(z,t)) + h(y(z, t)) has a minimum at z = x. Therefore 

1 (x - y(x, t)) ( ) ( ( )) - L t Yx X, t + hx Y X, t = 0, 

and hence 

u(x, t) = L' ( x - ~(x, t)) = G ( x - ~(x, t)) , 
according to ( 30). D 

We now investigate the precise sense in which formula (29) provides us 
with a solution of the initial-value problem (1). 

THEOREM 2 (Lax-Oleinik formula as integral solution). Under the as
sumptions of Theorem 1, the function u defined by (29) is an integral solution 
of the initial-value problem ( 1). 

Proof. As above, define 

Then Theorem 6 in §3.3.2 tells us w is Lipschitz continuous, is differentiable 
for a.e. (x, t), and solves 

(34) { Wt+ F(wx) = 0 a.e. in IR x (0, oo) 
w = h on IR x { t = 0}. 

Choose any test function v satisfying (2). Multiply the PDE Wt + 
F(wx) = 0 by Vx and integrate over IR x (0, oo): 

(35) 0 = 100 100 
[wt+ F(wx)] Vx dxdt. Jo 1-oo 
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Observe 

loo loo WtVx dxdt = - loo loo WVtx dxdt -100 WVx dxlt=O 
lo -oo lo -oo -oo 

= 100 100 
WxVt dxdt + 100 

Wx V dx lt=O · lo -oo -oo 

These integrations by parts are valid since the mapping x 1--+ w(x, t) is 
Lipschitz continuous, and thus absolutely continuous, for each time t > 0. 
Likewise t 1--+ w(x, t) is absolutely continuous for each x E IR. Now w(x, 0) = 
h(x) = J; g(y) dy, and so Wx(x, 0) = g(x) for a.e. x. Consequently 

roo loo WtVx dxdt = loo loo WxVt dxdt + loo gv dxlt=O· 
lo -oo lo -oo -oo 

Substitute this identity into (35) and recall u = Wx a.e., to derive the integral 
identity ( 4). D 

3.4.3. Weak solutions, uniqueness. 

a. Entropy condition revisited. We have already seen in §3.4.1 that 
integral solutions of (1) are not generally unique. Since we believe the Lax
Oleinik formula does in fact provide the "correct" solution of this initial
value problem, we must see if it satisfies some appropriate form of the en
tropy condition discussed in §3.4.1. This is not straightforward, however, 
since it is not usually the case that the function u defined by the Lax-Oleinik 
formula is smooth, or even piecewise smooth. 

We identify now a kind of "one-sided" derivative estimate for the func
tion u defined by the Lax-Oleinik formula (27). This estimate-which is 
an analogue for conservation laws of the semiconcavity estimate from Lem
mas 3, 4 in §3.3.3 for Hamilton-Jacobi equations-will turn out to be a 
uniqueness criterion. 

LEMMA (A one-sided jump estimate). Under the assumptions of The
orem 1, there exists a constant C such that the function u defined by the 
Lax-Oleinik formula (29) satisfies the inequality 

c 
(36) u(x + z, t) - u(x, t) < tz 
for all t > 0 and x, z E IR, z > 0. 

DEFINITION. We call inequality (36) the entropy condition. 

It follows from (36) that for t > 0 the function x 1--+ u(x, t) - ~ x is 
nonincreasing and consequently has left- and right-hand limits at each point. 
Thus also x 1--+ u(x, t) has left- and right-hand limits at each point, with 
ul(x, t) > ur(x, t). In particular, the original form of the entropy condition 
(19) holds at any point of discontinuity. 
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Proof. We know from §3.3 that in computing the minimum in (29) we need 
only consider those y such that I x~y I < C for some constant C; verification 
is left to the reader. Consequently we may assume, upon redefining G if 
necessary off some bounded interval, that G is Lipschitz continuous. 

As G = (F')-1 and y(·, t) are nondecreasing, we have 

u(x, t) = G ( x - ~(x, t)) 
> G ( x - y(~ + z, t)) for z > O 

> G (x + z - y(x + z, t)) _ Lip(G)z 
- t t 

_ ( ) Lip(G)z - u x + z,t - . 
t 

D 

b. Weak solutions, uniqueness. We now establish the important asser
tion that an integral solution which satisfies the entropy condition is unique. 

DEFINITION. We say that a function u E L00 (IR x (0, oo)) is an entropy 
solution of the initial-value problem 

(37) 

provided 

(i) 

{ 
Ut + F(u)x = 0 in IR x (0,oo) 

u = g on IR x { t = 0} 

f 00100 
UVt + F(u)vx dxdt + 100 gv dxlt=O = 0 lo -00 -00 

for all test functions v : IR x [O, oo) --+ IR with compact support and 

(ii) 
1 

u(x + z, t) - u(x, t) < c(l + t )z 

for some constant C > 0 and a.e. x, z E IR, t > 0, with z > O. 

THEOREM 3 (Uniqueness of entropy solutions). Assume F is convex 
and smooth. Then there exists-up to a set of measure zero-at most one 
entropy solution of ( 37). 



150 3. NONLINEAR FIRST-ORDER PDE 

Proof*. 1. Assume that u and ii, are two entropy solutions of (37), and 
write w := u - u. Observe for any point (x, t) that 

F(u(x, t)) - F(U(x, t)) = [ ! F(ru(x, t) + (1 - r)U(x, t)) dr 

= [ F' (ru(x, t) + (1 - r)U(x, t)) dr (u(x, t) - U(x, t)) 

=: b(x, t)w(x, t). 

Consequently if v is a test function as above, 

(38) 
O = f 00100 (u - u)vt + [F(u) - F(u)]vx dxdt lo -oo 

= f 00100 w[vt + bvx] dxdt. lo -oo 

2. Now take c > 0 and define ue = 1Je * u, ue = 17e * u, where 17e is the 
standard mollifier in the x and t variables. Then according to §C.4 

(39) 

(40) Uc -+ u u-E -+ u- a e as £ -+ 0 ' . ., ~ . 

Furthermore the entropy inequality (ii) implies 

(41) u;,(x, t), u;,(x, t) < C ( 1 + ~) 
for an appropriate constant C and all c > 0, x E IR, t > 0. 

3. Write 

b.(x, t) := fo1 F'(ru•(x, t) + (1 - r)u•(x, t)) dr. 

Then (38) becomes 

(42) 0 = f 00100 w[vt + bevx] dxdt + f 00100 w[b - be]vx dxdt. lo -oo lo -00 

4. Now select T > 0 and any smooth function 7/J : IR x (0, T) -+ IR 
with compact support. We choose ve to be the solution of the following 
terminal-value problem for a linear transport equation: 

(43) { vf + bevi: = 7/J in IR x (0, T) 
ve = 0 on IR x { t = T}. 

*Omit on first reading. 
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Let us solve ( 43) by the method of characteristics. For this, fix x E IR, 
0 < t < T, and denote by Xe:(·) the solution of the ODE 

(44) 

and set 

{ Xe:(s) = be:(xe:(s), s) (s > t) 
Xe:(t) = X, 

(45) v•(x, t) := - lT 'l/J(x.(s), s) ds (x E JR, 0 < t < T). 

Then ve: is smooth and is the unique solution of ( 43). Since lbe: I is 
bounded and 'ljJ has compact support, ve: has compact support in IR x [O, T). 

5. We now claim that for each s > 0, there exists a constant Cs such 
that 

(46) lv~I <Cs on IR x (s, T). 

To prove this, first note that if 0 < s < t < T, then 

(47) be,x(x, t) = [ F"(ru• + (1- r)ii.)(ru;, + (1 - r)U;,) dr < ~ < ~ 

by ( 41), since F is convex. 

Next, differentiate the PDE in (43) with respect to x: 

(48) 

Now set a(x, t) := eAtvi(x, t), for 

(49) 

Then 

(50) 

c 
A=-+l. 

s 

at+ be:ax = Aa + eAt[v~t + be:Vxx] 

= Aa + eAt [-be:,xV~ + 'l/Jx] by ( 48) 

= [A - be:,x]a + eAt'l/Jx· 

Since ve: has compact support, a attains a nonnegative maximum over 
IR x [s, T] at some finite point (xo, to). If to= T, then Vx = 0. If 0 <to < T, 
then 

at(xo, to) < 0, ax(xo, to) = 0. 
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Consequently equation (50) gives 

(51) [,\ - be:,x]a + e)..to'l/Jx < 0 at (xo, to). 

But since be:,x < ~ and ,\is given by (49), inequality (51) implies 

A similar argument shows 

at any point (XI, ti) where a attains a nonpositive minimum. These two 
estimates and the definition of a imply ( 46). 

6. We will need one more inequality, namely 

(52) 1_: lv;(x, t)I dx < D 

for all 0 < t < r and some constant D, provided r is small enough. 

To prove this, chooser > 0 so small that 'ljJ = 0 on IR x (0, r). Then if 
0 < t < r, we see from ( 45) that ve: is constant along the characteristic curve 
xe:(·) (solving (44)) fort< s < r. Select any partition xo <XI < · · · < XN. 
Then Yo< YI<···< YN, where Yi:= xi(r) (i = 1, ... , N) for 

{ xi( s) = be; (xi( s), s) 
xi(t) =Xi· 

As ve: is constant along each characteristic curve xf ( ·), we have 

N N 

E lve:(xi, t) - ve:(Xi-1' t)I = E lve:(yi, r) - ve:(Yi-1' r)I < varve:(·, r), 
i=I i=I 

"var" denoting variation with respect to x. Taking the supremum over all 
such partitions, we find 

1_: lv;(x, t)I dx = varv'(·, t) < varv'(·, r) = 1_: lv;(x, r)I dx < C, 

since ve: has compact support and estimate (46) is valid for s = r. 
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7. Now, at last, we complete the proof by setting v = ve in (42) and 
substituting, using (43): 

100100 
w'l/J dxdt = 100100 

w[be - b]v~ dxdt lo -oo lo -oo 

= 1T 1_: w[b. ~ b]v;; dxdt 

+ lr 100 w[be - b]v~ dxdt 
lo -oo 

-· JE: + JE: -. T T" 

Then in view of (40), (46), and the Dominated Convergence Theorem, 

for each r > 0. On the other hand, if 0 < T < T, we see 

Thus 

IJ:I < rC max 100 lv~I dx < rC, by (52). 
O~t~T -oo 

100 100 
w'l/J dxdt = 0 lo -oo 

for all smooth functions 'ljJ as above, and so w = u - u = 0 a.e. 

3.4.4. Riemann's problem. 

D 

The initial-value problem (1) with the piecewise-constant initial function 

(53) ( X) = { Ut ~f X < 0 
g Ur 1fx>O 

is called Riemann's problem for the scalar conservation law (1). Here the 
constants ui, Ur are the left and right initial states, ui =/:. Ur. 

We continue to assume F is uniformly convex and C2 , and as before we 
write G = (F')-1 . 

THEOREM 4 (Solution of Riemann's problem). 

(i) If ui >Ur, the unique entropy solution of the Riemann problem (1), 
(53) is 

(54) { Uz 
u(x, t) := 

Ur 

if I < u 

if I > u 
(x E IR, t > 0), 
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Shock wave solving Riemann's problem for u1>ur 

where 

(55) 
F(ui) - F(ur) 

u:=------. 
Uz -Ur 

(ii) If ui <Ur, the unique entropy solution of the Riemann problem (1), 
(53) is 

(56) 

if I < F'(ui) 

if F'(ui) < I < F'(ur) 

if I > F'(ur) 

(x E IR, t > 0). 

Shocks and rarefactions. In the first case the states ui and Ur are sepa
rated by a shock wave with constant speed u. In the second case the states 
ui and Ur are separated by a rarefaction wave. 

We know from the theory set forth in §§3.4.2-3.4.3 that the Lax-Oleinik 
formula must generate these solutions, and it is an interesting exercise to 
verify this directly. We will instead construct the functions (54), (56) from 
first principles and verify they are in fact entropy solutions. By uniqueness, 
then, they must agree with Lax-Oleinik formulas. This is a nice illustration 
of the power of the uniqueness assertion, Theorem 3. 

Proof. 1. Assume uz >Ur· Clearly u defined by (54), (55) is then an inte
gral solution of our PDE. In particular since u = [[F(u)]]/[[u]], the Rankine
Hugoniot condition holds. Furthermore note 

F'(ur) < u = F(ui) - F(ur) = _i' F'(r)dr < F'(ui) 
Uz - Ur J ur 

in accordance with (17). Since ui >Ur, the entropy condition holds as well. 
Uniqueness follows from Theorem 3. 
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Rarefaction wave solving Riemann's problem for u1 <ur 

2. Assume now that Ut <Ur· We must first check that u defined by (56) 
solves the conservation law in the region {F'(ut) < I < F'(ur)}. To verify 
this, let us ask the general question as to when a function u of the form 

u(x, t) = v(;) 
solves (1). We compute 

Ut + F(u)x = Ut + F'(u)ux 

'(x) x '( ) '(x) 1 = -v - - + F v v - -
t t 2 t t 

'(x) 1 [ / x] =v t t F(v)-t. 

Thus, assuming v' never vanishes, we find F' ( v (I)) = I. Hence 

u(x, t) = v(;) =a(;) 
solves the conservation law. Now v("i) = Ut provided I = F'(ut), and 
similarly v("i) =Ur if I= F'(ur)· 

As a consequence we see that the rarefaction wave u defined by (56) is 
continuous in IR x (0, oo) and is a solution of the PDE Ut + F(u)x = 0 in 
each of its regions of definition. It is easy to check that u is thus an integral 
solution of (1), (53). Furthermore, since as noted in §3.4.3 we may as well 
assume G is Lipschitz continuous, we have 

(x + z) (x) Lip(G)z u(x + z, t) - u(x, t) = G t - G t < t 

if F'(ut)t < x < x+z < F'(ur)t. This inequality implies that u also satisfies 
the entropy condition. Uniqueness is once more a consequence of Theorem 3. 

D 
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3.4.5. Long time behavior. 

a. Decay in sup-norm. We now employ the Lax-Oleinik formula (29) 
to study the behavior of our entropy solution u of (1) as t-+ oo. We assume 
below that Fis smooth, uniformly convex, F(O) = 0, and g is bounded and 
summable. 

THEOREM 5 (Asymptotics in L00-norm). There exists a constant C such 
that 

(57) 
c 

lu(x, t) I < tl/2 

for all x E IR, t > 0. 

Proof. 1. Set 

(58) u := F'(O); 

then 

(59) G(u) = 0, 

and therefore 

(60) L(u) = uG(u) - F(G(u)) = 0, L'(u) = 0. 

2. In view of (60) and the uniform convexity of L, 

tL ( x ~ y) = tL ( x - ~ - ut + u) 

(61) > t [L(u) + L'(u) ( x - ~ - ut) + IJ ( x - ~ - utrJ 
= olx -y - utl2 

t 

for some constant 0 > 0. Since h = J; g dy is bounded by M := ll9llL1, we 
see from (61) that 

tL ( x ~ y) + h(y) > olx -yt- uti2 - M. 

On the other hand, 

( x - ( x - ut) ) 
tL t + h(x - ut) < M. 
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Thus at the minimizing point y( x, t) we have 

()Ix - y(x, t) - ut1 2 < 2M 
t - ' 

and so 

(62) 
x - y(x, t) C 

t - u < tl/2 

for some constant C. 

3. But since G(u) = 0, for any x E IR, t > 0 we have 

lu(x, t)I = G ( x - ~(x, t)) 

according to (62). 

= c(x-~(x,t) _u+u)-G(u) 

< Lip(G) x - y(x, t) - u < _E_ 
t - tl/2' 

Example 3 in §3.4. l shows this t-1/ 2 decay rate to be optimal. 
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D 

b. Decay to N-wave. Estimate (57) asserts that the £ 00-norm of u goes 
to zero as t -+ oo. On the other hand we note from Example 3 in §3.4.l 
that the £ 1-norm of u need not go to zero; indeed, the integral of u over IR 
is conserved (Problem 19). We instead show here that u evolves in £ 1 into 
a simple shape, assuming now that 

g has compact support. 

Given constants p, q, d, u, with p, q > 0, d > 0, we define the correspond
ing N-wave to be the function 

(63) { 
~ (~ - u) if -(pdt) 112 < x - ut < (qdt) 112 

N(x, t) := 
0 otherwise. 

The constant u is the velocity of the N-wave. 

Now define (j by ( 58), set 

(64) d := F"(O) > 0, 
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(pdt)ll2 
___ A..-__ _ 

r 

and also write 

(65) 

------__../ 
~ 
(qdt)ll2 

N-wave 

p := -2minjy gdx, 
yElR _ 00 

q := 2max1
00 

gdx. 
yElR y 

Note p,q > 0 and 

(66) G'(a) = ~-

THEOREM 6 (Asymptotics in L1-norm). Assume that p, q > 0. Then 
there exists a constant C such that 

(67) 100 c 
lu(·, t) - N(·, t)I dx < 112 

-oo t 

for all t > 0. 

Proof. 1. From estimate ( 62) in the proof of Theorem 5 we have 

(68) 
( x - at) - y ( x, t) C 

t < tl/2. 

Now 

u(x, t) = G ( x - ~(x, t)) 

= G ex - ut\-y(x, t) +.,.) 
= G(u) + G'(u) ( (x - ut) t- y(x, t)) 

+ 0 ( (x - ut\- y(x, t) 2
) . 
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Consequently (59), (66) and (68) imply 

(69) ( ) 1 ( x - ut) - y ( x, t) C 
u x t - - < -. 

' d t - t 

2. Since g has compact support, we may assume for some constant R > 0 
that g = 0 on IR n {Ix I > R}. Therefore 

{ 
h_ if x < -R 

h(x) = -
h+ if x > R, 

for constants h±. A calculation shows 

(70) min h = _ !!_ + h_ = - ~ + h+. 
R 2 2 

We next set 

(71) 
A 

E = c(t) := tl/2 (t > 0), 

the constant A to be selected later. 

3. We now claim that if A is sufficiently large, then 

(72) u(x, t) = 0 for x - ut < -R - (pd(l + c)t) 112 

and 

(73) u(x, t) = 0 for x - ut > R + (qd(l + c)t)112. 

In fact, since (64) implies 

L" (u) = ~' 
we deduce from ( 60) and ( 62) that 

(74) tL ( x - ~(x, t)) = ~ l(x - at) 2~ y(x, t)l2 + 0 (ci/2) as t-+ oo. 

Assume now that 

(75) x - ut < -R - (pd(l + c)t) 112 . 

Then h(x - ut) = h_ and so 

tL ex - (~ - at))) + h(x - at)= tL(a) + h_ = h_. 
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Now if y(x, t) < -R, then 

tL ( x - ~(x, t)) + h(y(x, t)) > h_, 

since L > 0. On the other hand if y(x, t) > -R, we employ (74) and (70) 
to estimate 

tL ( x - ~(x, t)) + h(y(x, t)) > ~ l(x - ut) 2~ y(x, t)l2 _ ~ + h_ + 0 (rt/2) 

> pd(l + c:)t - ~ + h_ + 0 (t-1! 2) by (75) 
- 2dt 2 

provided A is large enough. 

= ~ ~ + h_ + 0 (t-1! 2) by (71) 
2 f2 

> h_, 

We conclude that (75) forces y(x, t) = x- at, and so u(x, t) = G(a) = 0. 
This establishes assertion (72), and the proof of (73) is analogous. 

4. Next we assert for A and t large enough that 

(76) y(x, t) > -R if x - at= R - (pd(l - c:)t)112 . 

To see this, notice that y(x, t) < -R implies as above that 

tL ( x - ~(x, t)) + h(y(x, t)) > h-. 

Select now a point z such that h(z) = minh = -~ + h_ and lzl < R. Then 
we can as before estimate 

tL (x - z) + h(z) < ! l(x - at) - zl2 - !!. + h_ + 0 (t-1/2) 
t - d 2t 2 

< pd(l - c:)t - !!. + h_ + 0 (t-1/2) 
- 2dt 2 

= _P ~ +h- +0 (t-1! 2) < h_, 
2 f2 

for A large enough. This proves (76) and a similar argument establishes 
that 

(77) y(x, t) < R if x - at= -R + (qd(l - c:)t)112 . 
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5. Remember from the proof of Theorem 1 in §3.4.2 that the mapping 
x 1--+ y(x, t) is nondecreasing. Hence (69), (76) and (77) imply for large t 
that 

(78) { I u( x, t) - ~ (I - a) I < ~ if 

R - (pd(l - c:)t)112 < x - at< -R + (qd(l - c:)t) 112 . 

1 
According to Theorem 5, we have lul = O(t-2) and by definition INI = 

1 1 1 
O(t-2). In addition (71) implies ((1 ± c:)t)2 - t2 = 0(1). Using these 
bounds along with (72), (73) and (78), we estimate 

1_: lu(x, t) - N(x, t)I dx = 0 (r1t2), 

as asserted. D 

Example 3 (continued). Observe that we have p = 0, q = 2, a= 0, d = 1 
in Example 3 of §3.4.1. In this case 

{ I if o < x < ( 2t) 112 
N(x, t) = 

0 otherwise, 

and so in fact u = N for times t > 2. 

We will study systems of conservation laws in Chapter 11. 

3.5. PROBLEMS 

D 

In the following exercises, all given functions are assumed smooth, unless 
otherwise stated. 

1. Prove 
u(x, t, a, b) =a· x - tH(a) + b (a E Rn, b ER) 

is a complete integral of the Hamilton-Jacobi equation 

Ut + H(Du) = 0. 

2. Compute the envelopes of the family of lines 

x1 + a 2x2 - 2a = 0 (a ER) 

in R2 and of the family of planes 

2a1x1 + 2a2x2 - X3 +a~+ a~= 0 (a1, a2 ER) 
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in IR3 . Draw pictures illustrating the geometric meaning of the en
velopes. 

3. Suppose that the formula G(x, z, a) = 0 implicitly defines the function 
z = u(x, a), where x, a E IRn. Assume further that we can eliminate 
the variables a from the identities 

{ G(x,u,a)=O 

Gxi (x, u, a)+ Gz(x, u, a)uxi = 0 (i = 1, ... , n), 

to solve for u = u(x). 

(a) Find a PDE that u solves if G = L::~=l aix~ + z3 . 

(b) What is the PDE characterizing all spheres in JRn+l with unit 
radius and center in IRn x { z = 0}? 

4. (a) Write down the characteristic equations for the PDE 

5. 

6. 

Ut + b · Du = f in IRn x (0, oo ), 

where b E IRn, f = f(x, t). 

(b) Use the characteristic ODE to solve (*) subject to the initial 
condition 

u = g on IRn x { t = 0}. 

Make sure your answer agrees with formula (5) in §2.1.2. 

Solve using characteristics: 

(a) X1Ux 1 + X2Ux2 = 2u, u(xi, 1) = g(x1). 

(b) X1Ux 1 +2x2ux2 + Ux3 = 3u, u(xi,x2,0) = g(x1,x2). 

(c) UUx 1 + Ux2 = 1, u(x1, x1) = ~X1. 
Given a smooth vector field b on IRn, let x(s) = x(s, x, t) solve the 
ODE 

{ x = b(x) 

x(t) = x. 

(s E IR) 

(a) Define the Jacobian 

J(s, x, t) := det Dxx(s, x, t) 

and derive Euler's formula: 

J8 =div b(x)J. 

(b) Demonstrate that 

u(x, t) := g(x(O, x, t) )J(O, x, t) 
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solves 
{ 

Ut +div( uh)= 0 in IRn x (0, oo) 
u = g on IRn x { t = O}. 

(Hint: Show gs ( u(x, s )J) = 0.) 

7. Verify assertion (36) in §3.2.3, that when r is not flat near x0 , the 
noncharacteristic condition is 

8. Confirm that the formula u = g(x - tF'(u)) from §3.2.5 provides an 
implicit solution for the conservation law 

Ut + F(u)x = 0. 

9. Consider the problem of minimizing the action J~ L(w(s), w(s)) ds 
over the new admissible class 

A:= {w(·) E C2 ([0,t);IRn) I w(t) = x}, 

where we do not require that w(O) = y. 

(a) Show that a minimizer x( ·) E A solves the Euler-Lagrange equa
tions 

- :s (DvL(x(s), x(s))) + DxL(x(s), x(s)) = 0 (0 < s < t). 

(b) Prove that 
DvL(x(O), x(O)) = 0. 

( c) Suppose now that x( ·) E A minimizes the modified action 

l L(W(s), w(s)) ds + g(w(O)). 

Show that x( ·) solves the usual Euler-Lagrange equations and 
determine the boundary condition at s = 0. 

10. If H : IRn --+ IR is convex, we write L = H*. 

(a) Let H(p) = ~IPlr, for 1 < r < oo. Show 

1 
L(v) = -lvls, 

s 

1 1 
where - + - = 1. 

r s 

(b) Let H(p) = ~ L:?,j=l aijPiPj + L:?=i biPi, where A= ((aij)) is a 
symmetric, positive definite matrix, b E IRn. Compute L(v). 
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11. Let H : Rn --+ R be convex. We say v belongs to the subdifferential of 
H at p, written 

v E 8H(p), 

if 
H ( r) > H (p) + v · ( r - p) for all r E Rn. 

Prove v E 8H(p) if and only if p E 8L(v) if and only if p · v 
H(p) + L(v), where L = H*. 

12. Assume Li, L2 : Rn--+ Rare convex, smooth and superlinear. Show 
that 

where H1 = Li, H2 = L2. 
13. Prove that the Hopf-Lax formula reads 

u(x, t) = min {tL (x - y) + g(y)} 
yERn t 

= min {tL (x - y) + g(y)} 
yEB(x,Rt) t 

for R = supRn IDH(Dg)I, H = L*. (This proves finite propagation 
speed for a Hamilton-Jacobi PDE with convex Hamiltonian and Lip
schitz continuous initial function g.) 

14. Let Ebe a closed subset of Rn. Show that if the Hopf-Lax formula 
could be applied to the initial-value problem 

{ 

Ut + IDul2 = 0 in Rn x (O,oo) 

{ 0 x EE 
u = +oo x ¢. E on Rn x { t = O}, 

it would give the solution 

u(x, t) = ~t dist(x, E)2 . 

15. Provide all details for the proof of Lemma 4 in §3.3.3. 

16. Assume u1 , u2 are two solutions of the initial-value problems 

{ u; + H(Dui) = 0 in Rn x (0, oo) 
ui=gi onRnx{t=O}(i=l,2), 

given by the Hopf-Lax formula. Prove the L00-contraction inequality 
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17. Show that 

u(x, t) := {-~ (t + v'3x + t2 )
0 

if 4x + t2 > O 
if 4x + t2 < 0 

is an (unbounded) entropy solution of Ut + (~2 )x = 0. 

18. Assume u(x + z) - u(x) < Ez for all z > 0. Let uf = 'f/€ * u, and show 

u~ <E. 

19. Assume F(O) = 0, u is a continuous integral solution of the conserva
tion law 

{ ut+F(u)x=O inIRx(O,oo) 
u = g on IR x { t = 0}, 

and u has compact support in IR x [O, T] for each time T > 0. Prove 

1_: u(-,t)dx = 1_: gdx 

for all t > 0. 

20. Compute explicitly the unique entropy solution of 

for 

{ 
Ut + ( ~2 ) x = 0 in IR x ( 0, oo) 

u = g on IR x { t = 0}, 

{ ~ !: 
g(x) = 2 if 

0 if 

x < -1 
-l<x<O 
O<x<l 
x > 1. 

Draw a picture documenting your answer, being sure to illustrate what 
happens for all times t > 0. 
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Chapter 4 

This chapter collects together a wide variety of techniques that are some
times useful for finding certain more-or-less explicit solutions to various par
tial differential equations, or at least representation formulas for solutions. 

4.1. SEPARATION OF VARIABLES 

The method of separation of variables tries to construct a solution u to a 
given partial differential equation as some sort of combination of functions 
of fewer variables. In other words, the idea is to guess that u can be written 
as, say, a sum or product of as yet undetermined constituent functions, to 
plug this guess into the PDE, and finally to choose the simpler functions to 
ensure u really is a solution. 

-167 
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4.1.1. Examples. 

The separation of variables technique is best understood in some exam
ples. 

Example 1. Let U C Rn be a bounded, open set with smooth boundary. 
We consider the initial/boundary-value problem for the heat equation 

(1) { 
Ut - ~u = 0 in U x (0, oo) 

u = 0 on 8U x [O, oo) 
u = g on U x { t = 0}, 

where g : U ~ R is given. We conjecture there exists a solution having the 
multiplicative form 

(2) u(x, t) = v(t)w(x) (x EU, t > O); 

that is, we look for a solution of (1) with the variables x = (xi, ... , xn) E U 
"separated" from the variable t E [O, T]. 

Will this work? To find out, we compute 

Hence 

if and only if 

(3) 

Ut(x, t) = v' (t)w(x), ~u(x, t) = v(t)~w(x). 

0 = Ut(x, t) - ~u(x, t) = v'(t)w(x) - v(t)~w(x) 

v'(t) 
v(t) 

~w(x) 

w(x) 

for all x E U and t > 0 such that w(x), v(t) f:. 0. Now observe that the 
left-hand side of (3) depends only on t and the right-hand side depends only 
on x. This is impossible unless each is constant, say 

Then 

(4) 

(5) 

v'(t) - µ - ~w(x) (t > 0, x EU). 
v(t) - - w(x) 

v' = µv, 

~w=µw. 

We must solve these equations for the unknowns w, v andµ. 
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Notice first that if µ is known, the solution of (4) is v = deµt for an 
arbitrary constant d. Consequently we need only investigate equation (5). 

We say that A is an eigenvalue of the operator -~on U (subject to zero 
boundary conditions) provided there exists a function w, not identically 
equal to zero, solving 

{ -~w = AW in U 
w = 0 on au. 

The function w is a corresponding eigenfunction. (See Chapter 6 for the 
theory of eigenvalues, eigenfunctions.) 

If A is an eigenvalue and w is a related eigenfunction, we set µ = -A 
above, to find 

(6) 

solves 

(7) { 
Ut - ~u = 0 in U x (0, oo) 

u = 0 on aux [O,oo), 

with the initial condition u(·, 0) dw. Thus the function u defined by 
(6) solves problem (1), provided g = dw. More generally, if Ai, ... , Am are 
eigenvalues, wi, ... , Wm are corresponding eigenfunctions, and di, ... , dm 

are constants, then 

(8) 
m 

u = L dke->.ktwk 
k=i 

solves (7), with the initial condition u(·, 0) = I:~i dkwk. If we can find 
m, wi, ... , etc. such that I:~i dkwk = g, we are done. 

We can hope to generalize further by trying to find a countable sequence 
Ai, ... of eigenvalues with corresponding eigenfunctions wi, ... , so that 

(9) 
00 

Ldkwk = g in U 
k=i 

for appropriate constants di, .... Then presumably 

(10) 
00 

u = L dke->.ktwk 
k=i 

will be the solution of the initial-value problem (1). 
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This is an attractive representation formula for the solution, but depends 
upon (a) our being able to find eigenvalues, eigenfunctions and constants 
satisfying (9) and (b) our verifying that the series in (10) converges in some 
appropriate sense. We will discuss these matters further in Chapters 6, 7, 
within the context of Galerkin approximations. D 

Take note that only our solution (6) is determined by separation of 
variables; the more complicated forms (8) and (10) depend upon the linearity 
of the heat equation. 

Example 2. Let us next apply the separation of variables technique to 
discover a solution of the porous medium equation 

(11) Ut - ~(u'">') = 0 in IRn x (0, oo), 

where u > 0 and "Y > 1 is a constant. The expression (11) is a nonlinear 
diffusion equation, in which the rate of diffusion of some density u depends 
upon u itself. This PDE describes flow in porous media, thin-film lubrica
tion, and a variety of other phenomena. 

As in the previous example, we seek a solution of the form 

(12) u(x, t) = v(t)w(x) (x E IRn, t > 0). 

Inserting into ( 11), we discover that 

(13) 
v' (t) ~w'">'(x) 
---µ----
v(t)'">' - - w(x) 

for some constantµ and all x E IRn, t > 0, such that w(x), v(t) f= 0. 

We solve the ODE for v and find 

l 

v = ((1 - 1)µt + ,\) 1--y' 

for some constant ,\, which we will take to be positive. To discover w, we 
must then solve the PDE 

(14) ~(w'">') = µw. 

Let us now guess that 

w = lxl'\ 
for some constant a that must be determined. Then 

(15) 
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So in order that (14) hold in IRn, we should first require that a = O"'f - 2, 
and hence 

(16) 
2 

a=--
"Y - 1 

Returning to (15), we see that we must further set 

(17) µ = O"'f(O"'f + n - 2) > 0. 

In summary then, for each ,\ > 0 the function 
1 

u = ( (1 - "'f )µt + ..\) l--y lxla 
solves the porous medium equation (11), the parameters a, µ defined by 
(16), (17). D 

Remark. Observe that since "Y > 1, this solution blows up for x f= 0 as 
t ~ t*, fort* := ('y-\)µ. Physically, a huge amount of mass "diffuses in from 
infinity" in finite time. See §4.2.2 for another, better behaved, solution of 
the porous medium equation, and see §9.4.1 for more on blow-up phenomena 
for nonlinear diffusion equations. 

In the previous example separation of variables worked owing to the 
homogeneity of the nonlinearity, which is compatible with functions u having 
the multiplicative form (12). In other circumstances it is profitable to look 
for a solution in which the variables are separated additively: 

Example 3. Let us turn once again to the Hamilton-Jacobi equation 

(18) Ut + H(Du) = 0 in IRn x (0, oo) 

and look for a solution u having the form 

u(x, t) = w(x) + v(t) (x E IRn, t > 0). 

Then 
0 = Ut(x, t) + H(Du(x, t)) = v'(t) + H(Dw(x)) 

if and only if 

H(Dw(x)) = µ = -v'(t) (x E IRn, t > 0) 

for some constant µ. Consequently if 

H(Dw) = µ 

for some µ E IR, then 
u(x, t) = w(x) - µt + b 

will for any constant b solve Ut + H(Du) = 0. In particular, if we choose 
w(x) =a· x for some a E IRn and setµ= H(a), we discover the solution 

u =a· x - H(a)t + b 
already noted in §3.1. D 
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4.1.2. Application: Turing instability. 

Separations of variables and eigenfunction expansions, discussed in Ex
ample 1 above, are very powerful tools in both pure and applied mathemat
ics. This section discusses an interesting such application. 

Assume we are given a smooth vector field f = (/1, / 2 ) on IR2 for which 
0 is an equilibrium: 

f(O) = 0. 

We are interested in comparing the stability of solutions x = (x1 , x2 ) of the 
system of ODE 

(19) x = f(x) (t > 0) 

with solutions u = ( u 1, u2 ) of a corresponding reaction-diffusion system of 
PDE 

(20) { 
Ut - A~ u = f ( u) in U x (0, oo) 

u = 0 on aux (0, oo) 

in some bounded, smooth region Uc IR2 . The matrix 

A= (a1 0) 
0 a2 

introduces the diffusion constants ai, a2 > 0. (See §9.2.1 for more on 
reaction-diffusion equations.) 

Linearizations, separation of variables. The linearization of (19) around 
the equilibrium solution x = 0 is the linear system of ODE 

(21) y = Df(O)y (t > 0) 

where y = (y1 , y2 ). The equilibrium x = 0 is asymptotically stable if each 
solution y goes to zero as t-+ oo. This will be so provided the eigenvalues 
of the matrix Df(O) have negative real parts. 

Similarly, the linearization of (20) around u = 0 is the linear system of 
PDE 

(22) Vt - A~v = Df(O)v 

for v = (v1, v2 ). We solve (22) by the separation of variables and subsequent 
eigenfunction expansion method introduced in §4.1.1. We therefore write 

(23) 
00 

v(x, t) = L Sj(t)wj(x) 
j=l 
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for the eigenfunctions { Wj }~1 for the Laplacian on U with zero boundary 
conditions: 

{ 
-6.wi = AjWj in U 

Wj = 0 on 8U. 

The theory of such eigenvalues and eigenfunctions appears in §6.5, where we 
will learn in particular that 

>..· > 0 J (j = 1, ... ) 

and also that we can take {wj}~1 to be orthonormal in L2 (U): 

fu W;Wj dx = O;j (i,j = 1, ... ). 

Plugging (23) into (22), we deduce that for j = 1, ... 

(24) 

for the matrix 

(25) 

The solution v = 0 is stable if and only if each function Sj decays to 0 
as t ~ oo. This occurs provided the eigenvalues of the matrices Ai have 
negative real parts for j = 1, .... 

We now address the following question: if 0 is an asymptotically stable 
equilibrium for the system of ODE (19), does it necessarily follow that 0 
is an asymptotically stable equilibrium for the system of PDE (20)? The 
perhaps surprising answer is "no". The diffusion terms introduced into the 
PDE (20) can in fact transform a stable point for (19) into an unstable point 
for (20). This effect is called a Turing instability. 

Eigenvalues of Df(O). We investigate this phenomenon by first introduc
ing explicit conditions on Df(O) that force 0 to be stable for the ODE (19). 
Let us hereafter write 

Then 

(26) det(Df(O) - o1) = a2 - a(a + 8) + a8 - 1(3. 
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We require that 0 be a stable equilibrium of Df(O) and thus that the roots 
ai, a2 of (26) have negative real parts. This means 

(27) { 
a + 8 = a1 + a2 < 0 

a8 - 1f3 = a1a2 > 0. 

Notice that these conditions cover both the cases of real eigenvalues a2 < 
a1 < 0 and of complex conjugate eigenvalues a1 = b + ic, a2 = b - ic with 
b < 0. 

Eigenvalues of Aj. We want to see if by adding in diffusion terms ai, a2 > 0 
we can force the eigenvalues of Ai to have positive real parts for some j. 

We see from (25) that 

(28) det(Aj - al) = a 2 - a(a + 8 - Aj(a1 + a2)) + p(..\j) 

for 

(29) 

The roots a1,j and a2,j of the polynomial (28) satisfy 

a1,j + a2,j =a+ 8 - Aj(a1 + a2) < 0, 

since a+ 8 < 0 according (27), Aj > 0, ai, a2 > 0. Consequently for the case 
of complex conjugate roots a1,j = bi + ici, a2,j = bj - icj, the real part bj 
is negative. In this circumstance solutions Sj of the ODE (24) tend to zero 
as t ~ oo and we have asymptotic stability: this is not what we are looking 
for. 

Loss of stability. Consequently the only way the PDE system (22) could 
lose stability is when we have real roots a2,j < a1,j· We want to try to select 
a1, a2 > 0 in this case so that a1,j > 0. Let us imagine starting out with 
a1 = a2 = 0 and then increasing these diffusion constants until the system 
(22) first begins to lose stability, when a1,j = 0. This happens provided 

(30) 

We seek algebraic conditions implying (30). We may assume without 
loss of generality that 

(31) 8 < 0. 

Then if a2 = 0, we would have 
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according to (27). Thus we must have a2 > O; that is, we must introduce 
some diffusion into the second equation of our PDE system (22) for the 
Turing instability to occur. 

Now if a < 0, then (27) forces 

and so we cannot achieve (30). Consequently we must require 

(32) a>O. 

We keep (31) and (32) in mind and rewrite the formula p(,\j) = 0 to 
read 

(33) 

But then given some Aj > 0, we can easily find a2 > 0 and a1 > 0 solving 
(33). Notice that if Aj >> 0, we will need to take a1 to be small enough to 
ensure that a - Aja1 > 0. 

Interpretation: activators and inhibitors. The sign conditions 

{ 
Q - f;l(O) > 0, /3 - f!2(0) < 0 
"Y - fz 1 (0) > 0, 8 - fz2 (0) < 0 

are consistent with our requirements (27), (31) and (32). We may then 
interpret u1 as the density of a chemical activator and u2 as the density of 
an inhibitor: since a > 0, the activator by itself would increase; but since 
f3 < 0, this growth can be offset by the inhibitor. The signs of "Y, 8 imply 
that the inhibitor increases only in response to the presence of the activator. 
Condition (27) means that activator /inhibitor balance holds for the ODE 
(19), at least near the origin. 

We have discovered that diffusion effects can upset this equilibrium, 
provided a2 is sufficiently large and a1 sufficiently small. The physical inter
pretation is that the inhibitor u2 diffuses away from any given point more 
rapidly than the activator u1, and consequently there need not be enough 
of the inhibitor present to prevent runaway growth of the activator. Such 
reaction-diffusion instabilities are sometimes proposed as simple models for 
biological pattern formation: see for example Markowich [Mr]. 



176 4. OTHER WAYS TO REPRESENT SOLUTIONS 

4.2. SIMILARITY SOLUTIONS 

When investigating partial differential equations, it is often profitable to 
look for specific solutions u, the form of which reflects various symmetries 
in the structure of the PDE. We have already seen this idea in our derivation 
of the fundamental solutions for Laplace's equation and the heat equation 
in §2.2.l and §2.3.l and our discovery of rarefaction waves for conservation 
laws in §3.4.4. Following are some further applications of this important 
method. 

4.2.1. Plane and traveling waves, solitons. 

Consider first a partial differential equation involving the two variables 
x E IR, t E IR. A solution u of the form 

(1) u(x, t) = v(x - at) (x E IR, t E IR) 

is called a traveling wave (with speed a and profile v ). More generally, a 
solution u of a PDE in the n + 1 variables x = (x1, ... , Xn) E IRn, t E IR 
having the form 

(2) u(x, t) = v(y · x - at) (x E IRn, t E IR) 

is called a plane wave (with wavefront normal to y E IRn, speed l~I' and 
profile v). 

a. Exponential solutions. In view of the Fourier transform (discussed 
later, in §4.3.1), it is particularly enlightening when studying linear partial 
differential equations to consider complex-valued plane wave solutions of the 
form 

(3) u(x, t) = ei(y·x-ut)' 

where a E C and y = (y1, ... , Yn) E IRn, a being the time frequency and 
{Yi}f=I the wave numbers. We will next substitute trial solutions of the form 
(3) into various linear PDE, paying particular attention to the relationship 
between y and a= a(y) forced by the structure of the equation. 

(i) Heat equation. If u is given by (3), we compute 

Ut - ~u = (-ia + IYl2)u = 0, 

provided a= -ilyl2 . Hence 
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solves the heat equation for each y E Rn. Taking real and imaginary parts, 
we discover further that e-IYl2 t cos(y · x) and e-IYl2 t sin(y · x) are solutions as 
well. Notice in this example that since u is purely imaginary, there results 
a real, negative exponential term e-IYl2 t in the formulas, which corresponds 
to damping or dissipation. 

(ii) Wave equation, Klein-Gordon equation. Upon our substitut
ing (3) into the wave equation, we discover 

Utt - ~u = (-u2 + IYl 2)u = 0, 

provided u = ±iyl. Consequently 

u = ei(y·x±lylt) 

solves the wave equation, as do the pair of functions cos(y · x ± lylt) and 
sin(y · x ± IYlt). Since u is real, there are no dissipation effects in these 

solutions; and the absolute value of propagation speed I:/ = 1 of each such 
solution is the same. 

Turning next to the Klein-Gordon equation 

Utt - ~u+m2u = 0, 

our inserting ( 3) yields 

1 
for u = ±(lyl2 +m2 ) 2. However notice now that the speed l~I of propagation 

depends nonlinearly upon the frequency of the initial value eiy·x, the slower 
oscillating solutions traveling faster. That waves of different frequencies 
propagate at different speeds means that the Klein-Gordon equation creates 
dispersion. 

(iii) Other dispersive equations. Putting u = ei(y·x-ut) into Schro
dinger 's equation 

iUt + ~U = 0, 

we compute 
iut + ~u = (u - lyl 2 )u = 0 

when u = IY 12 . Therefore 
u = ei(y·x-ly12t)' 

and so this solution displays dispersion. 



178 4. OTHER WAYS TO REPRESENT SOLUTIONS 

For a final example of a dispersive PDE, let n = 1 and substitute u = 
ei(yx-ut) intd Airy's equation 

Ut + Uxxx = 0. 

We calculate 
Ut + Uxxx = -i(a + y3 )u = 0, 

whenever a = -y3 . 

Phase and group velocities. For a general dispersive linear PDE with 
constant coefficients, we can in principle compute as above a = a(y). We 
sometimes refer to u1~> as the phase velocity of the exponential plane-wave 
solution (3): this is the speed of propagation in the direction of the unit 
vector~-

However, we will see in §4.3.1 that we can often use the Fourier transform 
to write more general solutions of our PDE as a linear superposition of such 
exponential plane-wave solutions: 

u(x, t) = J. ei(y·x-u(y)t)a(y) dy 
JRn 

for some appropriate function a. To understand the speed of propagation of 
u, let us consider the limit t ~ oo, while the ratio v := I is held fixed. We 
will learn later in §4.5.3 on stationary phase that the main contribution to 
the integral 

!. ei(y·x-u(y)t) a(y) dy = J. eit(y·v-u(y)) a(y) dy 
!Rn !Rn 

occurs for wave numbers y for which Da(y) = v. For this reason, we call 
Da(y) the group velocity. 

b. Solitons. We consider next the Korteweg-de Vries (KdV) equation in 
the form 

(4) Ut + 6uux + Uxxx = 0 in IR X (0, oo), 

this nonlinear dispersive equation being a model for surface waves in water. 
We seek a traveling wave solution having the structure 

(5) u(x, t) = v(x - at) (x E IR, t > 0). 

Then u solves the KdV equation (4), provided v satisfies the ODE 

(6) -av + 6vv + v = 0 I I Ill (I = dds ) . 
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We integrate (6) by first noting 

(7) -av + 3v2 + v" = a, 

a denoting some constant. Multiply this equality by v' to obtain 

-avv' + 3v2v' + v" v' = av', 

and so deduce 

(8) 
(v') 2 a 
-- = -v3 + -v2 + av+ b 

2 2 

where bis another arbitrary constant. 

We investigate (8) by looking now only for solutions v which satisfy 
v, v', v" ~ 0 as s ~ ±oo (in which case the function u having the form (5) 
is called a solitary wave). Then (7), (8) imply a = b = 0. Equation (8) 
thereupon simplifies to read 

(vt = v2 (-v + ~). 

Hence v' = ±v(a - 2v) 112 . 

We take the minus sign above for computational convenience and obtain 
then this implicit formula for v: 

(9) J. v(s) dz 
s = - + c, 

1 z(a - 2z)1/ 2 

for some constant c. Now substitute z = ~ sech2 0. It follows that ~o 
-asech2 Otanh(J and z(a - 2z)112 = u~2 sech2 OtanhO. Hence (9) becomes 

(10) 

where (} is implicitly given by the relation 

(11) ~ sech2 (} = v(s). 

We lastly combine (10) and (11), to compute 
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Conversely, it is routine to check that v so defined actually solves the ODE 
(6). The upshot is that 

u( x, t) = ; sech2 ( ~ ( x - ut - c)) ( x E JR, t > 0) 

is a solution of the KdV equation for each c E IR, a > 0. A solution of this 
form is called a soliton. Notice that the velocity of the soliton depends upon 
its height. D 

The KdV equation is in fact utterly remarkable, in that it is completely 
integrable, which means that in principle the exact solution can be computed 
for arbitrary initial data. The relevant techniques are mostly beyond the 
scope of this book, but see Problems 11 and 12 and also Drazin [Dr) for 
more information. 

c. Traveling waves for a bistable equation. Consider next the scalar 
reaction-diffusion equation 

(12) Ut - Uxx = J(u) in IR X (0, oo), 

where f: IR~ IR has a "cubic-like" shape. 

Graph of the function f 

We assume, more precisely, that f is smooth and verifies 

(13) 

(a) /(0) = f(a) = /(1) = 0 
(b) f<Oon(O,a), />Oon(a,1) 

(c) J'(O) < 0, J'(l) < 0 

(d) J~ f (z) dz> 0 

for some point 0 <a< 1. 

We look for a traveling wave solution of the form 

(14) u(x, t) = v(x - at), 
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the profile v and velocity a to be determined, such that 

u ~ 0 as x ~ -oo, u ~ 1 as x ~ +oo. 

Now since f 1 < 0 at z = 0, 1, the constants 0 and 1 are stable solutions of 
the PDE (and since f 1 > 0 at z =a, the constant a is an unstable solution). 
So we want" our traveling wave ( 14) to interpolate between the two stable 
states z = 0, 1 at x = =foo. 

Plugging (14) into (12), we see v must satisfy the ordinary differential 
equation 

(15) v +av + f v = 0 II I ( ) (I = dds ) ' 

subject to the conditions 

(16) lim v(s) = 1, lim v(s) = 0, lim v1(s) = 0. 
s-+oo s--oo s-±oo 

We outline now (without complete proofs) a phase plane analysis of the 
ODE problem (15), (16). We begin by setting 

w := v1• 

Then (15), (16) transform into the autonomous first-order system: 

(17) { 
v1 =w 

w1 =-aw - f(v), 

with 

(18) lim (v, w) = (1, 0), lim (v, w) = (0, 0). 
s-oo s--oo 

Now (0, 0) and (1, 0) are critical points for the system (17), and the eigen
values of the corresponding linearizations are 

(19) 
± -a± (a2 - 4/1(0))112 ± -a± (a2 - 4/1(1))112 

Ao = 2 ' A1 = 2 

In view of (13)( c), At, At are real, with differing sign, and thus (0, 0) 
and ( 1, 0) are saddle points for the flow ( 17). Consequently an "unstable 
curve" wu leaves (0, 0) and a "stable curve" W 8 approaches (1, 0), as drawn. 
Furthermore, by calculating eigenvectors corresponding to (19) we see 

(20) { wu is tangent to the line w = Atv at (0, 0) 

W 8 is tangent to the line w = A!(v - 1) at (1, 0). 
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w 

- - - - - ....... 

Stable and unstable curves 

Note that .X~, .xt, wu and ws depend upon the parameter u. Our in
tention is to find u < 0 so that 

(21) wu = W 8 in the region {v > O,w > O}. 

Then we will have a solution of (17), (18), whose path in the phase plane is 
a heteroclinic orbit connecting (0, 0) to (1, 0). 

To establish (21), we fix now a small number E > 0 and let L denote the 
vertical line through the point (a+ E, 0). We claim 

(22) 

if u < 0. To check this assertion, define 

w2 rv . 
E(v, w) := 2 +Jo f(z) dz (v, w E IR) 

and compute 

d 
dtE(v(t),w(t)) = w(t)w'(t) + f(v(t))v'(t) 

= -uw2(t) by (17). 

As u < 0, we see that E is nondecreasing along trajectories of the ODE 
(17). Note also that the level sets of E have the shapes illustrated. 

Consider next the region R, as drawn below. The unstable curve enters 
R from (0, 0) and cannot exit through the bottom, top or left-hand side. 
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w 

(1,0) v 

Level curves of E 

w L 

........ 

......... 

(a, O) (l, 0) v 

The region R 

Using (17), we deduce that wu must exit R through the line L, at a point 
(a+c:,wo(u)). Similarly we argue ws must hit Lat a point (a+c:,w1(u)). 
This verifies claim ( 22). 

We next observe 

(23) wo(O) < w1 (O); 

this follows since trajectories of ( 17) for u = 0 are contained in level sets of 
E. We assert further that 

(24) 
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w 
............... ....... ········ ....... ········ 
............... ....... ....... . ....... ....... . 
~ ~ s~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ............... 
....... ....... . ....... ....... . ....... ....... . ....... ········ ............... 

The region S 

L 

v 

provided u < 0 and lul is large enough. To see this, fix {3 > 0 and consider 
the region S, as drawn. 

Now along the line segment T := {O < v <a+ c, w = {3v }, we have 

w' -uw - f(v) f(v) 
-= =-u---. 
v' w {3v 

Since I /~v) I is bounded for 0 < v <a+ c, we see 

w' C 
- > -u - - > {3 on T, 
v' - {3 

(25) 

provided u < 0 and lul is large enough. 

The calculation (25) shows that wu cannot exit S through the line 
segment T, and so wo(u) > {3(a + c) if u = a({3) is sufficiently negative. On 
the other hand, w1(u) < w1(0) for all u < 0. Thus we see that (24) will 
follow once we choose {3 large enough and then u sufficiently negative. 

Since wo and w1 depend smoothly on u, we deduce from (23) and (24) 
that there exists u < 0 with 

(26) wo(u) = w1(u). 

For this velocity a there consequently exists a solution of the ODE (17), 
(18). Hence we have found for our reaction-diffusion PDE (12) a traveling 
wave of the form (14). D 

A more refined analysis demonstrates that the velocity a verifying (26) 
is unique. Hence given the nonlinearity f satisfying hypotheses (13), there 
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exists a unique velocity for which there is a corresponding traveling wave. 
Compare this assertion with the previous example, where we found soliton 
traveling waves of the KdV equation for each given velocity. 

4.2.2. Similarity under scaling. 

We next illustrate the possibility of finding other types of "similarity" 
solutions to PDE. 

Example (A scaling invariant solution). Consider again the porous medium 
equation 

(27) Ut - ~(u'Y) = 0 in Rn x (0, oo), 

where u > 0 and "Y > 1 is a constant. 

As in our earlier derivation of the fundamental solution of the heat equa
tion in §2.3.1, let us look for a solution u having the form 

(28) 

where the constants a, f3 and the function v: Rn~ R must be determined. 
Remember that we come upon (28) if we seek a solution u of (27) invariant 
under the dilation scaling 

so that 
u(x, t) = >..0 u(>..f3x, >..t) 

for all>..> 0, x E Rn, t > 0. Setting>..= t-1 , we obtain (28) for v(y) := 
u(y, 1). 

We insert (28) into (27) and discover 

for y = t-f3x. In order to convert (29) into an expression involving the 
variable y alone, let us require 

(30) a + 1 = a"'( + 2(3. 

Then (29) reduces to 

(31) av+ {3y · Dv +~(vi')= 0. 
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At this point we have effected a reduction from n + 1 ton variables. We 
simplify further by supposing v is radial; that is, v(y) = w(lyl) for some 
w: IR--+ IR. Then (31) becomes 

(32) 
n-1 

a.w + {3rw' + (wl')" + (wl')' = 0, 
r 

where r = IYI, '= lr· Now if we set 

(33) a.= n{3, 

(32) thereupon simplifies to read 

(rn- 1(w1')') 1 + f3(rnw)' = 0. 

Thus 
rn-I(wl')' + {3rnw =a 

for some constant a. Assuming limr-+oo w, w' = 0, we conclude a = O; 
whence 

( wl')' = -{3rw. 

But then 

Consequently 

b a constant; and so 

(34) - ( - I - 1 2)+ ...,.:1 w - b 21 {3r , 

where we took the positive part of the right-hand side of (34) to ensure 
w > 0. Recalling v(y) = w(r) and (28), we obtain 

(35) 

1 

1 ( I - 1 lxl2 )+ ...,.- 1 

u(x, t) = ta b - 21 f3 t2f3 (x E IRn, t > 0), 

where, from (30), (33), 

(36) 
n 

a.------
- n(1- l) + 2' 

1 
f3 = . 

n(1- l) + 2 

The formulas (35), (36) are the Barenblatt-Kompaneetz-Zeldovich solution 
of the porous medium equation. D 
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Finite propagation speed and degenerate diffusions. Observe that 
the Barenblatt-Kompaneetz-Zeldovich solution has compact support for 
each time t > 0. This is a general feature for (appropriately defined) weak, 
nonnegative solutions of the porous medium equation with compactly sup
ported initial data. The nonlinear parabolic PDE (27) becomes degenerate 
wherever u = 0, and the set { u > 0} moves with finite propagation speed. 
Consequently the porous medium equation (27) is often regarded as a better 
model of diffusive spreading than the linear heat equation, which predicts 
infinite propagation speed. 

4.3. TRANSFORM METHODS 

In this section we develop some of the theory for the Fourier transform F, the 
Radon transform 'Rand the Laplace transform C. These provide extremely 
powerful tools for converting certain linear partial differential equations into 
either algebraic equations or else differential equations involving fewer vari
ables. 

4.3.1. Fourier transform. 

In this section all functions are complex-valued, and - denotes the 
complex conjugate. 

a. Definitions and properties. 

DEFINITION. If u E L1(Rn), we define its Fourier transform Fu= u by 

(1) 

and its inverse Fourier transform ;:-1u =it by 

(2) 

Since le±ix·yl = 1 and u E L1(Rn), these integrals converge for each y E Rn. 

We intend now to extend definitions (1), (2) to functions u E L 2(Rn). 

THEOREM 1 (Plancherel's Theorem). Assume u E L1(Rn) n L2 (Rn). 
Then u, it E L2(Rn) and 

(3) 
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Proof. 1. First we note that if v, w E L1(Rn), then v, w E L 00 (Rn). Also 

(4) !. v(x)w(x) dx = r v(y)w(y) dy, 
Rn }Rn 

since both expressions equal ( 27r~n/2 JRn JRn e-ix·Yv(x)w(y) dxdy. Further
more, as we will explicitly compute below in Example 1, 

!. . I 12 (7r)n/2 1Jlt. 
Rn eix·y-t x dx = t e- 4t (t > 0). 

ix12 
Consequently if c > 0 and Ve(x) := e-elxl2

, we have Ve(Y) = (2~)nj2 • Thus 

( 4) implies for each c > 0 that 

(5) !. I 12 1 !. l=_t_ w(y)e-e y dy = w(x)e- 4e dx. 
Rn (2c)n/2 Rn 

2. Now take u E L 1(Rn) n L2 (Rn) and set v(x) := u(-x). Let w := 

u * v E L1 (Rn) n C (Rn) and check (cf. Theorem 2 below) that 

w = (27r)nf2uv E L00 (Rn). 

But 
1 !. . -iJ(y) = ( ) 12 e-'l.X·Yu(-x) dx = ft(y), 

27r n Rn 

and sow= (27r)nf21ul2. 

Now w is continuous and thus 

where we employed the lemma from §2.3.1. Since w = (27r)nf2lul2 > 0, we 
deduce upon sending c-+ o+ in (5) that w is summable, with 

Hence 

!. 1111 2 dy = w(O) = { u(x)v(-x) dx = { lul2 dx. 
Rn }Rn }Rn 

The proof for it is similar. D 
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Definition of Fourier transform on L2 . In view of the equality (3) 
we can define the Fourier transforms of a function u E L2 (Rn) as follows. 
Choose a sequence {uk}k-_1 C L 1(Rn) n L 2(Rn) with 

Uk -+ u in L 2(Rn). 

-According to (3), llitk -itjllL2(Rn) = lluk - uillL2{Rn) = lluk - uillL2(Rn), and 
thus {itk}k::1 is a Cauchy sequence in L2(Rn). This sequence consequently 
converges to a limit, which we define to be Fu= it: 

The definition of it does not depend upon the choice of approximating se
quence {itk}k::1 . We similarly define u. 

Next we record some useful formulas. 

THEOREM 2 (Properties of Fourier transform). Assume u, v E L2 (Rn). 
Then 

(i) fRn uvdx = fRn itfldy. 

(ii) (Do:u)"= (iy)o:it for each multiindex a such that no:u E L 2(Rn). 

(iii) If u, v E £ 1 (Rn) n £ 2 (Rn), then ( u * v )" = (27r )nf2itv. 

(iv) Furthermore, u = (itr. 

Assertion (iv) is the Fourier inversion formula, which represents a func
tion u in terms of the exponential plane waves eix·y, provided it E £ 1 (Rn): 

(6) ( ) _ 1 L ix·y A ( ) d u x - ( ) 12 e u y y. 27r n Rn 

Proof. 1. Let u, v E £ 2 (Rn) and a E C. Then 

llu + avlli2{Rn) = llit + cwlli2(Rn)· 

Expanding, we deduce 

[ lul 2 + lavl2 + u(av) + u(av) dx = [ litl 2 + lcwl2 +~(cw)+ it(afl) dy; 
}Rn }Rn 

and so according to Theorem 1, 

f auv + auv dx = f a~v + aitfl dy. 
}Rn }Rn 
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Take a= 1, i and combine the resulting equalities to deduce 

[ uvdx = [ uildy. 
Jan Jan 

This proves (i). 

2. If u is smooth and has compact support, we calculate 

(Do:ut(y) = e-ix·y Do:u(x) dx 1 !. . 
(27r)n/2 an 

(-l)lo:I !. . = Do:(e-ix·y)u(x) dx 
(27r )n/2 an x 

1 !. . = ( ) 12 e-ix·y(iy)o:u(x) dx = (iy)o:u(y). 
27r n JR.n 

By approximation the same formula is true if Do:u E L2(Rn). 

3. We compute for u, v E L1 (Rn) n L2 (Rn) and y E Rn that 

(u * vt(y) = ( ~ 12 J. e-ix·y J. u(z)v(x - z) dzdx 
27r n IR.n IR.n 

= 1 J. e-iz·yu(z) (!. e-i(x-z)·Yv(x - z) dx) dz 
(27r )n/2 an an 

= !. e-iZ·Yu(z) dz fJ(y) = (27r)nf2u(y)fJ(y). 
an 

4. Next we observe that if u, v E L2(Rn), then 

!. uvdx = !. uvdx, 
an an 

since for u, v E L1(Rn) n L2(Rn) both sides equal 

We also note that 

( ~ 12 f J. eix·yu(y)v(x) dxdy. 
27r n lan an 

v = (v). 

We may therefore employ assertion (i) to compute 

!. (itJv dx = f uv dx = f it (v)dx = J. ufJ dx = J. uv dx. 
an lan Jan an an 

This holds for all v E L2 (Rn), and so statement (iv) follows. D 

b. Applications. The Fourier transform Fis an especially powerful tech
nique for studying linear, constant-coefficient partial differential equations. 
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Example 1 (Bessel potentials). We investigate first the PDE 

-~u+u=f 

where f E £ 2 (Rn). To find an explicit formula for u, we take the Fourier 
transform, recalling Theorem 2(ii) to obtain 

(7) 

The effect of the Fourier transform has been to convert the PDE into the 
algebraic equation (7), the solution of which is trivial: 

A 

A f 
u = 1 + IYl2" 

Thus 

(8) 

and so the only real problem is to rewrite the right-hand side of (8) into a 
more explicit form. 

Invoking Theorem 2(iii), we see 

(9) f*B 
U=---

(27r)n/2' 

where 

(10) 
A 1 
B = 1 + IYl2" 

Although iJ is not necessarily in £ 1 or £ 2 , we solve formally for B as fol
lows. Since ~ = J0

00 e-tadt for each a > 0, we have i+fy12 = J0
00 e-t(l+IYl 2 >dt. 

Thus 

(11) B - ( 1 ) v - 1 { 00 
-t ( r ix·y-tlyl2 d ) d 

- 1 + IYl2 - (27r)n/2 Jo e }JR.n e y t. 

Now if a, b E R, b > 0, and we set z = b112x - 2b~12 i, we find 

eiax-bx dx = e-z dz l oo . 2 e-a2 /4b fr 2 

-oo bl/2 r , 
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r denoting the contour {Im( z) = - 2b~12 } in the complex plane. Deforming 

r into the real axis, we compute fr e-z2 dz = J~00 e-x2 dx = 7r112; and hence 

(12) 100 1/2 
iax-bx2 d = -a2 / 4b ( 7r) e x e b . -oo 

Thus 

(13) { eix·y-tlyl2 dy =fr loo eixiYi-tYJ dyj = (7r) n/~-1~~2 
}JRn . 1 -oo t 

J= 

by (12). Consequently, we conclude from (11), (13) that 

~ 1 [ 00 e-t- 4t 

(14) B(x) = 2n/2 Jo tn/2 dt (x E lRn). 

B is called a Bessel potential. Employing (9), we derive then the formula 

~ 
u(x) = ( ~ / 2 f 00 

{ e-t- " f(y) dydt (x E !Rn). (15) 
47r n } 0 JJR.n tn/2 

D 

Example 2 (Fundamental solution of heat equation). Consider again the 
initial-value problem for the heat equation 

(l6) { Ut - ~u = 0 in lRn x (O,oo) 
u = g on lRn x {t = 0}. 

We establish a new method for solving (16) by computing u, the Fourier 
transform of u in the spatial variables x only. Thus 

{ Ut + IYl 2~ = ? for t > 0 
u = g fort= 0, 

whence 
A -tlyl2 A 

U= e g. 

Consequently u = ( e-tlYl2 g) v, and therefore 

9*F 
(17) U = (27r)n/2' 

where F = e-tlYl2. But then 

F = F-1 (e-tlyl2) = 1 { eix·y-tlYl2 d = 1 e- l~l2 
(27r)n/2 JJR.n Y (2t)n/2 

by (13). Invoking (17), we compute 

1 l lx-yl 2 
(18) u(x, t) = ( ) 12 e--4-t g(y) dy (x E lRn, t > 0), 

47rt n JRn 

in agreement with §2.3.1. The Fourier transform has provided us with a new 
derivation of the fundamental solution of the heat equation. D 
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Example 3 (Fundamental solution of Schrodinger's equation). Let us next 
look at the initial-value problem for Schrodinger's equation 

(19) { iut + ~u = 0 in Rn x (0, oo) 
u = g on Rn x { t = 0}. 

Here u and g are complex-valued. 

If we formally replace t by it on the right-hand side of (18), we obtain 
the formula 

(20) 1 1 il:z:-yl2 

u(x, t) = ( . ) 12 e 4t g(y) dy (x E Rn, t > 0), 
47rit n Rn 

1 i'll" 
where we interpret f2 as e4. This expression clearly makes sense for all 
times t > 0, provided g E L1 (Rn). Furthermore if IYl 2g E L1 (Rn), we can 
check by a direct calculation that u solves iut + ~u = 0 in Rn x (0, oo ). (We 
will not discuss here the sense in which u(·, t)-+ gas t-+ o+, but see §4.5.3 
below and Problem 16.) 

Let us next rewrite formula (20) as 

ilxl2 

e 4t 1 -ix·y ilyl 2 

u(x, t) = ( . ) 12 e 2t e4t g(y) dy. 
47rit n Rn 

il:z:l 2 ilyl2 

Since le 4t , e 4t I = 1, we can check as in Theorem 1 that if g E L 1 (Rn) n 
L2(Rn), then 

(21) 

Hence the mapping g ~ u(·, t) preserves the L2-norm. Therefore we can 
extend formula (20) to functions g E L 2(Rn), in the same way that we 
extended the definition of Fourier transform. D 

We call 

(22) 
1 ilxl2 

w(x, t) := ( . ) 12 e 4t (x E Rn, t -:/= 0) 
47rit n 

the fundamental solution of Schrodinger's equation. Note that formula (20), 
u = g * '11, makes sense for all times t-:/= 0, event< 0. Thus we in fact have 
solved 

(23) { iut + ~u = 0 in Rn x ( -oo, oo) 
u = g on Rn x {t = O}. 

In particular, Schrodinger's equation is reversible in time, whereas the heat 
equation is not (in spite of Theorem 11 in §2.3.4). 
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Example 4 (Wave equation). We next analyze the initial-value problem 
for the wave equation 

(24) { 
Utt - ~u = 0 in Rn x (0, oo) 

u = g, Ut = h on Rn x { t = O}, 

where for simplicity we suppose the initial velocity to be zero. Take as before 
u to be the Fourier transform of u in the variable x E Rn. Then 

(25) { u:t + lYl~u = ~ for t > O 
U = g, Ut = h for t = 0. 

This is an ODE for each fixed y E Rn, the solution of which is 

(26) U = 9cos(tlyl) + l;I sin(tlyl). 

Inverting, we find 

In the particular case that h = 0, we have 

(27) 

for x E Rn, t > 0, a formula we will further analyze in certain asymptotic 
limits later, in §4.5.3. 

Asymptotic equipartition of energy. Assume that f, g, Dg E L2(Rn). 
Recall from §2.4.3 that the energy of the solution u of the wave equation 
(24) is 

E(t) := ~ L. u~ + 1Dul2 dx 

and that it is constant in time: 

(t > 0) 

E(t) = E(O) = ~ L. h2 + IDgl2 dx. 

As an application of the representation formula (26) we next show that 

(28) lim J. 1Dul2 dx = lim f u; dx = E(O). 
t-oo Rn t-oo }Rn 

This says that asymptotically the total energy splits equally into its potential 
and kinetic parts (cf. Problem 24 in Chapter 2). 
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To establish (28), we compute using (26) that 

!. 1Dul2 dx = J. IYl2 lftl2 dy 
Rn Rn 

(29) = J. IYl2191 2 cos2(tlyl) + lhl2 sin2(tlyl) dy 
Rn 

+ J. cos(tlyl) sin(tlyl)lyl(hg + gh) dy. 
Rn 

Now if f E C~(JRn), then 

{ cos(tlyl) sin(tlyl)f dy = -2
1 { sin(2tlyl)f dy 

}Rn }Rn 

= ~ f 00 sin(2tr) { f dSdr 
lo laB(O,r) 

1 100 
d l = --4 -d (cos(2tr)) f dSdr 

t o r oB(O,r) 

= 4
1 f00 

cos(2tr) dd ( f f ds) dr 
t Jo r J oB(O,r) 

= O(t-1). 

Approximating the integrable function IYl(hg + gh) by a smooth function 
with compact support, we see that the last integral in (29) goes to zero as 
t--+ oo. Using the identity cos2(tlyl) = ~ (cos(2tlyl) + 1), we likewise deduce 
that 

and similarly 

It follows then from (29) that 

lim !. IDul2 dx = _21 !. IYl21912 + lhl2 dy = _21 !. IDgl2 + lhl2 dx = E(O). 
t-oo Rn Rn Rn 

D 

Example 5 (Telegraph equation). The initial-value problem for the one
dimensional telegraph equation is 

{
Utt + 2dut - Uxx = 0 in JR X (0, 00) 

u = g, Ut = h on JR x { t = 0}, 
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ford> 0, the term "2dut" representing a physical damping of wave propa
gation. As before 

{ Utt + 2d~t + ~Yl~u = ~ 
U = g, Ut = h 

fort> 0 
fort= 0. 

We again seek a solution of the form u = {3et'Y ({3, '"Y E C). Plugging in 
above, we deduce that '"'(2 + 2d'"'( + IYl 2 = O; whence '"Y = -d ± (d2 - lyl2) 112 . 

Consequently 

{ 
e-dt(f31 (y)e'Y(y)t + f32(y)e-'Y(y)t) if IYI < d 

u(y, t) = e-dt(f31 (y)ei6(y)t + f32(y)e-i6(y)t) if IYI > d 

for '"Y(Y) := (d2 - IYl 2 ) 112 (IYI < d), <S(y) := (IYl2 - d2 ) 1l2 (IYI > d), where 
f31 (y) and f32(y) are selected so that 

g(y) = !31 (y) + f32(y) 

and 
h( ) = { f31(y)('"Y(Y)- d) + f32(y)(-'"'((y)- d) if IYI < d 

y f31(y)(i<S(y) - d) + f32(y)(-i<S(y) - d) if IYI > d. 

We thereby obtain the representation formula: 

u( x, t) = e f31 (y )eixy+'Y(Y)t + f32 (y )eixy-'Y(Y)t dy -dt 1 
(27r)1/2 {IYl~d} 

+ e f3l (y)ei(xy+6(y)t) + {32(y)ei(xy-6(y)t) dy. -dt 1 
(27r)1/2 {IYl~d} 

Notice the terms e-dt, which causes damping as t --+ oo. D 

4.3.2. Radon transform. 

The Fourier inversion formula (6) is significant for PDE theory primarily 
since it represents a function in terms of the exponential plane waves eix·y. 
We introduce in this subsection the Radon transform 'R, which provides for 
odd dimensions the elegant, alternative decomposition (33), (34) into plane 
waves. This is sometimes useful because it is often easier to determine 
information concerning the support of a function from its Radon transform, 
rather than its Fourier transform. 
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a. Definitions and properties 

NOTATION. We write sn-I for the unit sphere 8B(O, 1) in IRn, a typical 
point of which we denote w = (wi, ... , wn)· The plane with unit normal 
w E sn- l at a distance s E IR from the origin is 

II(s,w) := {y E IRn I y · w = s}. 

Note that we allows< 0. 

DEFINITION. The Radon transform 'Ru = u of a function u E C~ (IRn) 
is 

(30) u(x,w) := f udS 
Jn(s,w) 

(s E IR,w E sn-1). 

The term on the right is the integral over the plane II( s, w) with respect to 
( n - 1 )-dimensional surface measure. 

THEOREM 3 (Properties of Radon transform). Assume u E C~(IRn). 

Then 

(i) u(-s, -w) = u(s,w). 

(ii) (Do:ur = wo: %~~ 1 u for each multiindex a. 

("') (A )- 82 -111 uu = 882 U. 

(iv) Ifu = 0 in IRn - B(O,R), then u(s,w) = 0 for Isl> R. 

Proof. Assertion (i) is clear, since II ( s, w) = II ( -s, -w). To prove (ii), 
let {b1, ... , bn-1} be an orthonormal basis of the subspace II(O, w). Then 
{bi, ... , bn-1, w} is an orthonormal basis of :Rn and so 

Consequently 

n-1 
Du= L(Du · bj)bj +(Du· w)w. 

j=l 

~= { UxidS 
Jn(s,w) 

n-1 
= L(bj ·ei) [ Du·bjdS+wi f Du·wdS 

j=l Jn(s,w) Jn(s,w) 

=wi { Du·wdS. 
Jn(s,w) 
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The integrals of Du· bi over II(s,w) vanish because bi is tangent to II(s,w) 
and u has compact support. Since 

us = { Du · w dS, 
Jn(s,w) 

we have proved (ii) for a = ei. The general case follows by induction, and 
(iii) is immediate since lwl = 1. 

Assertion (iv) is obvious, since II(s, w) n B(O, R) = 0 if Isl > R. 0 

Next we discover an interesting connection between the Radon and 
Fourier transforms. 

THEOREM 4 (Radon and Fourier transforms). Assume thatu E C~(IRn). 

Then 

(31) U(r,w) := L ii(s,w)e-ir•ds = (2.,,.r12u(rw) (r E IR,w E sn-1), 

where ft = Fu is the Fourier transform. 

Proof. As in the previous proof, take {bi, ... , bn-1} to be an orthonormal 
basis of II(O, w). Then 

dy, 

and so 

(
n-1 ) 

[ u(s,w)e-irs ds = [ [ u LYjbj +SW e-irs dyds. 
JR jR }Rn-1 . l 

J= 

We change variables, now writing x := L,j~f Yibi + sw. Then 

[ u(s,w)e-irs ds = [ u(x)e-ir(x·w) dx = (27r)nf2u(rw). 0 
jR }Rn 

Since we know how to invert the Fourier transform, we can likewise 
invert the Radon transform. The surprise is that we discover a nice formula 
for odd dimensions. 
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THEOREM 5 (Inverting the Radon transform). 

(i) We have 

(32) u(x) = 1 { { u(r, w)rn-leirw·x dSdr, 
2(27r)n JR Jsn-1 

the function u defined by (31). 

(ii) If n = 2k + 1 is odd, then 

(33) 

for 

(34) 

u(x) = f r(x · w,w) dS Jsn-1 

(-l)k 82k _ 
r(s, w) := 2(27r)2k 8s2k u(s, w). 
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Formulas (33) and (34) provide an elegant and useful decomposition of 
u into plane waves. 

Proof. 1. According to (31) we have 

{ { urn-leirw·x dSdr = (27r)n/2 { { u(rw)rn-leirw·x dSdr 
}R}sn-1 JR}sn-1 

= 2(27r)n/2 f 00 
{ u(rw)rn-leirw·x dSdr 

Jo Jsn-1 
= 2(27r)n/2 [ u(y)eiy·x dy 

}Rn 
= 2(27r)nu(x). 

For the second equality above, we replaced r by -r and w by -w in com
puting the integral I~oo fsn-1 u(rw)rn-leirw·x dSdr. The last equality is the 
Fourier inversion formula (6). 

2. The identity (31) also implies that u = (27r) 112(ur, the circumflex 
now denoting the one-dimensional Fourier transform in the variable r (with 
w held fixed). Consequently 

( a2k -) " (. )2k(-)" (-l)kr2k -
8s2k u = ir u = (27r)l/2 u, 

and hence 
a2k (-l)k L . 
--u(s w) = u(r w)r2keirs dr a 2k ' 2 ' . S 7r R 
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Puts= x · w: 

--u(w. x,w) = urn-leir(w·x) dr. a2k (-l)k 1 . 
8s2k 27r R 

Now integrate over the unit sphere, to discover 

1 a2k (- l)k 11 . ~u(w · x,w)dS = urn-Ieir(w·x) drds 
5n-1 8s 27r R 5n-1 

in light of (32). 

= (-l)k2(27r)nu(x) 
27r 

D 

Application (Vanishing of Radon transform). As a quick corollary, we note 
that 

(35) { 
if n is odd and u = 0 for Is I < R, 

then u = 0 in B(O, R). 

Compare this statement with assertion (iv) from Theorem 3. To prove it, 

observe that for n = 2k + 1, r(s,w) = J(;~?:k g:2kku(s,w) = 0 if Isl< R; and 
consequently formula (33) implies (35). D 

b. Applications 

Example 6 (Another representation formula for the wave equation). If we 
fix a unit vector w E sn-1 , then the plane wave "Y(x · w - t, w) solves the 
wave equation and therefore so does the superposition of plane waves 

(36) u(x, t) := f "Y(x · w - t, w) dS. 
Jsn-1 

We claim now that if n = 2k + 1 is odd and 

(37) 
( -1 )k a2k - ( -1 )k k 

"Y := 2(27r)2k a82kg = 2(27r)2k R.(D.. g), 

then (36) provides a formula for the solution of the initial-value problem for 
the wave equation: 

(38) { 
Utt - D,_u = 0 

U = g, Ut = 0 

in Rn x (0, oo) 

on Rn x { t = O}. 
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To confirm this, note first that u = g on IRn x {t = O} in view of Theorem 
5(ii). Consequently we need only check the second initial condition, that 

Ut(X, 0) = - { rs(X · w,w) dS = 0. 
Jsn-1 

In view of (37), it will suffice to show that fsn-l .\8(x · w, w) dS = 0 when 
,\ : = R.l for some smooth function l. But 

As = f Dl · w dS; 
Jn(s,w) 

and consequently 

{ .\8 (x · w, w) dS = { { Dl(y) · w dS(y)dS(w) = 0, J sn-1 J sn-1 lrr(x·w,w) 

since the integrand is an odd function of w. 0 

Example 7 (Huygens' principle for hyperbolic systems). A linear system 
of first-order PDE 

n 

llt + L Bjllxi = 0 
j=l 

for the unknown u: IRn x [O, oo) ~ IRm, u = (u1, ... , um), is called hyperbolic 
if for each y E IRn them x m matrix 

n 

B(y) := L yjBj 
j=l 

has m real eigenvalues 

We suppose further that B(y) is diagonalizable, meaning there exists a 
smooth, invertible matrix A (y) such that 

A-1(y)B(y)A(y) = D(y) = diag(.\1(y), ... , .\m(Y)). 

In §7.3 we will employ the Fourier transform to construct solutions of 
the initial-value problem 

(39) { llt + 'L,j=l Bjllxi = 0 in IRn X (0, 00) 

u=g onIRnx{t=O} 
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for given data g = (g1, ... , gm). Here we provide instead a quick application 
of the Radon transform, to conclude information about the support of the 
solution when the initial data have compact support. 

So let us suppose that u is a smooth solution of (39) and take the Radon 
transform in the variables x. We deduce from Theorem 3(ii) that for each 
fixed w E 3n- l 

{ 
fit+ B(w)fis = 0 in IR x (0, oo) 

fi = g on IR x { t = 0}. 

Now put v := A-1(w)u, h := A-1 (w)g. Then v solves the diagonal system 

That is, 

and so 

{ 
Vt+ D(w)vs = 0 in IR x (0, oo) 

v = h on IR x { t = 0}. 

{ vf + Aj(w)~. = 0 . in IR x (0, oo) 

vJ=hJ onIRx{t=O}; 

vi(s,w,t) = hi(s - ,\j(w)t,w) 

for j = 1, ... , m. It follows that 

m 

fi(s,w,t) = A(w)v(s,w,t) = Lhi(s-,\j(w)t,w)aj(w), 
j=l 

aj(w) denoting the jth column of A(w). The inversion formulas (33), (34) 
then provide for odd n = 2k + 1 the expression 

m 

( 40) u(x, t) = fsn-• L lj (x · w - Aj(w)t, w)aj(w) dS 
j=l 

for 

(41) 
. (-l)k 82k . 

l1 := 2(27r)2k 8s2k hl (s - Aj(w)t, w) (j = 1, ... 'm). 

In particular, if 
a:= min ~in l.Xj(w)I > 0 

wesn-1 1:5J:5m 

and sptg c B(O, R), then 

(42) u(x, t) = 0 for lxl < at - R. 

This is a form of Huygens' principle for the hyperbolic system (39) in odd 
dimensions n. D 
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4.3.3. Laplace transform. 

Remember that we write R+ = (0, oo). 

DEFINITION. If u E L1 (IR+), we define its Laplace transform Cu = u# 
to be 

(43) 

Whereas the Fourier and Radon transforms are most appropriate for 
functions defined on all of IR (or IRn), the Laplace transform is useful for 
functions defined only on IR+. In practice this means that for a partial 
differential equation involving time, it may be useful to perform a Laplace 
transform in t, holding the space variables x fixed. (This is the reverse of 
the technique from Examples 2-5 of §4.3.1.) 

Example 8 (Resolvents and Laplace transform). Consider again the heat 
equation 

(44) {
Vt - ~v = 0 in U x (0, oo) 

v = f on U x { t = 0}, 

and perform a Laplace transform with respect to time: 

v#(x, s) = fo'X> e-•1v(x, t) dt (s > 0). 

What PDE does v# satisfy? We compute 

~v#(x, s) = lo"° e-•t ~v(x, t) dt = lo"° e-stv1(x, t) dt 

= s lo"° e-•1v(x, t) dt + e-•1v1::: = sv#(x, s) - f(x). 

Think now of s > 0 being fixed, and write u(x) := v#(x, s). Then 

(45) -~u + su = f in U. 

Thus the solution of the resolvent equation (45) with right-hand side f is 
the Laplace tmnsforrn of the solution of the heat equation (44) with initial 
data f. (If U = IRn and s = 1, we could now represent v in terms of the 
fundamental solution, to rederive formula (15).) D 

The connection between the resolvent equation and the Laplace trans
form will be made clearer by the discussion in §7.4 of semigroup theory. 



204 4. OTHER WAYS TO REPRESENT SOLUTIONS 

Example 9 (Wave equation from the heat equation). Next we employ some 
Laplace transform ideas to provide a new derivation of the solution for the 
wave equation (cf. §2.4.1), based-surprisingly-upon the heat equation. 

Suppose u is a bounded, smooth solution of the initial-value problem: 

(46) { 
Utt - ~u = 0 in IRn x (0,oo) 

u = g, Ut = 0 on IRn x { t = O}, 

where n is odd and g is smooth, with compact support. We extend u to 
negative times by writing 

(47) u(x, t) = u(x, -t) if x E IRn, t < 0. 

Then 
Utt - ~u = 0 in IRn x IR. 

Next define 

(48) 

Hence 

( ) ·- 1 loo -s2/4t ) v x, t .- ( )l/2 e u(x, s ds (x E IRn, t > 0). 
47rt -oo 

lim v = g uniformly on IRn. 
t-+O 

In addition 

( ) - 1 loo -s2/4t ~v x, t - ( )l/2 e ~u(x, s) ds 
47rt -oo 

- 1 loo -s2/4t ) - ( )l/2 e Uss(x, s ds 
47rt -oo 

- 1 loo !_ -s2 /4t 
- ( )l/2 2 e u8 (x, s) ds 

47rt -oo t 

= 1 100 (£ _ ~) -s2/4t ) _ ) 
(47rt)l/2 -oo 4t2 2t e u(x, s ds - Vt(x, t . 

Consequently v solves this initial-value problem for the heat equation: 

{ Vt - ~ v = 0 in Rn X ( 0, oo) 
v = g on IRn x { t = O}. 

As vis bounded, we deduce from §2.3 that 

(49) 1 1 -~ v(x, t) = ( ) 12 e 4t g(y) dy. 
47rt n Rn 
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We equate (48) with (49), recall (47), and set,\= 1t' thereby obtaining the 
identity 

100 2 1 ( ,\ )n2J.1 I 12 u(x, s)e-.\s ds = - - e-,\ x-y g(y) dy. 
O 2 7r JR.n 

Thus 

(50) la"°u(x, s)e-A•2 ds = nain) ( ~ f2la"°e-Ar2 rn-IG(x; r) dr, 

for all ,\ > 0, where 

(51) G(x; r) = f g(y) dS(y). 
oB(x,r) 

We will solve (50), (51) for u. To do so, we write n = 2k + 1 and note 
_ _!_ _4_ (e-.\r2 ) = ,\e-.\r2 • Hence 2rdr 

A n2l la"° e-Ar2 rn-1c(x; r) dr =la"° _xke-Ar\2kG(x; r) dr 

= -- (e-.\r ) r2kG(x; r) dr ( -1 )k 100 
[ ( 1 d ) k 2 ] 

2k 0 r dr 

= - r - - (r2k-1G(x; r)) e-.\r dr, 1 100 
[ ( 1 8 ) k ] 2 

2k 0 r 8r 

where we integrated by parts k times for the last equality. 

Owing to (50) (with r replacing s in the expression on the left), we 
deduce 

100 u(x, r)e-.\r2 dr = ~~(n) 100 r [(~~)k (r2k-1G(x; r))] e-.\r2 dr. lo 7r-2-2k+1 lo r 8r 

Upon substituting T = r 2 , we see that each side above, taken as a function 
of.\, is a Laplace transform. As two Laplace transforms agree only if the 
original functions were identical, we deduce 

(52) na(n) ( 1 8) k 2k-l 
u(x, t) = 7rk2k+l t t Bt (t G(x, t)). 

( ) 'Trn/2 'Irk+! • ( 1) 1/2 
Now n = 2k + 1 and an = r(~+i) = r(~+i). Since r 2 = 7r and 

I'(x + 1) = xI'(x) for x > 0 (cf. [Rd, Chapter 8]), we can compute 

na(n) n7r1/ 2 1 1 
7rk2k+1 - 2k+1r (~ + 1) - (n - 2)(n - 4) · · · 5 · 3 - In· 
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We insert this deduction into ( 52) and simplify: 

(53) 
n-3 ( ) 1 a 1 a -2- n-2 

u(x,t)=--(--) t f gdS 
In at t at 8B(x,t) 

This is formula (31) in §2.4.1 (for h = 0). D 

4.4. CONVERTING NONLINEAR INTO LINEAR PDE 

In this section we describe several techniques which are sometime useful for 
converting certain nonlinear equations into linear equations. 

4.4.1. Cole-Hopf transformation. 

a. A parabolic PDE with quadratic nonlinearity. We consider first 
of all an initial-value problem for a quasilinear parabolic equation: 

(1) { Ut - a~u + blDul 2 = 0 in Rn x (0, oo) 
u = g on Rn x { t = O}, 

where a> 0. This sort of nonlinear PDE arises in stochastic optimal control 
theory. 

Assuming for the moment u is a smooth solution of (1), we set 

w := ¢(u), 

where ¢ : R ~ R is a smooth function, as yet unspecified. We will try to 
choose¢ so that w solves a linear equation. We have 

and consequently (1) implies 

Wt= </>'(u)ut = <P'(u)[a~u - blDul2 ] 

= a~w - [a<P"(u) + b¢'(u)]IDul2 

=a~w, 

provided we choose ¢ to satisfy a¢"+ b</>' = 0. We solve this differential 
-bz 

equation by setting </> = e c;- . Thus we see that if u solves ( 1), then 

(2) 
-bu 

w=ea 
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solves this initial-value problem for the heat equation (with conductivity a): 

{
Wt - a6.w = 0 in Rn x (O,oo) 

(3) =!!!! 
w = e a on Rn X { t = O}. 

Formula (2) is the Cole-Hopf transformation. 

Now the unique bounded solution of (3) is 

1 1 -l:z:-yl2 -b ( ) w(x, t) = e 4at eo:Y Y dy 
( 47rat )n/2 JR.n 

(x E Rn, t > O); 

and, since (2) implies 
a 

u = --logw 
b ' 

we obtain thereby the explicit formula 

a ( 1 1 -l:z:-yl2 
( 4) u( x, t) = - b log ( ) 12 e 4at 

47rat n JR.n 
~g(y) dy) (x E Rn, t > 0) 

for a solution of quasilinear initial-value problem (1). 

b. Burgers' equation with viscosity. As a further application, we ex
amine now for n = 1 the initial-value problem for the viscous Burgers' 
equation: 

(5) { Ut - aUxx + UUx = 0 in R X (0, oo) 
u = g on R x { t = O}. 

If we set 

(6) w(x, t) := 1: u(y, t) dy 

and 

(7) h(x) := 1: g(y) dy 

(cf. §3.4), we have 

(S) {Wt - awxx + !w~ = 0 in R x (0, oo) 
w = h on R x { t = 0 }. 

This is an equation of the form ( 1) for n = 1, b = ! ; and so ( 4) provides the 
formula 

(9) w(x, t) = -2alog c4 ... :t)1/2 Le - 1~;.· 12 -·J:> dy). 

But then since u = Wx, we find upon differentiating ( 9) that 

Joo x-y -l:z:-yl2 -~ d 
-00 t e 4at 2a y 

u(x t) = (x E R, t > 0) 
' 00 -l:z:-y!2 ~ f _00 e 4at 2a dy 

(10) 

is a solution of problem (5), where h is defined by (7). We will scrutinize 
this formula further in §4.5.2. 
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4.4.2. Potential functions. 

Another technique is to utilize a potential function to convert a nonlinear 
system of PDE into a single linear PDE. We consider as an example Euler's 
equations for inviscid, incompressible fluid flow: 

(11) (b) divu=O inJR3 x(O,oo) { 
(a) Ut + u · Du = - Dp + f in JR3 x ( 0, oo) 

(c) u = g on JR3 x {t = O}. 

Here the unknowns are the velocity field u = ( u 1 , u2 , u3 ) and the scalar 
pressure p; the external force f = (/1, / 2 , / 3 ) and initial velocity g = 
(g1 , g2 , g3 ) are given. Here D as usual denotes the gradient in the spatial 
variables x = ( x1, x2, x3). The vector equation 11 (a) means 

We will assume 

(12) 

3 

u~ + L uiu~i = -Pxi +Ji (i = 1, 2, 3). 
j=l 

divg = 0. 

If furthermore there exists a scalar function h : JR 3 x ( 0, oo) ---+ JR such that 

(13) f = Dh, 

we say that the external force is derived from the potential h. 

We will try to find a solution (u,p) of (11) for which the velocity field 
u is also derived from a potential, say 

(14) u=Dv. 

Our flow will then be irrotational, as curl u = 0. Now equation (ll)(b) says 

(15) 0 = divu = ~v 

and so v must be harmonic as a function of x, for each time t > 0. Thus 
if we can find a smooth function v satisfying (15) and Dv(·, 0) = g, we can 
then recover u from v by ( 14). 

How do we compute the pressure p? Let us observe that if u = Dv, 
then u ·Du = !D(IDvl2 ). Consequently (ll)(a) reads D (vt + ~1Dvl2) = 
D(-p + h), in view of (13). Therefore we may take 

1 
(16) Vt+ 21Dvl2 + p = h. 

This is Bernoulli's law. But now we can employ (16) to calculate p, up to 
an additive constant, since v and h are already known. 
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4.4.3. Hodograph and Legendre transforms. 

a. Hodograph transform. The hodograph transform is a technique for 
converting certain quasilinear systems of PDE into linear systems, by revers
ing the roles of the dependent and independent variables. As this method 
is most easily understood by an example, we investigate here the equations 
of steady, two-dimensional, irrotational fluid flow: 

{ 
(a) (a2(u) - (uI)2)ui1 - uiu2(ui2 +uiJ 

(17) +(a2(u) - (u2)2)ui2 = 0 

(b) ui2 - ui1 = 0 

in JR2 . The unknown is the velocity field u = ( u I, u 2), and the function 
a(·) : JR2 ---+ JR, the local sound speed, is given. 

The system ( 17) is quasilinear. Let us now, however, no longer regard 
uI and u2 as functions of XI and x2: 

(18) uI = uI(xi,x2), u2 = u2(xi,x2), 

but rather regard xI and x2 as functions of UI and u2: 

(19) xI = xI(ui, u2), x2 = x2(ui, u2). 

We have exchanged sub- and superscripts in the notation to emphasize the 
interchange between independent and dependent variables. 

According to the Inverse Function Theorem (§C.6) we can, locally at 
least, invert equations (18) to yield (19), provided 

8(uI,u2) I 2 I 2 
(20) J = 8( ) = UX1 Ux2 - Ux2Ux1 =I- 0 

XI,x2 

in some region of JR2 . Assuming now (20) holds, we calculate 

(21) { ui2 = Jx~1' ui1 = -Jx~1 
ui2 = -Jx~2' ui1 = Jx~2· 

We insert (21) into (17), to discover 

{ 
(a) (a2(u) - uDx~2 + uiu2(x~2 + x~1 ) + (a2(u) - u~)x~1 = 0 

(22) 
(b) x~2 - x~1 = 0. 

This is a linear system for x = ( xI, x2), as a function of u = ( u I, u2). 

Remark. We can utilize the method of potential functions (§4.4.2) to sim
plify (22) further. Indeed, equation (22)(b) suggests that we look for a single 
function z = z( u) such that 

{
XI= Zu1 

x2 = Zu2· 

Then (22)(a) transforms into the linear, second-order PDE 

(23) (a2 (u) - ui)zu2u2 + 2UIU2Zu1u2 + (a2 (u) - u~)Zu1 u1 = 0. 
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b. Legendre transform. A technique closely related to the hodograph 
transform is the classical Legendre trans/ orm, a version of which we have 
already encountered before, in §3.3. The idea is to regard the components 
of the gradient of a solution as new independent variables. 

Once again an example is instructive. We investigate the minimal sur
f ace equation (cf. Example 4 in §8.1.2) 

div ( (1 + 1:12)1/2) = 0, 

which for n = 2 may be rewritten as 

(24) (1 + u;2 )Ux1x 1 - 2Ux1Ux2Ux1x 2 + (1+U;1 )Ux2x2 =0. 

Let us now assume that at least in some region of IR2 , we can invert the 
relations 

(25) 

to solve for 

(26) 

The Inverse Function Theorem assures us we can do so in a neighborhood 
of any point where 

(27) J = det D 2u =/= 0. 

Now define 

(28) v(p) := x(p) · p - u(x(p)), 

where x = (x1 , x2) is given by (26), p = (pi,p2). We discover after some 
calculations that 

(29) { 

Ux1x1 _ Jvp2p2 

Ux1x2 - -JvPIP2 

Ux2x2 = J VPIPI · 

Upon substituting the identities (29) into (24), we derive for v the linear 
equation 

(30) 

Remark. The hodograph and Legendre transform techniques for obtaining 
linear out of nonlinear PDE are in practice tricky to use, as it is usually not 
possible to transform given boundary conditions very easily. 
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4.5. ASYMPTOTICS 

It is often the case that even when explicit representation formulas can be 
had for solutions of partial differential equations, these are too complicated 
to be of much immediate use. In such circumstances it sometimes becomes 
profitable to study the formulas in various asymptotic limits, whereupon 
simplifications often appear. 

Following are several rather complicated examples, illustrating typical 
issues involved in asymptotics for PDE. The results in this section are ex
plained only heuristically, mostly without formal proofs. 

4.5.1. Singular perturbations. 

A singular perturbation is a modification of a given PDE by adding a 
small multiple c times a higher-order term. In accordance with the informal 
principle that the behavior of solutions is governed primarily by the high
est order terms, a solution ue of the perturbed problem will often behave 
analytically quite differently from a solution u of the original equation. 

Example 1 (Transport and small diffusion). We illustrate this idea by 
studying formally the effects of small diffusion upon the transport of dye 
within a moving fluid in IR2. 

Suppose we are given a smooth vector field b : IR2 ---+ IR2 , b = (b1 , b2), 

representing the steady fluid velocity. Assume dye has been continuously 
injected at unit rate into the fluid at the origin, and let u( x) represent the 
density of dye at the point x E IR2, x = (xi, x2). Then, formally at least as 
we shall see, 

(1) div(ub) = 80 in IR2 
' 

where 80 is the Dirac measure on IR2 giving unit mass to the point 0. This 
PDE implies that the dye density is transported with the fluid motion at 
points x f:. 0. 

Consider now for c > 0 the singular perturbation: 

(2) 

The new term "c~" represents a small, isotropic diffusion of the dye within 
the background fluid motion. We are interested in understanding in an 
approximate way the structure of the solution ue of (2) and, in particular, 
describing if and how ue approximates u for small c > 0. 
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X=X (t) +yv (X (t)) 

0 
c 

Flow of dye without diffusion 

a. Analysis of problem (1). We turn our attention first to the unper
turbed PDE (1). Consider the characteristic ODE 

(3) { x(t) = b(x(t)) (t > O) 
x(O) = 0, 

the solution x(t) = (x1(t), x2 (t)) of which we assume to trace out a curve 
C, as drawn. 

Given a point x E IR2 near C, we write 

(4) x = x(t) + yv(x(t)), 

where v = (v1 , v2 ) is the (upward pointing) unit normal to C, y E IR, and 
t is the time required for the solution of the ODE (3) to reach the point 
x(t) along C closest to x. We hereafter regard (t, y) as providing a new 
coordinate system near the curve C, so that x = (x 1(y, t), x 2 (y, t)). 

Using (3) and (4), we compute 

1 2 l:Jx 1 l:Jx 1 1 1 1 
8( x , x ) _ ( Tt a:y ) _ ( b + yv v ) 

o(t, y) - det a:t2 a;: - det b2 + yv2 v2 . 

Let us write u = lbl, v = (-b2 ,b1)/u and v = -UKT =-Kb (where u = 
speed, K = curvature, T = ~ = unit tangent). We then simplify, to obtain 

(5) 8(x1' x 2) 
o(t, y) = u(l - Ky). 

Return now to the PDE (1), which we rewrite to read 

(6) b ·Du+ (divb)u = 80 in IR2 . 

As in §3.2 we see u = 0 off the curve C. Let us next guess u has the form 

(7) u(x) = p(t)8(y) 
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in the ( t, y )-coordinates, 8 denoting the Dirac measure on IR giving unit mass 
to the origin. 

What is p(t)? To compute it, take R to be a small, smooth region in 
the (xi, x2)-plane, with boundary intersecting the curve C at the points 
x(t1) and x(t2), 0 < t1 < t2. Let R' denote the corresponding region in the 
(t, y)-plane. Then using (5), we calculate 

{ u dx = { p(t)8(y)a(t)(l - KY) dydt = lt2 p(t)a(t) dt. 
jR jR' t1 

Now JR u dx represents the total amount of dye within the region R, which 
is to say, the total amount released between times t 1 and t 2 • This is simply 
t2 - t1. Thus 

This identity holds for all 0 < t1 < t2, and so p(t) = a(t)-1. Hence (7) says 

(8) u(x, t) = 8(y)/a(t) 

is a solution of (1), for a(t) := lb(x(t))I, t > 0. In other words, u represents 
the density along the curve C of the dye, whose concentration varies inversely 
with the speed of the fluid. 

We can further confirm this formula as follows. Let v E Cgc>(IR2 ). Then 
(5) lets us compute that 

f Dv · budx = f Dv · b 8((y)) a(t)(l - Ky) dydt J.R2 J.R2 CT t 

= 1''° Dv(x(t)) · b(x(t)) dt 

rood 
= lo dt v(x(t)) dt = -v(O). 

Hence we may indeed interpret u defined by (8) as a weak solution of the 
unperturbed PDE (1). 

b. Analysis of problem (2) for 0 < e << 1. We look now at the 
perturbed problem (2). We expect that at time t > 0, the diffusing dye will 
fill a ball of radius approximately O((c:t)112) about the point x(t). The dye 
will thus be mostly concentrated in a plume as drawn, about the curve C. 
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Flow of dye with diffusion 

We wish to understand the structure of the solution uE of (2) within this 
plume, as e ~ 0. 

Since the width is presumably of order O(e112) for times 0 < t1 < t < t2 
and the total mass of dye corresponding to the same time interval is t2 - t 1, 

we expect uE to be of order O(e-112) along C. This suggests that for us to 
understand the asymptotics as e --+ 0, we should turn our attention to the 
rescaled variables 

(9) 

the powers of e selected so that z, vE = 0(1). 

We must therefore rewrite the PDE (2) in terms of the new variables t, z 
and vE. For this, we need first to study the structure of the velocity field b 
along the curve C. Let us therefore write 

(10) b = a(t)T + {a(t)T + fi(t)v}y + O(y2), 

where, as noted before, T = b/a is a unit tangent vector to C. Now for any 
smooth function w: 

8x1 8x2 
Wt= Wx 1 at + Wx2 at = Wx 1a(l - /'i,y)r1 + Wx2a(l - /'i,y)r2 

and 

Thus 
WtV2 - Wya( 1 - /'i,y )r2 

Wx1 = (1 ) ' a -/'i,y 

-WtV1 + Wya(l - /'i,y )r1 

Wx2 = a(l - /'i,y) . 

(11) 

Therefore using (10), (11) (for w = uE), we can calculate 

b · DuE = [aT + (aT + fiv)y + O(y2)] • DuE 
E E 

Ut ayut E 0( 21 El) 
(l ) + (l ) + fjyuy + y Du . -/'i,y a -/'i,y 
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Since vE = c112ue, z = c-112y, we can rewrite the foregoing as 

(12) 

Similarly, we calculate using (10) and (11) (for w = b1, b2 ) that 

1 
divb = [b1v2 - b2v1] + [r1b2 - r 2b1] 

a ( 1 - KY) t t Y Y 

1 
---[(ar1)tv2 - (ar2)tv1] 
a(l - KY) 

+ [r1 (ar2 + {3v2) - r 2 (ar1 + {3v1 )] + O(y) 

=(:+,a) +O(y). 

Here we used the identity+= aKv. It follows that 

(13) (div b)v' = (: + ,8) v• + O(c112). 
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In addition, a similar heuristic argument, the details of which we omit, 
suggests that 

(14) 

Combining now (12)-(14) and recalling (2), we at last deduce vE satisfies 

(15) 
. 

vf - v~z + ({3zve:)z + ave:= O(c112). 
a 

We suppose now that as c--+ 0, the functions vE converge in some sense 
to a limit: 

(16) 

Then presumably from (15) we will have 

(17) 
a 

Vt - Vzz + ({3zv)z + -v = 0 in IR X (0, oo). 
a 

We therefore expect 

(18) 

with v solving (17). The PDE (17) is consequently a parabolic approximation 
(in the variables t, z = c-112y) to our elliptic equation (2). The proper initial 
condition should be 

(19) 
8(z) 

v = a( 0) on IR x { t = 0}. 
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We will see in Problem 13 that an explicit solution of (17), (19) can be 
found, in terms of the solution of an ODE involving /3. 

4.5.2. Laplace's method. 

Laplace's method concerns the asymptotics as e---+ 0 of integrals involv
ing expressions of the form e-I/c, I denoting some given function. 

Example 2 (Vanishing viscosity method for Burgers' equation). We next 
investigate the limit as e---+ 0 of the solution uc of the initial-value problem 
for the viscous Burgers' equation 

(20) 
in IR x (0, oo) 
on IR x {t = O}. 

Remembering formula (10) from §4.4.1, we note 

(21) 
Joo x-y -K(x,y,t) 

t e 2e dy 
uc(x t) = ---00------

, Joo -K(x,y,t) ' 
-OO e 2E dy 

for 

(22) 
lx-yl2 

K(x, y, t) := 2t + h(y) (x, y E IR, t > 0), 

where his an antiderivative of g. 

What happens to ue as e---+ O? Mathematically the term "eUxx" in (20) 
makes the partial differential equation act somewhat like the heat equation, 
in that the solution ue is infinitely differentiable in IR x ( 0, oo), in spite of 
the nonlinearity. This follows from the explicit formula (21). On the other 
hand, an obvious guess is that the solutions ue should converge as e ---+ 0 to 
a solution u of the conservation law 

(23) { 
Ut + ( ~2 ) x = 0 in IR x ( 0, oo) 

u = g on IR x { t = 0}. 

Physically, we regard the term "euix" as imposing an "artificial viscosity" 
effect, which we are now sending to zero. We expect that this vanishing 
viscosity technique should allow us to recover the correct entropy solution u 
of (23), which may have discontinuities across shock waves, as the limit of 
the solutions ue of (20), which are smooth. 

We must understand the limiting behavior of the expression on the right
hand side of (21), as e---+ 0. 
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LEMMA (Asymptotics). Suppose that k, l : JR---+ JR are continuous func
tions, that l grows at most linearly and that k grows at least quadratically. 
Assume also there exists a unique point Yo E JR such that 

k(yo) =min k(y). 
yER 

Then 

(24) 
Joo l( ) -k(y) d 

1. -oo y e e: y l ( ) 
Im -k'( .. ' = Yo . 

e:-+O Joo ~ d e e: y -oo 

Proof. Write k0 = k(yo). Then the function 
ko-k(y) 

e e: 

µe:(Y) := 00 ko-k(z) (y E JR) 
J_00 e e: dz 

satisfies 

(25) { µe: > 0, f~00 µe:(Y) dy = 1, 

µe:(Y) ---+ 0 exponentially fast for y f:. Yo, as E---+ 0. 

Consequently 
00 -k(y) 

J l(y)e e: dy 100 

lim -oo ~ = lim l(y)µe:(Y) dy = l(yo). 
e:-+0 Joo Y d e:-+O 00 e e: y -

-00 

D 

Return now to (21), (22). We observe K(x, y, t) = tL (x;y) + h(y), 
2 

where L = F* for F(z) = z2 . According to the analysis in §3.4, for each 
time t > 0 the mapping y ~ K(x, y, t) attains its minimum at a unique 
pointy= y(x, t) for all but at most countably many points x. But then the 
lemma implies 

(26) Im U X t = = = U X t 1. e:( ) x - y(x, t) G (x - y(x, t)) ( ) 
E-+0 ' t t ' 

for G := (F')-1. 

The final equality in (26) is the Lax-Oleinik formula for the unique en
tropy solution of the initial-value problem (23). It is a powerful endorsement 
of the methods from §3.4 that this formula has reappeared in the context of 
vanishing viscosity. (See also Problem 7.) D 

We will later discuss the vanishing viscosity method for symmetric hy
perbolic systems in §7.3.2, for Hamilton-Jacobi equations in §10.1, and for 
systems of conservation laws in §11.4. 
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4.5.3. Geometric optics, stationary phase. 

This section investigates the behavior of certain highly oscillatory so
lutions of the wave equation. We begin with some crude, but instructive, 
calculations. 

a. Geometric optics. 

Example 3 (Oscillating solutions). Let us once more turn our attention to 
the wave equation 

(27) Utt - du = 0 in Rn X ( 0, oo), 

and we now regard the solution u as taking complex values. We fix c > 0 
and seek a solution u = ue: of (27) having the form 

(28) 

the real-valued function pe: representing the phase and the real-valued func
tion ae representing the amplitude. The proposed form (28) for the solution 
is called the geometric optics ansatz*. The idea is that highly oscillatory 
solutions of the wave equation can be understood by studying a PDE for the 
phase function in the limit as c --+ 0. Following is a formal demonstration. 

Substituting (28) into (27), we find after some computations that 

We cancel the term eiPe /e: and take the real part of the resulting expression, 
to find 

(29) 

Now if as e -+ 0 

(30) 

in some sense, then presumably from (29) it follows that 

(31) Pt± IDPI = 0 in Rn x (0, oo). 

• ansatz =formulation (German). 
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We may informally regard the straight line characteristics of these Hamilton
J acobi PDE as rays along which the solution (28) concentrates in the high
frequency limit as c -+ 0. 

More generally, let us consider the second-order hyperbolic PDE 

(32) 
n 

Utt - L akl(x)uxkxi = 0 in IRn x (0, oo) 
k,l=l 

with akl = alk (k, l = 1, ... , n). We again look for a complex-valued solution 
u = ue: of the form (28) and calculate 

n 

0 e ""'""' kl e = Utt - L..J a UXkXl 
k,l=l 

( 
· e ( e:)2 2· e e ) ipe /e: 'tPtt e Pt e "'Pt at e 

= e -a - - a + + att c c c 

We once again cancel eiPe I e and take real parts to find 

ae: ((pe:)2 _ ~ aklpe: Pe: ) = c2 (ae _ ~ aklae: ) t L..J Xk Xl tt L..J XkXl ' 
k,l=l k,l=l 

Hence if (30) holds in some sense, we may then expect 

(33) Pt± ( t aklPxkPx,) 
112 

= 0 in Ilr x {O, oo). 
k,l=l 

See below and also §4.6.1, §7.2.4 for further elaboration of these ideas. D 

b. Stationary phase. The foregoing example suggests that the Hamilton
Jacobi PDE (31) somehow "controls the high-frequency asymptotics for the 
wave equation". However the range of validity of the geometric optics ansatz 
is highly uncertain in the preceding strictly formal computations. To under
stand more clearly the behavior of the solution, we employ next the method 
of stationary phase, which is a variant of Laplace's method obtained by 
replacing the -1 in the exponent (cf. §4.5.2) with i. 

Example 4 (Stationary phase for the wave equation). Look again at the 
initial-value problem for the wave equation 

{ 
uit - t,,.ue = 0 in IRn x (0, oo) 

(34) ue = ge, ui = 0 on IRn x { t = O}, 
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where we hereafter assume gc to have the rapidly oscillating structure 

(35) 

Here c > 0, a,p E Cgc>(JRn), and we suppose 

(36) Dp =/= 0 on the support of a. 

Utilizing formula (27) from §4.3.1, we can write 

Invoking ( 35), we see 

(37) 

where 

uc (x, t) = ~(I~ (x, t) + 1=_ (x, t) ), 

I±(x, t) = 1 { J. a(z)ei((x-z)·y±tlyl+p~z» dydz. 
(27r)n lan an 

Changing variables gives 

(38) I±(x, t) = a(z)eetl>±(x,y,z,t) dydz, 1 J. J. i 
(27rc)n Rn an 

for 

(39) </>±(x, y, z, t) := (x - z) · y ± tjyj + p(z). 

We want to study the asymptotics of I~ as c--+ 0. Let us pause in this 
example and develop some general machinery, which we will later apply to 
(38), (39). D 

Example 4 motivates our considering general integral expressions of the 
form 

(40) 

where a, </> are smooth functions, a has compact support, and c > 0. We 
wish to understand the limiting behavior of Jc as c--+ 0. 

We first examine the special case that </> is linear in y: 
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LEMMA 1 ( Asymptotics for linear terms). Let a E Cr:' (IRn) and p E Rn, 
p f:. 0. Then for m = 1, 2, ... 

f e~P·Ya(y) dy = O(cm) as c -+ 0. 
}Rn 

Proof. Without loss we may assume p = (pi, ... ,pn), PI f:. 0. Then for 
m = 1,2, ... 

D 

Next we suppose <P is quadratic in y: 

LEMMA 2 ( Asymptotics for quadratic terms). Let a E Cr:' (Rn) and sup
pose A is a real, nonsingular, symmetric matrix. Then 

1 J. i eiisgnA 
(41) (27rc)n/2 an e2ey·Aya(y) dy = I detAll/2 (a(O) + O(c)) as E-+ 0. 

Here sgn A, the signature of A, denotes the number of positive eigenvalues 
of A minus the number of negative eigenvalues. 

Proof. 1. First we claim for each <P E Cr:' (Rn) that 

lim J. J. eix·Ax-61xl2-ix·y</>(y) dxdy 
6-+0+ Rn an 

7rn/2 ·71" J. i -1 = e"4 sgn A e-4y·A Y<f>(y) dy. 
I det Al 112 Rn 

(42) 

To confirm this, we start by assuming A is diagonal: 

(43) A= diag(.-\i, ... , An) (.-\k f:. 0, k = 1, ... , n). 

Now for fixed y, ,,\ E IR and 8 > 0, we have 

. \ 2 ~ 2 . y (i~-6) x- iy !. 2 J. ( . )2 
JR e""'x -ux -ixy dx = e4(iA-o} Re 2(iA-o} dx 

y2 

e4(iA-6} [ 2 

= (8 - i.-\)1/2 Jr e-z dz, 
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where r = {z = (8-i.-\)112(x- 2(i~~o)) Ix E IR} and we take Re(8-i.-\) 112 > 
0. Thus r is a line in the complex plane, which intersects the x-axis at 
an angle less than ~- We consequently may deform the integral over r 
into the integral along the real axis: see Problem 15. Hence fr e-z2 dz = 
fut e-x2 dx = 7r112, and thus 

ei>.x -ox -ixy dx = e 4(iA-o) • l . 2 2 . 7rl/2 y2 

JR (8 - i,,\)l/2 

Since A has the diagonal form (43), we consequently deduce 

J0(y) := { eix·Ax-olxl 2-ix·y dx 
Jan 

2. Now let</> E C':'(IRn). Then 

Applying the Dominated Convergence Theorem, we deduce 

(44) 

Recall that we are supposing Re(-i.-\k) 112 > 0. Thus if Ak > 0, (-i.-\k)112 = 

l.-Xkl 1/ 2e- i;. If instead Ak < 0, then (-i,,\k) 112 = l.-Xkl 112e i;. Therefore 

00 

IJ (-i,,\k)l/2 = I det All/2e- i; sgn A' 

k=l 

and so ( 44) gives ( 42), provided A is diagonal. 

If A is not diagonal, we rotate to new coordinates to diagonalize A and 
again verify ( 42). 

3. Let us now write ae(Y) := e2it:y·Ay. Then if a E C':'(IRn), 

{ a(x)ae(x) dx = { a(y)&e(-y) dy. 
}JRn }Rn 
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According to ( 42) (with icA replacing A): 

&c interpreted as in ( 42). Consequently 

1 { e i; sgn A J. 
cn/2 Jan a(x)o:g(x) dx = I detAll/2 an a(y)(l + O(clYl2)) dy. 

But fRn a(y) dy = (27r)~ a(O) and fntn a(y)lyl2 dy < oo. Formula (41) follows. 
D 

For a general phase function ¢, we will employ the following result to 
change variables and thereby convert locally to one of the earlier cases. 

LEMMA 3 (Changing coordinates). Assume¢: IRn---+ IR is smooth. 

(i) Suppose that 
D¢(0) # 0. 

Then there exists a smooth function• : IRn---+ IRn such that 

(45) { •(O) = O, D•(O) = I, and 

¢( •(x)) = ¢(0) + D¢(0) · x for lxl small. 

(ii) (Morse Lemma) Suppose instead that 

D¢(0) = 0, det D2¢(0) # 0. 

Then there exists a smooth function • : IRn --+ IRn such that 

(46) { •(o) = O, D•(O) = I, and 

<P(•(x)) = ¢(0) + !x ·D2¢(0)x for lxl small. 

In other words, we can change variables near 0 to make¢ affine in case (i), 
quadratic in case (ii). 

Proof. 1. Assume rn := D¢(0) # 0. Then there exist vectors ri, ... , rn-1 
so that { rk}k=l is an orthogonal basis of IRn. Define f : IRn x IRn --+ IRn by 

f(x, y) := (r1 · (y - x), ... , rn-1 · (y - x), ¢(y) - ¢(0) - D¢(0) · x). 
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Therefore 

Dyf(O, 0) = CJ , 
the { rk}k=l regarded as row vectors, and so det Dyf(O, 0) =/= 0. The Implicit 
function Theorem (§C.7) implies we can find ~ : Rn --+ Rn such that 
~(O) = 0 and 

f(x, ~(x)) = 0 for lxl small. 

In particular, 

(47) { </>( ~(x)) = </>(O) + D</>(O) · x 
rk · (~(x) - x) = 0 (k = 1, ... , n - 1). 

Differentiating with respect to x, we deduce as well 

(D~(O) - I)rk = 0 (k = 1, ... , n) 

and so D~(O) = I. This proves assertion (i). 

2. Fix x E Rn. Then 1/J(t) := </>(tx) satisfies 

'lj.>{1) = 'lj.>{O) + ,P' {O) + [ (1 - t),P"(t) dt. 

Thus if D</>(O) = 0, we have 

(48) 
1 

</>(x) = </>(O) + 2x ·A(x)x 

for the symmetric matrix 

A(x) := 2 fo\1- t)D2tf>(tx) dt. 

Observe A(O) = D2¢(0). Let us hereafter suppose D2¢(0) is nonsingular, 
and so the same is true for A(x), provided lxl is small. furthermore, we 
may assume upon rotating to new coordinates if necessary that 

A(O) = D2¢(0) is diagonal. 

3. We now claim that there exists for each m E {O, 1, ... , n} a smooth 
mapping ~m : Rn --+ Rn, such that 

(49) { 
~m(O) = 0, D~m(O) =I, and 

</>( ~m(X)) = </>(O) + ! L:~1 </>xixi (O)x~ + ! L:~j=m+Ia~(x )xiXj, 



4.5. ASYMPTOTICS 225 

for lxl small, where Am= ((a~)) is smooth and symmetric. 

Observe in particular that (49) implies 

(50) a~(O) = </>xix;(O) (i,j = m + 1, ... ,n), 

and thus a:+i,m+l(x) =/= 0 for lxl sufficiently small. 

4. Assertion (49) form = 0 is (48) with Ao = A and •o the identity 
mapping. So assume by induction that (49) holds for some m E {O, ... , n-1} 
and write 

</>m(x) := </>(•m(x)). 

Then 

1 m 1 n 
(51) </>m(x) = </>(O) + 2 L </>xixi (O)x~ + 2 L a~(x)xiXj for lxl small. 

i=l i,j=m+l 

Define a mapping IIm+l: IRn ~ IRn, IIm+1(Y) = x, by writing 

for small IYI· It follows then from (51) that 

where 

l m+l l n 

</>m(Y) = </>(O) + 2 L <f>xixi (O)x~ + 2 L b:!i+1 (y)xiXj, 
i=l i,j=m+2 

i,j = m + 2, ... , n 

otherwise. 

Since D2<f>(O) is diagonal, (50) implies 

IIm+1 (0) = 0, Dllm+1 (0) = I. 

Consequently we can define for small lxl the inverse mapping 8m+1 .
II~~ 1, y = 8m+l ( x). Therefore 

l m+l l n 

</>m(8m+1(x)) = </>(O) + 2 L <l>xixi(O)xr + 2 L a:!i+1(x)xiXj, 
i=l i,j=m+2 
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for Am+l := Bm+l o Em+l· This is statement (49), with m + 1 replacing m 
and with •m+l := •mo Em+l· 

The case m = n is assertion (ii) of the lemma. D 

The stationary phase method. We can at last combine the information 
gleaned in Lemmas 1-3 to explain informally the stationary phase technique 
for deriving the asymptotics of 

as€---+ 0. We will assume 

(52) 

and furthermore 

(53) 

{ 
D<P vanishes within the support of a 

only at the points YI, ... , YN 

D2¢(Yk) is nonsingular (k = 1, ... , N). 

Then for m = 1, ... , 

where (EC~ vanishes near {yi, ... , YN }. This follows since we can employ 
Lemma 3(i) to change variables near any point in the support of (to make 
<P affine, with nonvanishing gradient, and apply Lemma 1. 

On the other hand if (is smooth, (vanishes except near Yk, and ((Yk) = 
1, we can employ Lemma 3(ii) to compute 

f ei<P(Y)((y)a(y) dy = J. ei<P(~(x))(a(•(x))ldetD•(x)I dx 
}Rn Rn 

= e i</>~k> { e;E(x-yk)·D2</J(yk)(x-yk)(a(•(x)) 
}Rn 

ldetD•(x)I dx 

= e i<J>(:k> (27rE)n/2 i; sgn(D2<P(Yk)) ( ( ) 0( )) 
ldetD2¢(Yk)ll/2e a Yk + E ' 

according to Lemma 2. Using these estimates and a partition of unity, we 
thereby obtain the asymptotic formula as€---+ 0: 

(54) 
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Example 4 (Stationary phase for the wave equation, continued). We can 
now apply the foregoing theory to ( 38), which states 

1i(x, t) = l n J. { a(z)e~<l>+(x,y,z,t) dydz. 
( 27rc) Rn }Rn 

This is of the form ( 40), with ( x, t) replacing x and (y, z) replacing y. 

Define for fixed x E Rn, t > 0, the set where the mapping (y, z) i-+ 

</>+(x, y, z, t) is stationary: 

s+ := {(y, z) I Dy,z</>+(x, y, z, t) = O}. 

Recall from (39) that </>+(x, y, z, t) = (x - z) · y + tlyl + p(z); and so 

{ Dy</>+ = (x - z) + t~ (y =/= 0), 

Dz</>+ = -y + Dp(z). 

Consequently 

+ _ { _ tDp( z) _ } 
(55) S - (y, z) Ix - z - IDp(z)I' y - Dp(z) , 

and we here and henceforth assume that y = Dp( z) =/= 0 if (y, z) E s+. 

Now if y =/= 0, 

D2 A. - ( D~</>+ y,zlf'+ - D2 ;/,. yzlf'+ 
D~2z</>+) = ( l~IP(y) -: ) ' 
Dz</>+ 2nx2n -/ D P 

for P(y) :=I - y:ir. We have y = Dp(z) on the stationary sets+, and so 

Now the symmetric matrix E(z) := ~WJ> D2pP(Dp) has n real eigen
values Al(z), ... , An(z). Since E(z)Dp = 0, we may take An(z) = 0. The 
other eigenvalues Al(z), ... , An-1(z) turn out to be the principal curvatures 
K 1 ( z), ... , Kn- l ( z) of the level surface of p passing through z. Since P 2 = P, 
the nonzero eigenvalues of 1JPI D2p P(Dp) are the nonzero principal curva-

tures. Thus on s+, 

n-1 

(56) det(D~,z<f>+) = (-l)n II (1- tKi(z)). 
i=l 
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We apply the stationary phase estimates for xo E IRn and small to> 0. 
If to is small enough, we can invoke the Implicit Function Theorem (§C.7) 
to solve uniquely the expressions 

Dp(z) 
xo = z - to IDp(z)I' y = Dp(z) 

for Yo = y(xo, to), zo = z(xo, to). Thus the asymptotic formula (54) (with 
2n replacing n) implies 

{57) 

l~(xo, to) = 1 n [ [ a(z )e~<l>+(xo,y,z,to) dydz 
{27rc) Jan }Rn 
e~ sgn(D~,z</>+) . </> 

= I det D~z</>+11/2 eie: + [a(zo) + O{c)] as c---+ 0, 

</>+ and D~z</>+ evaluated at (xo, Yo, zo, to). Recall further that {56) gives us 
an explicit function for det(D~z</>+)· A similar asymptotic formula holds for 
l:.(xo, to). Since ue:(xo, to) = !(l;_(xo, to) + l:.(xo, to)), we derive detailed 
information concerning the limits as c---+ 0, at least for small times t0 > 0. 

D 

Remark (Optics and stationary phase). It remains to discuss briefly the 
connections between the formal geometric optics and the stationary phase 
approaches. Recall that the former brought us to the two Hamilton-Jacobi 
equations 

{58) Pt± IDPI = 0 

~ ip+o(l) 
for the phase function of ue: = ae:e E = (a+ o{l))e E • Now the charac-
teristic equations for the PDE Pt - IDPI = 0 are 

{59) { 
. { ) - p(s) 
x 8 - -lp(s)I 

p(s) = 0, 

as previously discussed in §3.2.2. In particular given a point x E IRn, t > 0, 
where t is small, the projected characteristic x( ·) is a straight line, starting 
at the unique point z satisfying 

Dp(z) 
z = x + t IDp(z)I' 

But this relation is precisely what determines the stationary set s+ above. 
Likewise, the characteristics of the partial differential equation Pt + I Dpl = 0 
determine the stationary set s- for <P-. 
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4.5.4. Homogenization. 

Homogenization theory studies the effects of high-frequency oscillations 
in the coefficients upon solutions of PDE. In the simplest setting we are given 
a partial differential equation with two natural length scales, a macroscopic 
scale of order 1 and a microscopic scale of order E, the latter measuring the 
period of the oscillations. For fixed, but small, E > 0 the solution ue of the 
PDE will in general be complicated, having different behaviors on the two 
length scales. 

Homogenization theory studies the limiting behavior ue --+ u as E --+ 0. 
The idea is that in this limit the high-frequency effects will "average out" , 
and there will be a simpler, effective limiting PDE that u solves. One of 
the difficulties is even to guess the form of the limiting partial differential 
equation, and for this, multiscale expansions in E may be useful. 

Example 5 (Periodic homogenization of an elliptic equation). This example 
assumes some familiarity with the theory of divergence-structure, second
order elliptic PDE, as developed later in Chapter 6. 

Let U denote an open, bounded subset of IRn, with smooth boundary 
au' and consider this boundary-value problem for a divergence structure 
PDE: 

(60) {-.t (a'i(~) u~Jx; = f in U 
i,J-l ue = 0 in au. 

Here f : U --+ IR is given, as are the coefficients a ij ( i, j = 1, ... , n). We will 
assume the uniform ellipticity condition 

n 

L aij (y){i{j > o1{12 
i,j=l 

for some constant 0 > 0 and all y, { E IRn. We suppose also 

(61) the mapping y ~ ai1(y) is Q-periodic (y E IRn), 

Q denoting the unit cube in IRn. Thus the coefficients a ij ( ~) in ( 60) are 
rapidly oscillating in x for small E > 0, and we inquire as to the effect this 
has upon the solution ue. (In applications ue represents, say, the electric 
potential within a nonisotropic body having small-scale, periodic structure.) 

In the following heuristic discussion let us assume 

(62) 
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in some suitable sense and try to determine an equation which u satisfies. 
The trick is to suppose ue admits the following two-scale expansion: 

where Ui : U x Q --+ JR (i = 0, 1, ... ), Ui = ui(x, y). We are thus thinking 
of the terms Ui as being both functions of the macroscopic variable x and 
periodic functions of the microscopic variable y = ~· The plan is to plug (63) 
into (60) and to determine thereby uo, ui, etc. We are primarily interested 
in u = uo. 

Now if v(x) = w(x, x/c) for some function w = w(x, y), then a~i v = 

( a~i + ~ a~i) w, i = 1, ... , n. Thus, writing 

we have 

(64) 

where 

n 

Lv = - L (aij(x/c)vxJx;, 
i,j=l 

{ 
(a) L1w := - E?,j=1(aiJ(y)wyJy;, 

(65) (b) L2w := - EEj=l(a~~(y)wxJy; + (aiJ(y)wyJx;, 

(c) L3w := - Ei,j=1(a"3 (y)wxJx;-

Next plug the expansion (63) into the PDE Lue= f, and utilize the decom
position (64), (65) to find 

1 1 
2L1uo+-(L1u1 + L2uo) + (L1u2 + L2u1 + L3uo) 
c c 

+ {terms involving c, c2 , ... } = f. 

Equating like powers of c, we deduce 

(66) 

We examine these PDE to deduce information concerning uo, ui, u2• 

Now in view of (65)(a), (66)(a) for each fixed x, uo(x, y) solves L1uo = 0 
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and is Q-periodic. It turns out that the only such solutions are constant in 
y. Thus in fact 

(67) uo = u(x) depends only on x. 

Next employ (67), (65)(b), (66)(b) to discover 

(68) 
n 

L1u1 = L aii(y)y;Uxi· 
i,j=l 

We can as follows separate variables to represent u1 more simply. For i = 
1, ... 'n, let xi = xi(y) solve 

(69) { L~xi = - Ej=1 aii(y)y; in Q 

xi Q-periodic. 

As the right-hand side of the PDE in ( 69) has integral zero over Q, this 
problem has a solution xi (unique up to an additive constant). Here we are 
applying the Fredholm alternative: see Chapter 6. 

Using (69), we obtain 

n 

(70) u1(x, y) = - L xi(y)uxi(x) + u1(x), 
i=l 

u1 denoting an arbitrary function of x alone. 

Finally let us recall ( 66)( c): 

(71) 

In view of (65)(a) this PDE will have a Q-periodic solution (in the variable 
y) only if the integral of the right-hand side over Q is zero. Thus we require 

(72) l L2u1 + L3uody = l f dy = f(x). 

Owing to (65)(b) and (70), 
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Since u = uo, this calculation and (72) imply 

That is, 

(73) 

where 

n 

(74) ofi := 1 a;; (y) - L aik(y)x~. (y) dy (i, j = 1, ... , n) 
Q k=l 

are the homogenized coefficients and xi solves the corrector problem (69) 
(i = 1, ... , n). Thus we expect ue ---+ u as e ---+ 0 and u to solve the limit 
problem (73). D 

This example clearly illustrates the power of the multiscale expansion 
method. It is not at all readily apparent that the high-frequency oscilla
tions in the coefficients of (60) lead to a constant coefficient PDE of the 
precise form (73), (74). We will later introduce some variational principles 
characterizing A= ((aii)): see Problem 18. 

4.6. POWER SERIES 

We discuss in this final section solving boundary-value problems for partial 
differential equations by looking for solutions expressed as power series. 

4.6.1. Noncharacteristic surfaces. 

We begin with some fairly general comments concerning the solvability 
of the kth_order quasilinear PDE 

(1) L a0 (Dk- 1u, ... , u, x)D0 u + ao(Dk-lu, ... , u, x) = 0 

lo:l=k 

in some open region U c Rn. Let us assume that r is a smooth, ( n - 1 )
dimensional hypersurface in U, the unit normal to which at any point x0 E r 
is v(x0 ) = v = (vi, ... , vn)· 
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NOTATION. The lh normal derivative of u at x0 E r is 

Now let go, ... , gk-1 : r---+ IR be k given functions. The Cauchy problem 
is then to find a function u solving the PDE (1), subject to the boundary 
conditions 

(2) 
OU ak-lu 

u =go, av = gi, ... ' ovk-l = gk-l on r. 

We say that the equations (2) prescribe the Cauchy data go, ... , gk-l on r. 

We now pose a basic question: 

{ 
Assuming u is a smooth solution of the PDE (1), 

(3) do conditions (2) allow us to compute all the partial 

derivatives of u along r? 

This must certainly be so, if we are ever going to be able to calculate the 
terms of a power series representation formula for u. 

a. Flat boundaries. We examine first the special circumstance that U = 
IRn and r is the plane { Xn = 0}. In this situation we can take v = en, and 
so the Cauchy conditions (2) read 

OU ak-lu 
u =go, ~ = gi, ... ' a k-l = gk-l on {xn = 0}. 

uXn Xn 
(4) 

Which further partial derivatives of u can we compute along the plane 
r = {xn = O}? First, notice that since u =go on all off, we can differentiate 
tangentially, that is, with respect to Xi ( i = 1, ... , n - 1), to find 

(i = l, ... ,n-1). 

Since we also know from ( 4) that 

OU 
-- =g1, 
OXn 

we can determine the full gradient Du along r = { Xn = 0}. Similarly, we 
have 

(i=l, ... ,n-1) 
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and hence we can compute D2u on r. Next, we see 

fJ39..o if i, j, m = 1, ... , n - 1 
OXiOXjOX'm 

83u a2 91 if i, j = 1, ... , n - 1; m=n 
OXiOXj 

8xi8Xj8Xm 892 if i = 1, ... , n - 1; J=m=n OXi 

93 if i=J=m=n 

along r, and so we can compute D3u there. Continuing, it is straightfor
ward to check that employing the Cauchy conditions (4), we can compute 
u, Du, ... , nk-Iu on r. 

Difficulties will arise, however, when we try to calculate Dku. In this 
circumstance it is not hard to verify that we can determine each partial 
derivative of u of order k along r = { Xn = 0} from the Cauchy data ( 4)' 
except for the kth_order normal derivative 

Here, at last, we turn to PDE (1) for help. We observe from (1) that if 
the coefficient a(o, ... ,O,k) is nonzero, we can then solve for 

(5) aku 1 [ 
8xk - - a 

n (0, ... ,0,k) 
I; aaD"u + ao] , 
lc.rl=k 

c.r;f(O, ... ,O,k) 

with the coefficients aa (lo:I = k) and ao evaluated at (nk-Iu, ... , u, x) along 
r. Now in view of the remarks above, everything on the right-hand side 
of equality (5) can be calculated in terms of the Cauchy data along the 
plane r' and thus we have a formula for the missing kth partial derivative. 
Consequently we can in fact compute all of Dku on r, provided 

(6) a(o, ... ,o,k) =I= 0. 

We say that the plane r = { Xn = 0} is noncharacteristic for the PDE 
(1) if the function a(o, ... ,k) is nonzero for all values of its arguments. 

Can we calculate still higher partial derivatives? Assuming the nonchar
acteristic condition (6), we observe that we can now augment our list (4) of 
Cauchy data with the new equality 

aku 
a k = 9k On r = { Xn = 0}, 

Xn 
(7) 
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9k denoting the right-hand side of (5). But then we can, as before, compute 
all of nk+ 1 u along r' except for the term 

Again we employ the PDE (1). We differentiate (1) with respect to Xn, 

evaluate the resulting expression on the plane r, and rearrange to find 

ak+Iu 1 
k+I = a {· .. }, 

8xn (0, ... ,0,k) 

the dots denoting the sum of various expressions, each of which can be 
computed along r in terms of go, ... , 9k· Consequently we can ascertain all 
of nk+Iu on r, and an induction verifies that in fact we can compute all the 
partial derivatives of u on the plane r. 

b. General surfaces. We now propose to generalize the results obtained 
above to the general case that r is a smooth hypersurface with normal vector 
field v. 

DEFINITION. We say the surfacer is noncharacteristic for the partial 
differential equation ( 1) provided 

(8) L aav0 =fa0 onr, 
lal=k 

for all values of the arguments of the coefficients a0 (lo:I = k). 

THEOREM 1 (Cauchy data and noncharacteristic surfaces). Assume that 
r is noncharacteristic for the PDE (1). Then if u is a smooth solution of 
(1) and u satisfies the Cauchy conditions (2), we can uniquely compute all 
the partial derivatives 0 f U along r in terms of r, the junctions 90, ... , 9k- I, 

and the coefficients aa (lo:I = k),ao. 

Proof. 1. We will reduce to the special case considered above. 

For this, let us choose any point x0 E r and recall §C.l to find smooth 
maps tt, '11 : IR_n ~ IR_n, so that '11 = tt-1 and 

tt(r n B(x0 , r)) c {Yn = O} 

for some r > 0. Define 
v(y) := u(\Jl(y)), 
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so that 

(9) 

It is relatively easy to check now that v satisfies a quasilinear partial 
differential equation having the form 

(10) L b0 D 0 v + bo = 0. 
lal=k 

2. We claim 

(11) b(o, ... ,O,k) =/= 0 on {Yn = 0}. 

Indeed from (9) we see that for any multiindex a with lal = k, we have 

~v { ~v} D 0 u = a k ( D~n )0 + terms not involving a k • 
Yn Yn 

Thus from (1) it follows that 

0 = L aaD0 u + ao 
lal=k 

~v { ~v} = L aa(D~n)a a k + terms not involving a k ' 

lal=k Yn Yn 

and so 
b =~a (D~n)a (0, ... ,0,k) ~ a · 

lal=k 
But D~n is parallel to v on r. Consequently bco, ... ,k) is a nonzero multiple 
of the term 

This verifies the claim ( 11). 

3. Let us now define the functions ho, hi, ... , hk-i : R_n-i ---+ R by 

av ak-iv 
v =ho, a =hi, ... , a k = hk-i on {Yn = 0}. 

Yn Yn 
(12) 

Thus we can compute ho, ... , hk-i near y = 0 in terms of• and the functions 
go, ... , 9k-i· But then, using (11) and the special case discussed above, we 
see that we can calculate all of the partial derivatives of v on {Yn = O} near 
y = 0. 

And finally, upon recalling (9), we at last observe that we can compute 
all the partial derivatives of u on r near x0 • D 
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Remark. It is sometimes convenient to recast the noncharacteristic condi
tion ( 8) into a somewhat different form, by representing r as the zero set of 
a function w : IRn ---+ IR. So assume that we are given a function w with 

r={w=O} 

and Dw =I 0 on r. Then v = ± 1E:1 on r' and so the noncharacteristic 
condition (8) becomes 

(13) L ao:(Dw)0 =I 0 on r. 
lo:l=k 

4.6.2. Real analytic functions. 

We review in this section the representation of real-valued functions by 
power series. 

DEFINITION. A function f : IRn ---+ IR is called (real} analytic near xo if 
there exist r > 0 and constants {f o:} such that 

f(x) = L !o:(x - xo)0 (Ix - xol < r), 

the sum taken over all multiindices a. 

Remarks. (i) Remember that we write x 0 = xr1 ••• x~n' for the multiindex 
a=(a1, ... ,an)· 

(ii) If f is analytic near xo, then f is 0 00 near xo. Furthermore the 
constants / 0 are computed as /o: = D°'f~xo), where a!= a1!a2! ···an!. Thus o:. 
f equals its Taylor expansion about xo: 

f(x) = L .!.,n°f (xo)(x - xo)0 (Ix - xol < r). 
a. 

To simplify, we hereafter take xo = 0. 

Example. If r > 0, set 
r 

f(x) := for lxl < r/y'n. 
r - (x1 + · · · + Xn) 

Then 

00 ( )k 1 XI+···+ Xn 
f(x) = 1- (x1+·+xn) = L r 

r k=O 

= ~ ~ '°' (lal) xo: = '°' lal! xo:. 
L..J rk L..J a L..J r1°1 a! 
k=O lo:l=k o: 
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We employed the Multinomial Theorem for the third equality above and 
recalled that (lnl) = In!!. This power series is absolutely convergent for Ct Ct. 
lxl < r / Vn· Indeed, 

L lnll I al= Loo (lx1I + · · · + lxnl)k 
I I I x < oo, 

r a a. r 
et k=O 

since lx1I + · · · + lxnl < lxlvn < r. D 

We will see momentarily that the simple power series illustrated in this 
example is rather important, since we can use it to majorize, and so confirm 
the convergence of, other power series. 

DEFINITION. Let 

be two power series. We say g majorizes f, written 

g >> J, 
provided 

ga > If al for all multiindices a. 

LEMMA (Major ants). 

(i) If g >> f and g converges for lxl < r, then f also converges for 
lxl < r. 

(ii) If f =~Ct f aXCt converges for lxl < r and 0 < svn < r, then f has 
a majorant for lxl < s/vfii,. 

Proof. 1. To verify assertion (i), we check 

L lfaxal < Lgalx1la1 • • • lxnlan < 00 if lxl < r. 

2. Let 0 < svn < r and set y := s(l, ... '1). Then IYI = svn < rand 
so ~a fa Ya converges. Thus there exists a constant C such that 

If aY0 1 < C for each multiindex a. 

In particular, 

I I < C _ !!._ < C lnll 
J a - et1 an - l"'I - lal I · Y1 · · · Yn s.... s a. 

But then 
g(x) := Cs = c"' lnl! XQ 

s - (x1 + · · · + Xn) ~ sl 0 1a! 
a 

majorizes f for lxl < s / Vn· D 
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Remark. We will later need to extend our notation to vector-valued se
ries. So given power series {/k}k=l' {gk}k=l' we set f = (/1, ... , fm), 
g = (g1, ... , gm) and write 

g>> f 
to mean 

gk >> fk (k = 1, ... 'm). 

4.6.3. Cauchy-Kovalevskaya Theorem. 

We turn now to our primary task of building a power series solution 
for the kth_order quasilinear partial differential equation (1), with analytic 
Cauchy data (2) specified on an analytic, noncharacteristic hypersurface r. 

a. Reduction to a first-order system. We intend to construct a solution 
u as a power series, but must first transform the boundary-value problem 
(1), (2) into a more convenient form. 

First of all, upon flattening out the boundary by an analytic mapping (as 
in §4.6.1), we can reduce to the situation that r c {xn = 0}. Additionally, 
by subtracting off appropriate analytic functions, we may assume the Cauchy 
data are identically zero. Consequently we may assume without loss that 
our problem reads: 

{ 
Eic.rl=k aa(Dk-lu, ... , u, x)Dau 

(14) +ao(Dk-1u, ... , u, x) = 0 for lxl < r 
a ak-1 

u = au = ... = k-~ = 0 for lx'I < r Xn = 0 Xn axn ' ' 

r > 0 to be found. Here aa (lad = k) and ao are analytic, and as usual we 
write x' = (xi, ... , Xn-1). 

Finally we transform to a first-order system. To do so, we introduce the 
function 

( au au a2u ak-lu) 
u := u, ax ' ... 'ax 'µ, ... 'a k-1 ' 1 n x1 Xn 

the components of which are all the partial derivatives of u of order less 
than k. Let m hereafter denote the number of components of u, so that 
u : Rn ~ lRm, u = (u1, ... , um). Observe from the boundary condition in 
(14) that u = 0 for lx'I < r, Xn = 0. 

Now fork E {1, ... ,m -1}, we can compute u~n in terms of {ux;}j,:f. 
Furthermore in view of the noncharacteristic condition a(o, ... ,O,k) =F 0 near 
0, we can utilize the PDE in (14) also to solve for u~ in terms of u and 
{ } n-1 

llx; j=l. 
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Employing these relations, we can consequently transform (14) into a 
boundary-value problem for a first-order system for u, the coefficients of 
which are analytic functions. This system is of the general form: 

(15) { Uxn = E'J;~: Bj(u, x')ux; + c(u, x') for lxl < r 

u = 0 for Ix' I < r, Xn = 0, 

where we are given the analytic functions Bj : IRm x IRn-l ~ Mmxm (j = 
1, ... ,n - 1) and c : IRm x IRn-l ~ IRm. We will write Bj = ((bjl)) and 

c = (c1, ... , cm). Carefully note that we have assumed {Bj}j,:f and c do 
not depend on Xn· We can always reduce to this situation by introducing if 
necessary a new component um+I of the unknown u, with um+l = Xn. 

In particular, the components of the system of partial differential equa
tions in ( 15) read 

n-1 m 

(16) u!n =LL bjl(u, x')u~; + ck(u, x') (k = 1, ... , m). 
j=l l=l 

b. Power series for solutions. Having reduced to the special form (15), 
we can now expand u into a power series and, more importantly, verify that 
this series converges near 0. 

THEOREM 2 (Cauchy-Kovalevskaya Theorem). Assume {BJ}j,:f and 
c are real analytic functions. Then there exist r > 0 and a real analytic 
function 

(17) - """' c.r U - L.J UaX 

solving the boundary-value problem (15). 

Proof. 1. We must compute the coefficients 

(18) 
nc.ru(O) 

Uc.r = ---
a! 

in terms of {Bj}j,:f and c and then show that the power series (18) so 
obtained in fact converges if lxl < r and r > 0 is small enough. 

2. As the functions {BJ }j,:f and c are analytic, we can write 

(19) Bj(z, x') = L Bj,-y,6z'Y x6 (j = 1, ... , n - 1) 
')' ,6 
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and 

(20) c ( z, x') = L c-y ,6 z 'Y x6, 

-y,{J 
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these power series convergent if lzl + lx'I < s for some smalls> 0. Thus 

(21) 
B· _ DiD!Bj(O,O) c _ DiD!c(O,O) 

J,-y,{J - (' + 8)! ' -y,{J - (' + 8)! 

for j = 1, ... , n - 1 and all multiindices ,, 8. 

3. Since u = 0 on {xn = O}, we have 

(22) U ,., __ nc.ru(O) __ O 
<.& for all multiindices a with O:n = 0. 

a! 

Now fix i E {1, ... , n - 1} and differentiate (16) with respect to Xi: 

In view of (22), we conclude u~nxi (0) = c~i (0, 0). 

If a is a multiindex having the form a = ( 0:1, ... , O:n-1, 1) = (a', 1), we 
likewise prove by induction that 

Next suppose a = (a', 2). Then 

nc.ruk = nc.r' (uk ) 
Xn Xn 

= D"" (if b~1u~; + ck) by {16) 
j=l l=l Xn 

Thus 

Dc.ruk(O) =Der'(~~ b~lUl. +~Ck uP ) . L.J L.J J X3Xn L.J Zp Xn 

j=l l=l p=l x=u=O 

The expression on the right-hand side can be worked out to be a polynomial 
with nonnegative coefficients involving various derivatives of {Bi }"J~f and c 
and the derivatives Df3u, where f3n < 1. 
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More generally, for each multiindex a and each k E { 1, ... , m}, we 
compute 

where p~ denotes some polynomial with nonnegative coefficients. 

Recalling (18)-(21), we deduce for each a, k that 

(23) u~ = q~( ... , Bj,-y,6, ... , c-y,6, ... , u,a, ... ), 

where 

( 24) q~ is a polynomial with nonnegative coefficients 

and 

(25) f3n < ll'.n - 1 for each multiindex f3 on the right-hand side of (23). 

4. Thus far we have merely demonstrated that if there is a smooth 
solution of (15), then we can compute all of its derivatives at 0 in terms of 
known quantities. This of course we already know from the discussion in 
§4.6.1, since the plane {xn = O} is noncharacteristic. 

We now intend to employ (22)-(25) and the method of majorants to show 
the power series (17) actually converges if lxl < r and r is small. For this, 
let us first suppose 

(26) 

and 

(27) 

where 

and 

Bj >>Bi (j = 1, ... , n - 1) 

c* >> c, 

(j=l, ... ,n-1) 

c* := L c;,6z-Yx6, 

-y,6 

these power series convergent for I z I + Ix' I < s. Then for all j, r, 8, 

(28) 
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We consider next the new boundary-value problem 

(29) { 
u* = ""!--1 B"'. (u* x')u* + c* (u* x') for !xi < r 

Xn L,.,3=1 J ' Xj ' 

u* = 0 for lx'I < r, Xn = 0, 

and, as above, look for a solution having the form 

(30) 

where 

(31) 

5. We claim 

u* = ~u*x0 
L....J a ' 

* D0 u*(O) 
Ua = I . a. 

0 < lu~I < u~* for each multiindex a. 

The proof is by induction. The general step follows since 

lu~I = lq!(. .. ,Bj,-y,8,···,c-y,<S, ... ,u,a, ... )I by (23) 

< q!(. · ·, IBj,-y,81, · ·., lc-y,81,. ·., lu,al, ... ) by (24) 
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< q!( ... , Bj,-y,8, ... , c~18 , ... , u~, ... ) by (24), (28) and induction 

Thus 

(32) 

= uk* a . 

u* >> u, 

and so it suffices to prove that the power series (30) converges near zero. 

6. As demonstrated in the proof of assertion (ii) of the lemma in §4.6.2, 
if we choose 

B"'. ·= Cr (11 11) 
3 • r - (x1 + · · · + Xn-d - (z1 + · · · + Zm) 

for j = 1, ... , n - 1, and 

Cr 
c* := ( ) ( ) (1, ... , 1), 

r - XI + · · · + Xn-1 - z1 + · · · + Zm 

then (26), (27) will hold if C is large enough, r > 0 is small enough, and 
lx'I + lzl < r. 
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Hence the problem (29) reads 

Cr u* =~~~~~~~~~~~~~~~-
xn r - (x1 + · · · + Xn-1) - (uh+···+ um*) 

u* =0 

(Ej,l u~: + 1) 
for lxl < r 
for lx'I < r, Xn = 0. 

However, this problem has an explicit solution, namely 

(33) 

for 

(34) 

u* = v*(l, ... , 1), 

v*(x) :=-1-(r - (x1 + · · · + Xn-1) 
mn 

- [(r - (x1 + · · · + Xn-1))2 - 2mnCrxn] 112 ). 

This expression is analytic for lxl < r, provided r > 0 is sufficiently small. 
Thus u* defined by (33) necessarily has the form (30), (31), the power series 
(30) converging for lxl < r. As u* >> u, the power series (17) converges as 
well for lxl < r. 

This defines the analytic function u near 0. Since the Taylor expansions 
of the analytic functions Uxn and Ej,:{ Bj(u, x)ux; + c(u, x) agree at 0, 
they agree as well throughout the region lxl < r. D 

The Cauchy-Kovalevskaya Theorem is valid also for fully nonlinear, an
alytic PDE: see Folland [Fl). 

4.7. PROBLEMS 

In the following exercises, all given functions are assumed smooth, unless 
otherwise stated. 

1. Use separation of variables to find a nontrivial solution u of the PDE 

(G. Aronsson, Manuscripta Math. 47 (1984), 133-151) 

2. Consider Laplace's equation ~u = 0 in 1R2, taken with the Cauchy 
data 

u = 0, ~ = ~ sin(nx1) on {x2 = O}. 

Employ separation of variables to derive the solution 

u = -;!,: sin(nx1) sinh(nx2). 
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What happens to u as n ~ oo? Is the Cauchy problem for Laplace's 
equation well-posed? (This example is due to Hadamard.) 

3. Find explicit formulas for v and a, so that u(x, t) := v(x - at) is a 
traveling wave solution of the nonlinear diffusion equation 

Ut - Uxx = J(u), 

where 
f(z) = -2z3 + 3z2 - z. 

Assume lims-oo v = 1, lims--oo v = 0, lims-±oo v' = 0. 

(Hint: Multiply the equation v" +av'+ f(v) = 0 by v' and integrate, 
to determine the value of a.) 

4. If we look for a radial solution u(x) = v(r) of the nonlinear elliptic 
equation 

-Llu = uP in IRn 
' 

where r = lxl and p > 1, we are led to the nonautonomous ODE 

n-1 
v" + v' + vP = 0. 

r 

Show that the Emden-Fowler transformation 

2t 
t := log r, x(t) := eP-1 v( et) 

converts(*) into an autonomous ODE for the new unknown x = x(t). 

5. Find a nonnegative scaling invariant solution having the form 

for the nonlinear heat equation 

Ut - Ll(u'Y) = 0, 

where n;;:2 < r < 1. Your solution should go to zero algebraically as 
lxl ~ oo. 

6. Find a solution of 

nt2 
-Llu + un-2 = 0 in B(O, 1) 

having the form u = a(l - lxl 2 )-.B for positive constants a, {3. This 
example shows that a solution of a nonlinear PDE can be finite within 
a region and yet approach infinity everywhere on its boundary. 
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7. Consider the viscous conservation law 

Ut + F(u)x - aUxx = 0 in IR X (0, oo), 

where a > 0 and F is uniformly convex. 

(a) Show u solves (*)if u(x, t) = v(x-ut) and vis defined implicitly 
by the formula 

1v(s) a 
s = dz 

c F(z) - az + b 
(s E IR), 

where b and c are constants. 

(b) Demonstrate that we can find a traveling wave satisfying 

lim v(s) = uz, lim v(s) =Ur 
s--oo s-oo 

for uz > Ur, if and only if 

F(uz) - F(ur) 
(]' = . 

Uz -Ur 

( c) Let ue denote the above traveling wave solution of ( *) for a = c, 
with ue(O, 0) = ui~ur. Compute lime-a ue and explain your 
answer. 

8. Prove that if u is the solution of problem (23) for Schrodinger's equa
tion in §4.3 given by formula (20), then 

for each t =/= 0. 

9. Assume that u solves the nonlinear heat equation 

Uxx 
Ut = - in JR X ( 0, 00) 

u2 x 

with Ux > 0. Let v denote the inverse function to u in the variable x 
for each time t > 0, so that y = u(x, t) if and only if x = v(y, t). 

Show that v solves a linear PDE. 

10. Find a function f : JR3 --+ IR, f = f(z,pi,p2), so that if u is any 
solution of the rotated wave equation 

Uxt = 0, 
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then w := f ( u, Ux, Ut) solves Liouville 's equation 

w Wxt = e 
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(Hint: Show that f must have the form J(z,pi,p2) = a(z) + b(p1) + 
c(p2).) 

11. (Lax pairs) Assume that {L(t)}t~o is a family of symmetric linear op
erators on some real Hilbert space H, satisfying the evolution equation 

L = [B, L] = BL - LB, 

for some collection of operators { B( t) }t~o- Suppose also that we 
have a corresponding family of eigenvalues {.X(t)}t~o and eigenvectors 
{w(t)}t~o: 

L(t)w(t) = .X(t)w(t). 

Assume that L, B, .X and w all depend smoothly upon the time pa
rameter t. 
Show that 

.X= 0. 

(Hint: Differentiate the identity Lw = .Xw with respect tot. Calculate 
(~w, w).) 

12. (Continuation) Given a function u = u(x, t), define the linear opera
tors L(t)v := -Vxx + uv and B(t)v = -4Vxxx + 6uvx + 3uxv. 

Show that 

(L - [B, L])v = (ut + Uxxx - 6uux)v = 0. 

Consequently, if u solves this form of the KdV equation: 

Ut - 6uux + Uxxx = 0, 

then the eigenvalues of the linear operators L(t) do not change with 
time. 

13. Show that we can construct an explicit solution of the initial-value 
problem (17), (19) from Example 1 in §4.5.1, having the form 

( ) __ 1_ 1 -z2 /-y(t) 
v z,t - u(t) (7r'Y(t))l/2e (z ER, t > 0), 

the function r(t) to be found. Substitute into the PDE and determine 
an ODE that r should satisfy. What is the initial condition for this 
ODE? 
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Suppose we can write 

where uo, vo, ui, v1 are smooth, uo, vo > 0, and the functions u2, v2 are 
bounded, along with their derivatives, uniformly in E. 

Show that uo = vo =:wand w solves the nonlinear heat equation 

1 
Wt - 4(logw)xx = 0. 

(T. Kurtz, Trans. AMS 186 (1973), 259-272) 

15. Justify in the proof of Lemma 2 in §4.5.3 the transformation of the 
integral of e-z2 over the liner to the integral over the real axis. 

16. Utilize Lemma 2 in §4.5.3 to discuss the sense in which u defined by 
formula (20) in §4.3.1 converges to the initial data g as t---+ o+. 

17. Let n = 1 and suppose that ue solves the problem 

{ -(a(~)ui)x = f in (0, 1) 
ue:(o) = ue(l) = 0, 

where a is a smooth, positive function that is 1-periodic. Assume also 
that f E £ 2(0, 1). 

(a) Show that ue ~ u weakly in HJ(O, 1), where u solves 

{ 
-aUxx = f in (0, 1) 

u(O) = u(l) = 0, 

for a:= (f0
1 a(y)-1 dy)-1. 

(b) Check that this answer agrees with the conclusions (73), (74) in 
§4.5.4. 

(This problem requires knowledge of energy estimates, Sobolev spaces, 
etc., from Chapters 5, 6.) 

18. (Variational principles in homogenization) Let A(y) = ((aii(y))) be 
symmetric, positive definite and Q-periodic. Recall from §4.5.4 the 
expression (74) for the corresponding homogenized coefficients A = 
( (aii) ). 
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(a) Derive for each { E IRn the variational formula 

e. A{= min{ [ Dw. A(y)Dwdy I w = y. e + v, v Q-periodic}. 
w JQ 

(Hint: The minimum is attained by w = y · { - L:?=i {iXi, for 
the correctors xi introduced in §4.5.4.) 

(b) Derive also the dual variational formula 

17 · A.-117 =min{ f u · A(y)-1udy 
CT JQ 

I l u dy = 'I/, div u = 0, u Q-periodic}. 

( c) Show that therefore 

(l A(y)-1 dy )-
1 <A< l A(y)dy. 

(Remember from §A.1 that for symmetric matrices R > S means 
R - Sis nonnegative definite.) 

19. Show that the line { t = O} is characteristic for the heat equation 
Ut = Uxx· Show there does not exist an analytic solution u of the heat 
equation in IR x IR, with u = 1.Jx2 on { t = 0}. 

(Hint: Assume there is an analytic solution, compute its coefficients, 
and show that the resulting power series diverges except at (0, 0). This 
example is due to Kovalevskaya.) 
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Chapter 5 

This chapter mostly develops the theory of Sobolev spaces, which turn 
out often to be the proper settings in which to apply ideas of functional 
analysis to glean information concerning PDE. The following material is 
sometimes subtle and seemingly unmotivated, but ultimately will prove ex
tremely useful. 

Since we have in mind eventual applications to rather wide classes of 
partial differential equations, it is worth sketching out here our overall point 
of view. Our intention, broadly put, will be to take various specific PDE and 
to recast them abstractly as operators acting on appropriate linear spaces. 
We can symbolically write 

A:X-+Y, 

-253 
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where the operator A encodes the structure of the partial differential equa
tions, including possibly boundary conditions, etc., and X, Y are spaces of 
functions. The great advantage is that once our PDE problem has been 
suitably interpreted in this form, we can often employ the general and ele
gant principles of functional analysis (Appendix D) to study the solvability 
of various equations involving A. We will later see that the really hard work 
is not so much the invocation of functional analysis, but rather finding the 
"right" spaces X, Y and the "right" abstract operators A. Sobolev spaces 
are designed precisely to make all this work out properly, and so these are 
usually the proper choices for X, Y. 

We will utilize Sobolev spaces for studying linear elliptic, parabolic and 
hyperbolic PDE in Chapters 6-7 and for studying nonlinear elliptic and 
parabolic equations in Chapters 8-9. 

The reader may wish to look over some of the terminology for functional 
analysis in Appendix D before going further . 

.. 
5.1. HOLDER SPACES 

Before turning to Sobolev spaces, we first discuss the simpler Holder spaces. 

Assume UC Rn is open and 0 < 'Y < 1. We have previously considered 
the class of Lipschitz continuous functions u : U --+ R, which by definition 
satisfy the estimate 

(1) lu(x) - u(y)I < Clx -yl (x, y EU) 

for some constant C. Now (1) of course implies u is continuous and more 
importantly provides a uniform modulus of continuity. It turns out to be 
useful to consider also functions u satisfying a variant of ( 1), namely 

(2) lu(x) - u(y)I < Clx - yl'Y (x, y EU) 

for some 0 < 'Y < 1 and a constant C. Such a function is said to be Holder 
continuous with exponent 'Y. 

DEFINITIONS. (i) If u : U --+ R is bounded and continuous, we write 

llullccO> :=sup lu(x)I. 
xEU 

(ii) The 'Yth_Holder seminorm of u : U --+ R is 

{ lu(x) - u(y)I} 
[u]co.-r(O) := sup I - I ' 

x,yEU X Y 'Y 
x#y 

and the 'Yth_HOlder norm is 

llullco . ..,(iJ) := llullccu) + [u]co.-r(O)· 
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DEFINITION. The Holder space 
ck,"( (U) 

consists of all functions u E Ck(tJ) for which the norm 

(3) llullck,-.,(if) := L llD0 ullc(O) + L [D 0 u]co . ..,(if) 
lal-::;k lal=k 

is finite. 

So the space Ck,"f (U) consists of those functions u that are k-times con
tinuously differentiable and whose kth_partial derivatives are bounded and 
HOider continuous with exponent 'Y· Such functions are well-behaved, and 
furthermore the space Ck·"f(U) itself possesses a good mathematical struc
ture: 

THEOREM 1 (HOider spaces as function spaces). The space of functions 
ck,"( (U) is a Banach space. 

The proof is left as an exercise (Problem 1), but let us pause here to 
make clear what is being asserted. Recall from §D.1 that if X denotes a real 
linear space, then a mapping II II : X ---+ (0, oo) is called a norm provided 

(i) llu +vii < llull + llvll for all u, v EX, 
(ii) llAull = IAlllull for all u EX, A E IR, 

(iii) llull = 0 if and only if u = 0. 

A norm provides us with a notion of convergence: we say a sequence { uk}k::1 

C X converges to u EX, written Uk---+ u, if limk-oo lluk-ull = 0. A Banach 
space is then a normed linear space which is complete, that is, within which 
each Cauchy sequence converges. 

So in Theorem 1 we are stating that if we take on the linear space 
ck·"f(tJ) the norm 11 · 11 = 11 · llck . ..,cu)' defined by (3), then 11 · 11 verifies 
properties (i)-(iii) above, and in addition each Cauchy sequence converges. 

5.2. SOBOLEV SPACES 

The HOider spaces introduced in §5.1 are unfortunately not often suitable 
settings for elementary PDE theory, as we usually cannot make good enough 
analytic estimates to demonstrate that the solutions we construct actually 
belong to such spaces. What are needed rather are some other kinds of 
spaces, containing less smooth functions. In practice we must strike a bal
ance, by designing spaces comprising functions which have some, but not 
too great, smoothness properties. 

5.2.1. Weak derivatives. 

We start off by substantially weakening the notion of partial derivatives. 
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NOTATION. Let cgo(U) denote the space of infinitely differentiable func
tions </> : U --+ JR, with compact support in U. We will sometimes call a 
function </> belonging to Cgo ( U) a test function. D 

Motivation for definition of weak derivative. Assume we are given a 
function u E C1 ( U). Then if </> E ego ( U), we see from the integration by 
parts formula that 

(1) L u<Px, dx = - L Ux,<Pdx (i = 1, ... , n). 

There are no boundary terms, since</> has compact support in U and thus 
vanishes near 8U. More generally now, if k is a positive integer, u E Ck(U), 
and a= (ai, ... , an) is a multiindex of order lal = a1 +···+an= k, then 

(2) 

This equality holds since 

and we can apply formula ( 1) I a I times. 

We next examine formula (2), valid for u E Ck(U), and ask whether 
some variant of it might still be true even if u is not k times continuously 
differentiable. Now the left-hand side of (2) makes sense if u is only locally 
summable: the problem is rather that if u is not Ck, then the expression 
"Do:u" on the right-hand side of (2) has no obvious meaning. We resolve 
this difficulty by asking if there exists a locally summable function v for 
which formula (2) is valid, with v replacing no:u: 

DEFINITION. Suppose u, v E Lf0 c(U) and a is a multiindex. We say 
that v is the ath_weak partial derivative of u, written 

Do:u = v, 

provided 

(3) L uDa<Pdx = (-l)lalL v<Pdx 

for all test functions</> E Cgo(U). 

In other words, if we are given u and if there happens to exist a function 
v which verifies (3) for all</>, we say that no:u = v in the weak sense. If there 
does not exist such a function v, then u does not possess a weak ath_partial 
derivative. 
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LEMMA (Uniqueness of weak derivatives). A weak a.th _partial derivative 
of u, if it exists, is uniquely defined up to a set of measure zero. 

Proof. Assume that v, v E Lfoc ( U) satisfy 

for all </> E C~ ( U). Then 

(4) 

for all</> E C~(U), whence v - v = 0 a.e. 

Example 1. Let n = 1, U = (0, 2), and 

u(x) = { ~ 

Define 

v(x)={~ 

if O<x<l 

if 1 < x < 2. 

if 0 < x < 1 

if 1 < x < 2. 

D 

Let us show u' = v in the weak sense. To see this, choose any</> E C~(U). 
We must demonstrate 

But we easily calculate 

fo2 utp' dx =fol x<P' dx + 12 <P' dx 

= - [ <Pdx + ¢(1) - ¢(1) = - [ v¢dx, 

as required. D 

Example 2. Let n = 1, U = (0, 2), and 

{ 
x if 0 < x < 1 

u(x) = -
2 if 1 < x < 2. 
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We assert u' does not exist in the weak sense. To check this, we must show 
there does not exist any function v E Lf0 c ( U) satisfying 

(5) 12 
u<f/ dx = -12 

v,Pdx 

for all ¢ E C~ ( U). Suppose, to the contrary, ( 5) were valid for some v and 
all¢. Then 

-12 v,Pdx=12 u¢'dx=1• x¢' dx+ 212 
¢' dx 

= - f ¢dx-¢(1). 

(6) 

Choose a sequence { ¢m};;;=l of smooth functions satisfying 

0 <<Pm < 1, ¢m(l) = 1, <Pm(x) ---+ 0 for all x f:. 1. 

Replacing¢ by <Pm in (6) and sending m---+ oo, we discover 

1 = lim ¢m(l) = lim [ f 2 v<Pm dx - f 1 <Pm dx] = 0, 
m-oo m-oo lo lo 

a contradiction. D 

More sophisticated examples appear in the next subsection. 

5.2.2. Definition of Sobolev spaces. 

Fix 1 < p < oo and let k be a nonnegative integer. We define now 
certain function spaces, whose members have weak derivatives of various 
orders lying in various I.J' spaces. 

DEFINITION. The Sobolev space 

Wk·P(U) 

consists of all locally summable functions u : U ---+ IR such that for each 
multiindex a with I a I < k, no:u exists in the weak sense and belongs to 
I.J'(U). 

Remarks. (i) If p = 2, we usually write 

Hk(U) = Wk•2 (U) (k = 0, 1, ... ). 

The letter His used, since-as we will see-Hk(U) is a Hilbert space. Note 
that H 0 (U) = L2 (U). 

(ii) We henceforth identify functions in Wk·P(U) which agree a.e. 
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DEFINITION. /ju E Wk,P(U), we define its norm to be 

llull ·= { ( L:1al~k f u I Dau IP dx) 1/p (1 < p < oo) 
Wk,P(U) · 

L:1al~kess supu IDaul (p = oo). 

DEFINITIONS. (i) Let {um}~=l' u E Wk·P(U). We say um converges 
to u in Wk•P(U), written 

provided 
lim llum - ullwk.P(U) = 0. 

m--+oo 

(ii) We write 

Um~ u in w.~~(U) 
to mean 

for each V CCU. 

DEFINITION. We denote by 

w;•P(U) 

the closure of C'g"(U) in Wk·P(U). 

Thus u E w;·P(U) if and only if there exist functions Um E C'g°(U) such that 
Um ~ u in Wk·P(U). We interpret w;·P(U) as comprising those functions 
u E Wk·P(U) such that 

"Dau= 0 on 8U" for all lal < k - 1. 

This will all be made clearer with the discussion of traces in §5.5. 

NOTATION. It is customary to write 

H~(U) = w;·2 (U). 

We will see in the exercises that if n = 1 and U is an open interval in 
R1, then u E W 1·P(U) if and only if u equals a.e. an absolutely continuous 
function whose ordinary derivative (which exists a.e.) belongs to IJ'(U). 
Such a simple characterization is however only available for n = 1. In 
general a function can belong to a Sobolev space and yet be discontinuous 
and/ or unbounded. 



260 5. SOBOLEV SPACES 

Example 3. Take U = B 0 (o, 1), the open unit ball in IRn, and 

u(x) = lxl-a (x EU, x-/:- 0). 

For which values of a> 0, n,p does u belong to W 1·P(U)? To answer, note 
first that u is smooth away from 0, with 

and so 
lal 

IDu(x)I = lxla+l (x-/:- 0). 

Let¢ E Cg"(U) and fix c > 0. Then 

1 u<Pxi dx = -1 Uxi ¢ dx + { u¢vi dS, 
U-B(O,c) U-B(O,c) laB(O,c) 

v = (v1 , ... , vn) denoting the inward pointing normal on 8B(O, c). Now if 
a+ 1 < n, IDu(x)I E L 1(U). In this case 

{ u¢vi dS < ll<Pllvxi { c-a dS < Ccn-l-a ---+ 0. 
laB(O,c) laB(O,c) 

Thus L wf>.,. dx = - L u.,,"' dx 

for all¢ E Cg"(U), provided 0 <a< n-1. Furthermore IDu(x)I = lxl~~I E 

LP(U) if and only if (a+ l)p < n. Consequently u E W 1·P(U) if and only if 
a< n;p. In particular u ¢_ W 1•P(U) for each p > n. D 

Example 4. Let {rk}~1 be a countable, dense subset of U = B 0 (o, 1). 
Write 

00 1 
u(x) = L 2k Ix - rkl-a (x EU). 

k=l 

Then u E W 1·P(U) for a< n;p. If 0 <a< n;p, we see that u belongs to 

W 1·P(U) and yet is unbounded on each open subset of U. D 

This last example illustrates a fundamental fact of life, that although 
a function u belonging to a Sobolev space possesses certain smoothness 
properties, it can still be rather badly behaved in other ways. 
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5.2.3. Elementary properties. 

Next we verify certain properties of weak derivatives. Note very carefully 
that whereas these various rules are obviously true for smooth functions, 
functions in Sobolev space are not necessarily smooth: we must always rely 
solely upon the definition of weak derivatives. 

THEOREM 1 (Properties of weak derivatives). Assume u, v E Wk•P(U), 
lal < k. Then 

(7) 

(i) Dau E wk-lal,P(U) and Df3(Dau) = Da(Df3u) = Da+f3u for all 
multiindices a, f3 with lal + lf31 < k. 

(ii) For each)..,µ E IR, )..u + µv E Wk•P(U) and Da()..u + µv) =)..Dau+ 
µDav, lal < k. 

(iii) If V is an open subset of U, then u E Wk·P(V). 

(iv) If ( E Cg"(U), then (u E Wk•P(U) and 

Da((u) = L (Q'.) D{3(Da-f3u {Leibniz's formula}, 
{3'5:a {3 

Proof. 1. To prove (i), first fix</> E Cg"(U). Then Df3</> E Cg"(U), and so 

fu D"'uDfJt/> dx = (-1)1"'1 fu uD"'+fJ tf> dx 

= ( -1) I al ( -1) la+fJI fu D"'+fJ utf> dx 

= ( -1) lfJI fu na+fJ utf> dx. 

Thus Df3(Dau) = Da+f3u in the weak sense. 

2. Assertions (ii) and (iii) are easy, and the proofs are omitted. 

3. We prove (7) by induction on lal. Suppose first lal = 1. Choose any 
</> E Cg" ( U). Then 

fu (uD"'tf>dx = fu uD"'((t/>) - u(D"'()tf>dx 

= - fu ((D"'u + uD"()tf>dx. 
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Thus Do:((u) =(Dau+ uDo:(, as required. 

Next assume l < k and formula (7) is valid for all lal <land all functions 
(.Choose a multiindex a with lal = l+l. Then a= f3+r for some 1!31 = l, 
bl = 1. Then for</> as above, 

L (uD°'cf>dx = L (ud3(D"cf>)dx 

= (-l)IPI 1 L (~)nucnf3-uuD'Y<f>dx 
U u-5:(3 

(by the induction assumption) 

= ( -1) lf31+1'YI [ L ({3) D'Y (nu' nf3-u u )</> dx 
Ju u-5:(3 <:T 

(by the induction assumption again) 

(where p = <:T + r) 

since 

D 

Not only do many of the usual rules of calculus apply to weak derivatives, 
but the Sobolev spaces themselves have a good mathematical structure: 

THEOREM 2 (Sobolev spaces as function spaces). For each k = 1, ... 
and 1 < p < oo, the Sobolev space Wk·P(U) is a Banach space. 

Proof. 1. Let us first of all check that llullwk.P(U) is a norm. (See the 
discussion at the end of §5.1, or refer to §D.l, for definitions.) Clearly 

and 
llullwk.P(U) = 0 if and only if u = 0 a.e. 
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Next assume u, v E Wk·P(U). Then if 1 < p < oo, Minkowski's inequality 
(§B.2) implies 

2. It remains to show that Wk·P(U) is complete. So assume { um}~=l 
is a Cauchy sequence in Wk•P(U). Then for each lal < k, {Daum}~=l is a 
Cauchy sequence in V'(U). Since V'(U) is complete, there exist functions 
u0 E V'(U) such that 

for each I a I < k. In particular, 

Um --+ U(o,. .. ,o) =: u in LP(U). 

3. We now claim 

(8) 

To verify this assertion, fix </> E Cgc'(U). Then 

{ uD0 </> dx = lim { UmD0 </> dx 
Ju m-.oo}u 

= lim (-l)lal [ Daum</>dx 
m-.oo Ju 

= ( -1 )IQlfu uQ<f> dx. 

Thus (8) is valid. Since therefore Daum--+ Dau in V'(U) for all lal < k, we 
see that Um --+ u in Wk·P(U), as required. D 
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5.3. APPROXIMATION 

5.3.1. Interior approximation by smooth functions. 

It is awkward to return continually to the definition of weak derivatives. 
In order to study the deeper properties of Sobolev spaces, we therefore need 
to develop some systematic procedures for approximating a function in a 
Sobolev space by smooth functions. The method of mollifiers, set forth in 
§C.4, provides the tool. 

Fix a positive integer k and 1 < p < oo. Remember that Uc = { x E U I 
dist(x, au)> c}. 

THEOREM 1 (Local approximation by smooth functions). Assume u E 

Wk·P(U) for some 1 < p < oo, and set 

Then 
(i) Uc E C00 (Uc) for each€ > 0, 

and 
(ii) uc-+ u in Wi~~(U), as c:-+ 0. 

Proof. 1. Assertion (i) is proved in §C.4. 

2. We next claim that if lad < k, then 

(1) 

that is, the ordinary a.th _partial derivative of the smooth Junction uc is the 
€-mollification of the ath_weak partial derivative of u. To confirm this, we 
compute for x E Uc 

D"u'(x) = D" L 1Je(x - y)u(y) dy 

= L D~110(x-y)u(y)dy 
= (-1)1<>1 L D~1Je(x - y)u(y) dy. 

Now for fixed x E Uc the function </>(y) := 1/c(x - y) belongs to Cg"(U). 
Consequently the definition of the ath_weak partial derivative implies: 

L D~1Je(x-y)u(y)dy = (-l)l"IL 11.(x-y)D"u(y)dy. 
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Thus 

D''u'(x) = (-l)l<>l+l<>IL 'l/e(x -y)D"u(y)dy 

= [rJe: * D 0 u] (x). 

This establishes ( 1). 
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3. Now choose an open set V cc U. In view of (1) and §C.4, D 0 ue: --+ 

D 0 u in .LP(V) as c --+ 0, for each lal < k. Consequently 

lluc - ull~k.P(V) = E llD0 uc - D0 ulliP(V) --+ 0 
lal~k 

as c--+ 0. This proves assertion (ii). 

5.3.2. Approximation by smooth functions. 

D 

Next we show that we can find smooth functions which approximate in 
Wk·P(U) and not just in W1~~(U). Notice in the following that we make no 
assumptions about the smoothness of au. 

THEOREM 2 (Global approximation by smooth functions). Assume U 
is bounded, and suppose as well that u E Wk·P(U) for some 1 < p < oo. 
Then there exist functions Um E C00 (U) n Wk·P(U) such that 

Um ---+ u in Wk•P(U). 

Note carefully that we do not assert Um E C 00 CU) (but see Theorem 3 
below). 

Proof. 1. We have u = U~1 ui, where 

ui := {x Eu I dist(x, au)> 1/i} (i = 1, 2, ... ). 

Write Vi := Ui+3 - Ui+l· 

Choose also any open set Vo cc U so that U = U~o \Ii. Now let { (i}~0 
be a smooth partition of unity subordinate to the open sets {Vi}~0 ; that is, 
suppose 

(2) { 0 : (i < 1, (i E C~ (Vi) 
L:i=O (i = 1 on U. 

Next, choose any function u E Wk·P(U). According to Theorem l(iv) in 
§5.2, (iU E Wk·P(U) and spt((iu) c \Ii. 
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2. Fix 8 > 0. Choose then ci > 0 so small that ui :="lei * ((iu) satisfies 

(3) 
(i=0,1, ... ) 

(i=l, ... ), 

for Wi := Ui+4 - [Ti =>Vi (i = 1, ... ). 

3. Write v := E:o ui. This function belongs to C00 (U), since for each 
open set V cc U there are at most finitely many nonzero terms in the sum. 
Since u = E:o (iu, we have for each V CC U 

00 

llv - ullwk.P(V) < E llui - (iullwk.P(U) 
i=O 

00 1 
< 8L 2i+l by (3) 

i=O 
-~ - u. 

Take the supremum over sets V cc U, to conclude llv - ullwk.P(U) < 8. 0 

5.3.3. Global approximation by smooth functions. 

We now ask when it is possible to approximate a function u E Wk·P(U) 
by functions belonging to C00 (U), rather than only C 00 (U). Such an ap
proximation requires some condition to exclude au being wild geometrically. 

THEOREM 3 (Global approximation by functions smooth up to the 
boundary). Assume U is bounded and au is C1 . Suppose u E Wk·P(U) 
for some 1 < p < oo. Then there exist functions Um E C 00 ( U) such that 

Proof. 1. Fix any point x0 E au. As au is C 1' there exist, according to 
§C.l, a radius r > 0 and a C1 function 1 : Rn-l ---+ R such that-upon 
relabeling the coordinate axes if necessary-we have 

u n B(x0 , r) = {x E B(x0 , r) I Xn > r(Xi, ... 'Xn-1)}. 

Set V :=Un B(x0 , r/2). 

2. Define the shifted point 

xe := x + ..\cen ( x E V, c > 0), 
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E 
B (x , E) 

and observe that for some fixed, sufficiently large number A > 0 the ball 
B(xe, e) lies in Un B(x0 , r) for all x E V and all small e > 0. 

Now define ue(x) := u(xe) (x E V); this is the function u translated a 
distance .Xe in the en direction. Next write ve = 'f/e * ue. The idea is that we 
have moved up enough so that ''there is room to mollify within U" . Clearly 
Ve E C00(V). 

3. We now claim 

(4) 

To confirm this, take a to be any multiindex with lal < k. Then 

The second term on the right-hand side goes to zero withe, since translation 
is continuous in the .LP-norm; and the first term also vanishes in the limit, 
by reasoning similar to that in the proof of Theorem 1. 

4. Select ~ > 0. Since au is compact, we can find finitely many points 
x? Eau, radii Ti> 0, corresponding sets Vi= UnB0 (x?, ~)'and functions 
Vi E C00 (~) {i = 1, ... ,N) such that au c U~1 B 0 (x?, ~)and 

(5) 

Take an open set Vo cc U such that U c U~o Vi and select, using Theo
rem 1, a function vo E C00 (Vo) satisfying 

(6) 

5. Now let { (i}f::0 be a smooth partition of unity on U, subordinate 
to the open sets {Vo,B0 (x~,!f) , ... ,B0 (x~,!f)} . Define v := ~~o(ivi . 
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Then clearly v E C 00 (U). In addition, since u = E~o (iu, we see using 
Theorem 1 in §5.2.3 that for each lal < k 

N 

llDctv - naullLP(U) < L llDct((ivi) - na((iu)llLP(Vi) 
i=O 

N 

< CL llvi - ullwk.P(Vi) = C(N + 1)8, 
i=O 

according to ( 5) and ( 6). D 

5.4. EXTENSIONS 

Our goal next is to extend functions in the Sobolev space W 1·P(U) to become 
functions in the Sobolev space W1·P(JRn). This can be subtle. Observe for 
instance that our extending u E W 1·P(U) to be zero in JRn - U will not in 
general work, as we may thereby create such a bad discontinuity along au 
that the extended function no longer has a weak first partial derivative. We 
must instead invent a way to extend u which "preserves the weak derivatives 
across au" . 

Suppose 1 < p < oo. 

THEOREM 1 (Extension Theorem). Assume U is bounded and au is C1 . 

Select a bounded open set V such that U cc V. Then there exists a bounded 
linear operator 

(1) 

such that for each u E W 1•P(U): 
(i) Eu= u a.e. in U, 

(ii) Eu has support within V, 

and 
(iii) 

the constant C depending only on p, U, and V. 

DEFINITION. We call Eu an extension of u to JRn. 

Proof. 1. Fix x0 E au and suppose first 

(2) au is flat near XO, lying in the plane { Xn = Q}. 
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_ 1 __ ___.........._ 
I u 

A half-ball at the boundary 

Then we may assume there exists an open ball B, with center x0 and radius 
r, such that 

{ 
B+ := B n { Xn > 0} c [J 

B- := B n { Xn < O} c Rn - u. 
2. Temporarily suppose also u E C 1(fJ). We define then 

(3) 

u(x) := { u(x) x 
-3u(xi, . .. , Xn-1, -xn) + 4u(xi, ... , Xn-1' -~) 

This is called a higher-order reflection of u from B+ to B-. 

3. We claim 

(4) 

if x EB+ 

if x EB-. 

To check this, let us write u- := ulB-, u+ := ulB+ · We demonstrate first 

(5) u;n = u~n on {xn = O}. 

Indeed according to ( 3), 

and so 
u- I = u+ I . 

Xn {xn=O} Xn {xn=O} 

This confirms (5) . Now since u+ = u- on {xn = O}, we see as well that 
' 

(6) 

for i = 1, ... , n - 1. But then (5) and (6) together imply 

Da:u-l{xn=O} = Da:u+l{xn=O} 
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yO 

...________'I' ----- . 
x-coordinates y-coordinates 

Straightening out the boundary 

for each lal < 1, and so ( 4) follows. 

4. Using these calculations, we readily check as well 

(7) 

for some constant C which does not depend on u. 

5. Let us next consider the situation that 8U is not necessarily fiat near 
x0• Then utilizing the notation and terminology from §C.l, we can find a 
C1 mapping ~' with inverse '11, such that ~ "straightens out au near x0". 

We write y = ~(x), x = 'll(y), u'(y) := u('ll(y)). Choose a small ball B 
as drawn before. Then utilizing steps 1-3 above, we extend u' from B+ to a 
function u' defined on all of B, such that u' is C 1 and we have the estimate 

Let W := 'll(B). Then converting back to the x-variables, we obtain an 
extension u of u to W, with 

(8) 

6. Since au is compact, there exist finitely many points x? Eau, open 
sets Wi, and extensions Ui of u to Wi ( i = 1, ... , N), as above, such that 
au c U!1 wi. Take Wo cc u so that u c U!o wi, and let { (i}f 0 be an 
associated partition of unity. Write u := L:!o (iui, where uo = u. Then 
utilizing estimate (8) (with Ui in place of u, ui in place of u), we obtain the 
bound 

(9) 

for some constant C, depending on U, p, n, etc., but not on u. Furthermore 
we can arrange for the support of u to lie within V :::> :::> U. 
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7. We henceforth write Eu:= u and observe that the mapping u 1--+ Eu 
is linear. 

Recall that the construction so far assumed u E C00 (U). Suppose now 
1 < p < oo, u E W 1·P(U), and choose Um E C00 (U) converging to u in 
W 1·P(U). Estimate (9) and the linearity of E imply 

llEum - Eudlw1.P(Rn) < Cllum - udlw1.P(U)· 

Thus {Eum}~=l is a Cauchy sequence and so converges to u =:Eu. This 
extension, which does not depend on the particular choice of the approxi
mating sequence { um}~=l' satisfies the conclusions of the theorem. 

The case p = oo is left as an exercise. D 

Remarks. (i) Assume now that au is C2• Then the extension operator 
E constructed above is also a bounded linear operator from W 2·P(U) to 
W 2·P(Rn). To see this, note first in steps 3, 4 of the proof that although u 
is not in general C2 , it does belong to W 2·P(B). We also have the bound 

which follows from the definition (3). As before, we consequently derive the 
estimate 

(10) 

provided au is C2 ' the constants c depending only on u, v, n and p. 

We will need these observations later. 

(ii) The above construction does not provide us with an extension for 
the Sobolev spaces Wk·P(U), if k > 2. This requires a more complicated 
higher-order reflection technique. 

5.5. TRACES 

Next we discuss the possibility of assigning "boundary values" along au to 
a function u E W 1·P(U), assuming that au is C1. Now if u E C(U), then 
clearly u has values on au in the usual sense. The problem is that a typical 
function u E W 1·P(U) is not in general continuous and, even worse, is only 
defined a.e. in U. Since au has n-dimensional Lebesgue measure zero, there 
is no direct meaning we can give to the expression "u restricted to au" . 
The notion of a trace operator resolves this problem. 

For this section we take 1 < p < oo. 
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THEOREM 1 (Trace Theorem). Assume U is bounded and au is C 1 . 

Then there exists a bounded linear operator 

T: W 1·P(U) ---+ V(au) 

such that 
(i) Tu = ulau if u E W 1·P(U) n C(U) 

and 
(ii) 

llTullLP(8U) < Cllullw1.P(U)' 

for each u E W 1·P(U), with the constant C depending only on p and U. 

DEFINITION. We call Tu the trace of u on au. 

Proof. 1. Assume first u E C 1 ( U). As in the first part of the proof of 
Theorem 1 in §5.4 let us also initially suppose x0 E au and au is flat near 
x0 , lying in the plane { Xn = 0}. Choose an open ball B as in the previous 
proof and let iJ denote the concentric ball with radius r /2. 

Select ( E C~(B), with ( > 0 in B, ( = 1 on iJ. Denote by r that 
portion of au within iJ. Set x' = (x1, ... 'Xn-1) E Rn-l = {xn = O}. 

Then 

{ lulP dx' < { (lulP dx' = - { ((lulP)xn dx 
Jr J{xn=O} J B+ 

(1) = - { lulP(xn + plulP-1(sgn u)uxn( dx 
}B+ 

< C [ lulP + IDulP dx, 
}B+ 

where we employed Young's inequality, from §B.2. 

2. If XO E aU, but aU is not flat near XO, we as usual straighten out the 
boundary near x0 to obtain the setting above. Applying estimate (1) and 
changing variables, we obtain the bound 

where r is some open subset of aU containing XO. 

3. Since au is compact, there exist finitely many points x? E au and 
open subsets ri c au (i = 1, ... 'N) such that au= U~1 ri and 



5.5. TRACES 273 

Consequently, if we write 
Tu:= ulau, 

then 

(2) 

for some appropriate constant C, which does not depend on u. 

4. Inequality (2) holds for u E C 1(U). Assume now u E W 1·P(U). Then 
there exist functions Um E C 00 (U) converging to u in W 1·P(U). According 
to (2) we have 

(3) 

so that {Tum}~=l is a Cauchy sequence in V'(aU). We define 

Tu := lim Tum, 
m-oo 

the limit taken in V'(aU). According to (3) this definition does not depend 
on the particular choice of smooth functions approximating u. 

Finally if u E W 1·P(U) n C(U), we note that the functions Um E C00 (U) 
constructed in the proof of Theorem 3 in §5.3.3 converge uniformly to u on 
U. Hence Tu= ulau. D 

We next examine more closely what it means for a function to have zero 
trace. 

THEOREM 2 (Trace-zero functions in W1·P). Assume U is bounded and 
au is C1 . Suppose furthermore that u E W 1·P(U). Then 

(4) u E WJ·P(U) if and only if Tu = 0 on au. 

Proof*. 1. Suppose first u E WJ•P(U). Then by definition there exist 
functions Um E C~ (U) such that 

Um---+ u in W 1·P(U). 

As Tum = 0 on au (m = 1, ... ) and T : W 1·P(U) ---+ V'(aU) is a bounded 
linear operator, we deduce Tu= 0 on au. 

2. The converse statement is more difficult. Let us assume that 

(5) Tu= 0 on au. 

*Omit on first reading. 
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Using partitions of unity and flattening out au as usual, we may as well 
assume 

(6) { 
U E W1•P(JR+.), U has compact support in i+., 

Tu= 0 on aIR+. = JRn- 1. 

Then since Tu= 0 on JRn-l, there exist functions Um E C 1(i.+.) such that 

(7) Um---+ U in W 1•P(JRi) 

and 

(8) T I 0 l·n r'D(l[])n-1). Um = Um JRn-1 ---+ .Lt' .11'. 

Now if x' E JRn-l, Xn > 0, we have 

Thus 

Letting m---+ oo and recalling (7), (8), we deduce 

for a.e. Xn > 0. 

3. Next let ( E C 00 (JR+) satisfy 

( - 1 on [O, 1], ( = 0 on JR+ - [O, 2], 0 < ( < 1, 

and write 

{ (m(~~:= ((mxn) (x E JR+.) 
Wm.- u(x)(l - (m)· 

Then 

{ 
Wm,xn Uxn (1 - (m) - mu(' 

Dx'Wm - Dx'u(l - (m)· 



5.6. SOBOLEV INEQUALITIES 275 

Consequently 

{ IDwm - DulP dx < C { l(mlPIDulP dx 
Jan }Rn 

+ + 

12/ml + CmP lulP dx' dt 
0 Rn-1 

(10) 

=: A+B. 

Now 

(11) A --+ 0 as m --+ oo, 

since (m =F 0 only if 0 < Xn < 2/m. To estimate the term B, we utilize 
inequality (9): 

B < CmP (l/m t1'-1dt) (l/m kn-• IDulP dx'dxn) 
< C f 2/m { IDulP dx' dxn --+ 0 as m --+ oo. Jo }Rn-1 

(12) 

Employing (10)-(12), we deduce Dwm --+ Du in LP(IR+..). Since clearly 
Wm--+ u in LP(IR+.), we conclude 

Wm--+ U in W 1•P(IR+.). 

But Wm= 0 if 0 < Xn < 1/m. We can therefore mollify the Wm to produce 
functions Um E ergo (IR+.) such that Um--+ u in W 1 ,p (IR+.). Hence u E w~·P (IR+.). 

0 

5.6. SOBOLEV INEQUALITIES 

Our goal in this section is to discover embeddings of various Sobolev spaces 
into others. The crucial analytic tools here will be certain so-called "Sobolev
type inequalities", which we will prove below for smooth functions. These 
will then establish the estimates for arbitrary functions in the various rele
vant Sobolev spaces, since-as we saw in §5.3-smooth functions are dense. 

To clarify the presentation we will consider first only the Sobolev space 
W 1·P(U) and ask the following basic question: if a function u belongs to 
W 1•P(U), does u automatically belong to certain other spaces? The answer 
will be "yes", but which other spaces depends upon whether 

(1) 

(2) 

(3) 

1 < p < n, 

p= n, 

n < p < oo. 

We study case (1) in §5.6.1, case (3) in §5.6.2, and the borderline case 
(2) only later in §5.8.1. 
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5.6.1. Gagliardo-Nirenberg-Sobolev inequality. 

For this section let us assume 

(4) l<p<n 

and first ask whether we can establish an estimate of the form 

(5) 

for certain constants C > 0, 1 < q < oo and all functions u E Cgc>(IRn). 
The point is that the constants C and q should not depend on u. 

Motivation. Let us first demonstrate that if any inequality of the form (5) 
holds, then the number q cannot be arbitrary but must in fact have a very 
specific form. For this, choose a function u E Cgc>(IRn), u "t 0, and define for 
A > 0 the rescaled function 

Applying ( 5) to u ,\, we find 

(6) 

Now 

and 

Inserting these equalities into ( 6), we discover 

and so 

(7) 

But then if 1 - ~ + ~ =F 0, we can upon sending A to either 0 or oo in (7) 
obtain a contradiction. Thus if in fact the desired inequality (5) holds, we 
must necessarily have 1 - !!: + !!: = O· so that ! = ! - l q = ....!!£.... 

p q ' q p n' n-p 

This observation motivates the following 
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DEFINITION. If 1 < p < n, the Sobolev conjugate of p is 

(8) 

(9) 

Note that 
1 

p* 

* np p :=--
n-p 

1 1 
p* > p. 

' p n 
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The foregoing scaling analysis shows that the estimate ( 5) can only pos
sibly be true for q = p*. Next we prove this inequality is in fact valid. 

THEOREM 1 (Gagliardcr-Nirenberg-Sobolev inequality). Assume 1 < p 
< n. There exists a constant C, depending only on p and n, such that 

(10) 

for all u E C~(JRn). 

Now we really do need u to have compact support for (10) to hold, as the 
example u = 1 shows. But remarkably the constant here does not depend 
at all upon the size of the support of u. 

Proof. 1. First assume p = 1. 

Since u has compact support, for each i = 1, ... , n and x E Rn we have 

and so 

lu(x)I < i: IDu(x1, ... , y;, ... , Xn)I dy; {i = 1, ... , n). 

Consequently 

{11) lu(x)ln"-1 < fJ (/_: IDu(xi, ... ,y;, ... ,xn)ldy;t:,. 

Integrate this inequality with respect to x1: 
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the last inequality resulting from the general Holder inequality (§B.2). 

Now integrate (12) with respect to x2: 

1_: 1_: lul n".i dx1 dx2 

1 

< (J_: 1_: IDul dx1dy2) n-• 1_: fJ It:' dx2, 

i:;f2 

for 

Ii:= 1_: IDul dyi, I;:= 1_: 1_: IDul dx1dy; (i = 3, ... , n). 

Applying once more the extended Holder inequality, we find 

1_: 1_: lul n". i dx1 dx2 

1 1 

< (J_: 1_: IDul dx1dy2 r-• (J_: 1_: IDul dy1dx2 r-• 
!] (J_: 1_: 1_: IDul dx1dx2dy;) n:l . 

We continue by integrating with respect to x3, ... , Xn, eventually to find 

(13) 

1 

{ n lul n".i dx < ft (100 ···100 IDul dx1 ... dyi ... dxn) n-l JR · l -oo -oo 
i= 

= (kn IDul dx) n".i 

This is estimate (10) for p = 1. 

2. Consider now the case that 1 < p < n. We apply estimate (13) to 
v := lul"f, where r > 1 is to be selected. Then 

n-1 

( [ lul~ dx) Ti- < [ IDlul'YI dx = 'Y [ lul"f-11Dul dx 
}Rn }Rn }Rn 

E.=.! l 

< 'Y (L lul('y-l}#i- dx) • (kn IDulP dx) •. 

(14) 

We choose r so that n1~1 = ( r - 1) pS . That is, we set 

r := p( n - 1) > l, 
n-p 
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in which case n1::1 = ('Y - l)Jtr = n'!p = p*. Thus, in view of (5), estimate 
( 14) becomes 

0 

THEOREM 2 (Estimates for W 1•P, 1 < p < n). Let Ube a bounded, open 
subset of Rn, and suppose au is C1. Assume 1 < p < n, and u E W 1·P(U). 
Then u E v• ( U), with the estimate 

(15) 

the constant C depending only on p, n, and U. 

Proof. Since au is C 1, there exists according to Theorem 1 in §5.4 an 
extension Eu= u E W 1·P(Rn), such that 

(16) { u = u in U, u has compact support, and 

llullw1.P(Rn) < Cllullw1.P(U)· 

Because u has compact support, we know from Theorem 1 in §5.3 that there 
exist functions Um E Cgc'(Rn) (m = 1, 2, ... ) such that 

(17) 

Now according to Theorem 1, llum - ulllLP*(Rn) < CllDum - DulllLP(Rn) for 
all l, m > 1. Thus 

(18) 

as well. Since Theorem 1 also implies llumllLP*(Rn) < CllDumllLP{Rn), asser
tions ( 17) and ( 18) yield the bound 

This inequality and (16) complete the proof. 0 

THEOREM 3 (Estimates for wg·P, 1 < p < n). Assume U is a bounded, 
open subset of Rn. Suppose u E wg.P (U) for some 1 < p < n. Then we 
hO:t:Je the estimate 

llullLq(U) < CllDullLP(U) 

for each q E [1, p*], the constant C depending only on p, q, n and U. 
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In particular, for all 1 < p < oo, 

This estimate is sometimes called Poincare's inequality. The difference 
with Theorem 2 is that only the gradient of u appears on the right-hand 
side of the inequality. (Other Poincare-type inequalities will be established 
later, in §5.8.1.) 

In view of this estimate, on wJ·P(U) the norm II Dul ILP(U) is equivalent 
to llullw1.~(u), if U is bounded. 

Proof. Since u E wJ·P(U), there exist functions Um E Cg"(U) (m = 
1, 2, ... ) converging to u in W 1•P(U). We extend each function Um to be 
0 on Rn -tJ and apply Theorem 1 to discover llullLP*(U) < CllDullLP(U)· As 
IUI < oo, we furthermore have llullLq(U) < CllullLP* (U) if 1 < q < p*. D 

The borderline case p=n. We assume next that 

p= n. 

Owing to Theorem 2 and the fact that p* = n:!p ---+ +oo as p ---+ n, we might 

expect u E L00 (U), provided u E W 1•n(U). This is however false if n > 1: 

for example, if U = B0 (0, 1), the function u =log log ( 1 + fxr) belongs to 

W 1·n(U) but not to L00 (U). We will return to this borderline situation in 
§5.8.1 below. 

5.6.2. Morrey's inequality. 

Now let us suppose 

(19) n < p < oo. 

We will show that if u E W 1•P(U), then u is in fact Holder continuous, after 
possibly being redefined on a set of measure zero. 

THEOREM 4 (Morrey's inequality). Assume n < p < oo. Then there 
exists a constant C, depending only on p and n, such that 

(20) 

for all u E C 1 (Rn), where 
'Y := 1- n/p. 
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Proof. 1. We claim there exists a constant C, depending only on n, such 
that 

(21) f iu(y) - u(x)I dy < C f 
1 
IDu(~~ 1 dy 

B(x,r) 1 B(x,r) Y - X 

for each ball B(x, r) c IRn. 

To prove this, fix any point w E 8B(O, 1). Then if 0 < s < r, 

rs d 
lu(x + sw) - u(x)I = lo dt u(x + tw) dt 

l" Du(x + tw) · wdt 

< f IDu(x +tw)I dt. 

Hence 

(22) r lu(x + sw) - u(x)I dS(w) < rs r IDu(x + tw)I dS(w). 
laB(0,1) lo laB(0,1) 

Now 

rs r IDu(x + tw)I dS(w)dt = rs r 1n:~i)I dS(y)dt 
lo laB(o,1) lo laB(x,t) t 

= r IDu(y)I dy 
1 B(x,s) Ix - Yln-l 

< r IDu(y)I d 
- 1 B(x,r) Ix - Yln-l y, 

where we put y = x + tw, t = Ix - YI· Furthermore 

r lu(x + sw) - u(x)I dS(w) = n~l r lu(z) - u(x)I dS(z), 
laB(0,1) s laB(x,s) 

for z = x + sw. Using the preceding two calculations in (22), we obtain the 
estimate 

r lu(z) - u(x)I dS(z) < sn-l r 1Du(y]~ 1 dy. 
laB(x,s) lB(x,r) Ix - YI 

Now integrate with respect to s from 0 tor : 

{ iu(y) - u(x)I dy < rn { I IDu(~~l dy. 
j B(x,r) n 1 B(x,r) X - Y 
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This implies (21). 

2. Now fix x E IRn. We apply inequality (21) as follows: 

lu(x)I < f lu(x) - u(y)I dy + f lu(y)I dy 
B(x,1) B(x,1) 

f, IDu(y)I 
< C I I -1 dy + CllullLP(B(x,1)) 

B(x,1) X - Y n 

~ 

< C (!. IDulP dy) l/p (J, I l I (n-1)_,,_ dy) P 

Rn B(x,1) X - Y p-l 

+ CllullLP(Rn) 

The last estimate holds since p > n implies ( n - 1) ~ < n, so that 

f, I i I <n-1J_,,_ dy < oo. 
B(x,1) X - Y p-l 

As x E IRn is arbitrary, it follows that 

(23) 

3. Next, choose any two points x, y E IRn and write r := Ix - YI· Let 
W := B(x, r) n B(y, r). Then 

(24) lu(x) - u(y)I < f )u(x) - u(z)I dz+ f )u(y) - u(z)I dz. 

But inequality (21) allows us to estimate 

f lu(x) - u(z)I dz< cf lu(x) - u(z)I dz 
W B~~ 

(25) (f, ) l/p(J, dz ) 7 < C IDulP dz 1 _2__ 

B(x,r) B(x,r) Ix - zl(n- )p-1 

~ 

< C (rn-(n-l)0) P llDullLP(Rn) 

= Cr1-; llDullLP(IRn)· 

Likewise, 
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Our substituting this estimate and {25) into {24) yields 

Thus 

{ lu(x) - u(y)I} 
[u)co,1-n/p(Rn) = :~~ Ix_ YII-n/p < CllDullLP(JRn)· 

This inequality and {23) complete the proof of {20). 0 

Remark. A slight variant of the proof above provides the estimate 

lu(y) - u(x)I < Cr1-~ [ IDu(z)IP dz ( ) 1~ 
J B(x,2r) 

for all u E C1(B(x, 2r)), y E B(x, r), n < p < oo. By an approximation the 
same bound is valid for u E W 1·P(B(x, 2r)), n < p < oo. We will use this 
inequality later in §5.8.2. {This estimate is in fact valid if on the right-hand 
side we integrate over B(x, r ), instead of B(x, 2r ), but the proof is a bit 
trickier.) 

DEFINITION. We say u* is a version of a given function u provided 

* u = u a.e. 

THEOREM 5 (Estimates for W 1·P, n < p < oo). Let Ube a bounded, open 
subset of Rn, and suppose 8U is C1 . Assume n < p < oo and u E W 1·P(U). 
Then u has a version u* E c0·"Y (U)' for ' = 1 - ~' with the estimate 

The constant C depends only on p, n and U. 

In view of Theorem 5, we will henceforth always identify a function 
u E W 1·P(U) (p > n) with its continuous version. 

Proof. Since au is C 1, there exists according to Theorem 1 in §5.4 an 
extension Eu= u E W 1·P(Rn) such that 

{26) { 
u = u in U, 

u has compact support, and 

llullw1.p(JRn) < Cllullw1.P(U)· 
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Assume first n < p < oo. Since u has compact support, we obtain from 
Theorem 1 in §5.3 the existence of functions Um E C~(Rn) such that 

(27) 

Now according to Theorem 4, llum - Ul llco.1-n/P(Rn) < Cllum - ul llw1.P(Rn) 

for all l, m > 1, whence there exists a function u* E CO,l--n/P(JRn) such 
that 

(28) 

Owing to (27) and (28), we see that u* = u a.e. on U, so that u* is aver
sion of u. Since Theorem 4 also implies llumllco.1-n/P(Rn) < Cllumllw1.P(Rn), 

assertions (27) and (28) yield 

This inequality and (26) complete the proof if n < p < oo. The case p = oo 
is easy to prove directly. 0 

5.6.3. General Sobolev inequalities. 

We can now concatenate the estimates established in §§5.6.1 and 5.6.2 
to obtain more complicated (and hard-to-remember) inequalities. 

THEOREM 6 (General Sobolev inequalities). Let U be a bounded open 
subset of Rn, with a C1 boundary. Assume u E Wk·P(U). 

(i) If 

(29) 

then u E Lq(U), where 

n 
k < -, 

p 

1 1 k 

q P n 

We have in addition the estimate 

(30) 

the constant C depending only on k, p, n and U. 

(ii) If 

(31) 
n 

k > -, 
p 
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then u E ck-[~ ]-l,')' (U)' where 

"Y = { [i] + 1 - i' if i is not an integer 

any positive number < 1, if i is an integer. 

We have in addition the estimate 

(32) llull k-[.n)-1 ""((- < Cllullwk,p(U)' c p I U) 

the constant C depending only on k, p, n, "'( and U. 

Proof. 1. Assume (29). Then since D°'u E V'(U) for all lal < k, the 
Gagliardo-Nirenberg-Sobolev inequality implies 

and sou E wk-l,p* (U). Similarly, we find u E wk-2,p** (U), where p~* = 

;. - ~ = ~ - ~. Continuing, we eventually discover after k steps that u E 

wo,q(U) = Lq(U), for ~ = ~ - ~- The stated estimate (30) follows from 
multiplying the relevant estimates at each stage of the above argument. 

2. Assume now condition (31) holds and i is not an integer. Then as 
above we see 

(33) 

for 

(34) 
1 

r 

1 l 
p ' n 

provided lp < n. We choose the integer l so that 

n 
l < - < l + 1; 

p 
(35) 

that is, we set l = [i]. Consequently (34) and (35) imply r = ~ :> n. 

Hence (33) and Morrey's inequality imply that D°'u E C0• 1-~ (U) for all 

lal < k - l - 1. Observe also that 1 - ; = 1 - i + l = [i J + 1 - i· Thus 

u E ck-[~]-l,[~]+l-~ (U), and the stated estimate follows easily. 

3. Finally, suppose ( 31) holds, with i an integer. Set l = [ i] -1 = i-1. 

Consequently, we have as above u E wk-l,r(U) for r = ~ = n. Hence 
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the Gagliardo-Nirenberg-Sobolev inequality shows D°'u E Lq(U) for all 

n < q < oo and all lo:I < k- l -1 = k - [~]. Therefore Morrey's inequality 

further implies D°'u E c0• 1-~ (U) for all n < q < oo and all lo:I < k- [~ ]-1. 
Consequently u E ck-[i ]-l,-y (U) for each 0 < 'Y < 1. As before, the stated 
estimate follows as well. D 

Various general Sobolev-type inequalities can also be proved using the 
Fourier transform: see Problem 20. 

5.7. COMPACTNESS 

We have seen in §5.6 that the Gagliardo-Nirenberg-Sobolev inequality im
plies the embedding of W 1·P(U) into LP* (U) for 1 < p < n, p* = ~· We 
will now demonstrate that W 1.P(U) is in fact compactly embedded in Lq(U) 
for 1 < q < p*. This compactness will be fundamental for our applications 
of linear and nonlinear functional analysis to PDE in Chapters 6-9. 

DEFINITION. Let X and Y be Banach spaces, X c Y. We say that X 
is compactly embedded in Y, written 

XccY, 

provided 
(i) llullY < Cllullx ( u E X) for some constant C 

and 
(ii) each bounded sequence in X is precompact in Y. 

More precisely, condition (ii) means that if { uk}k-._1 is a sequence in X with 
supk llukllx < oo, then some subsequence {uk;}~1 C {uk}~1 converges in 
Y to some limit u: 

_lim lluk. - ullY = 0. 
J-+00 J 

THEOREM 1 (Rellich-Kondrachov Compactness Theorem). Assume U 
is a bounded open subset of Rn and 8U is C1 . Suppose 1 < p < n. Then 

for each 1 < q < p*. 
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Proof. 1. Fix 1 < q < p* and note that since U is bounded, Theorem 2 in 
§5.6.1 implies 

It remains therefore to show that if { um}~=l is a bounded sequence in 
W 1·P(U), there exists a subsequence {Um; }~1 which converges in Lq(U). 

2. In view of the Extension Theorem from §5.4 we may with no loss of 
generality assume that U = IRn and the functions { um}~=l all have compact 
support in some bounded open set V C IRn. We also may assume 

(1) sup llumllw1.P(V) < oo. 
m 

3. Let us first study the smoothed functions 

U~ := 'T/c * Um ( c > 0, m = 1, 2, ... ) , 

'T/c denoting the usual mollifier. We may suppose the functions { u~}~=l all 
have support in Vas well. 

4. We first claim 

(2) u~ ---+ Um in L q (V) as c ---+ 0, uniformly in m. 

To prove this, we first note that if Um is smooth, then 

1 1 (x-z) U~(x) - Um(x) = n 'T/ (um(z) - Um(x)) dz 
c B(x,c) c 

= f 'TJ(y)(um(x - cy) - Um(x)) dy 1 B(O,l) 

= f 'TJ(Y) f 1 dd (um(x - cty)) dtdy 1 B(O,l) lo t 

= -c f 'TJ(Y) f1 Dum(x - cty) · y dtdy. 1 B(O,l) lo 
Thus 

f lu~(x) - um(x)I dx < € f 'TJ(Y) f1 f IDum(x - cty)I dxdtdy 
lv 1 B(o,1) lo lv 

< c I IDu,,.(z)I dz. 



288 5. SOBOLEV SPACES 

By approximation this estimate holds if Um E W 1·P(V). Hence 

llu~ - UmllLl(V) < cllDumllL1(v) < c:CllDumllLP(V)' 

the latter inequality holding since V is bounded. Owing to ( 1), we thereby 
discover 

(3) u~--+ Um in L1(V), uniformly in m. 

But then since 1 < q < p*, we see using the interpolation inequality for 
LP-norms (§B.2) that 

llu~ - umllLq(V) < llu~ - umlli1(v)llu~ - umlli;~(V)' 

where * = () + <1;.9>, 0 < () < 1. Consequently (1) and the Gagliardo
Nirenberg-Sobolev inequality imply 

llu~ - umllLq(V) < Cllu~ - umlli1(v)' 

whence assertion (2) follows from (3). 

(4) 

5. Next we claim 

{
for each fixed c: > 0, the sequence {u~}~=l 

is uniformly bounded and equicontinuous. 

Indeed, if x E Rn, then 

form= 1, 2, .... Similarly 

for m = 1, .... Assertion ( 4) follows from these two estimates. 

6. Now fix 8 > 0. We will show there exists a subsequence {Um; }~1 C 

{Um} ~=l such that 

(5) limsup llum; - Umk llLq(V) < 8. 
j,k-+oo 
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To see this, let us first employ assertion (2) to select c > 0 so small that 

(6) 

form= 1, 2, .... 

We now observe that since the functions { um}~=l' and thus the func
tions {u~}~=l' have support in some fixed bounded set V C Rn, we may 
utilize (4) and the Arzela-Ascoli compactness criterion, §C.7, to obtain a 
subsequence { u~; }~1 C { u~}~=l which converges uniformly on V. In 
particular therefore 

(7) 

But then (6) and (7) imply 

and so ( 5) is proved. 

limsup llum; - UmkllLq(V) < 8, 
j,k-+oo 

7. We next employ assertion (5) with 8 = 1, ~' l, ... and use a standard 
diagonal argument to extract a subsequence { Umi }~1 C { um}~=l satisfying 

limsup llumi - UmkllLq(V) = 0. 
l,k-+oo 

D 

Remark. Observe that since p* > p and p* ---+ oo as p ---+ n, we have in 
particular 

W1·P(U) CC V'(U) 

for all 1 < p < oo. Observe that if n < p < oo, this follows from Morrey's 
inequality and the Arzela-Ascoli compactness criterion (§C.8). Note also 
that 

W~·P(U) CC V'(U), 

even if we do not assume au to be C 1. 

5.8. ADDITIONAL TOPICS 

5.8.1. Poincare's inequalities. 

We now illustrate how the compactness assertion in §5.7 can be used to 
generate new inequalities. 
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NOTATION. (u)u = fuudy =average of u over U. 

THEOREM 1 (Poincare's inequality). Let U be a bounded, connected, 
open subset of'R.n, with a C 1 boundary au. Assume 1 < p < oo. Then there 
exists a constant C, depending only on n, p and U, such that 

(1) llu - (u)ullLP(U) < CllDullLP(U) 

for each function u E W 1.P(U). 

The significance of ( 1) is that only the gradient of u appears on the 
right-hand side. 

Proof. We argue by contradiction. Were the stated estimate false, there 
would exist for each integer k = 1, ... a function Uk E W 1·P(U) satisfying 

(2) lluk - (uk)UllLP(U) > kllDukllLP(U)· 

We renormalize by defining 

Uk - (uk)U 
(3) Vk := lluk - (uk)ullLP(U) (k = l, ... ). 

Then 

and (2) implies 

(4) 
1 

llDvkllLP(U) < k (k = 1, 2, · · · ). 

In particular the functions { Vk}k:::1 are bounded in W 1·P(U). 

In view of the remark after the proof of the Rellich-Kondrachov Theorem 
in §5.7, there exist a subsequence {vk;}~1 C {vk}k:::1 and a function v E 

LP ( U) such that 

(5) in LP(U). 

From (3) it follows that 

(6) (v)u = 0, llvllLP(U) = l. 
On the other hand, ( 4) implies for each i = 1, ... , n and </> E C~ ( U) 

that 

{ v<Pxi dx = lim [ Vk. <Pxi dx = - lim [ Vk; ,xi</> dx = 0. k ~-oo}u 3 ~-ook 
Consequently v E W 1·P(U), with Dv = 0 a.e. Thus v is constant, since U 
is connected (see Problem 11). However this conclusion is at variance with 
(6): since v is constant and (v)u = 0, we must have v = 0, in which case 
llvllLP(U) = 0. This contradiction establishes estimate (1). D 

A particularly important special case follows. 
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NOTATION. (u)x,r = f B(x,r)udy =average of u over the ball B(x, r). 

THEOREM 2 (Poincare's inequality for a ball). Assume 1 < p < oo. 
Then there exists a constant C, depending only on n and p, such that 

(7) llu - (u)x,rllLP(B(x,r)) < CrllDullLP(B(x,r)) 

for each ball B(x, r) c Rn and each function u E W 1•P(B0 (x, r)). 

Proof. The case U = B 0 (o, 1) follows from Theorem 1. In general, if u E 

W 1·P(B0 (x, r)), write 

v(y) := u(x + ry) (y E B(O, 1)). 

Then v E W 1·P(B0 (o, 1)), and we have 

llv - (v)o,1llLP(B(o,1)) < CllDvllLP(B(O,l))· 

Changing variables, we recover estimate (7). 0 

BMO and W 1 •n. Assume u E W 1•n(Rn) n L1(Rn), and let B(x, r) be any 
ball. Then Theorem 2 with p = 1 implies 

f lu - (u)x,rl dy < crf IDul dy 
B(x,r) B(x,r) 

( ) 
1/n 1/n 

< Cr f !Duin dy < C (J. !Duin dy) . 
B(x,r) JRn 

Thus u E BMO(Rn), the space of functions of bounded mean oscillation in 
Rn, with the seminorm 

[u]BMO(JRn) := sup {f lu - (u)x,rl dy}. 
B(x,r)cJRn B(x,r) 

See Stein [Se, Chapter IV) for the theory of the space BMO. 

5.8.2. Difference quotients. 

When we later apply Sobolev space theory to PDE, we will be forced to 
study difference quotient approximations to weak derivatives. Following is 
the relevant theory, which the reader may wish to postpone studying until 
the need arises, in §6.3. 
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a. Difference quotients and W 1·P. 

Assume u : U ---+ IR is a locally summable function and V cc U. 

DEFINITIONS. 
(i) The ith_difference quotient of size h is 

Dh ( ) _ u(x + hei) - u(x) 
iu x - h (i=l, ... ,n) 

for x EV and h E IR, 0 < lhl < dist(V, au). 

(ii) Dhu := (D~u, ... , D~u). 

THEOREM 3 (Difference quotients and weak derivatives). 

(i) Suppose 1 < p < oo and u E W 1•P(U). Then for each V CCU 

(8) llDhullLP(V) < CllDullLP(U) 

for some constant C and all 0 < lhl < ! dist(V, au). 
(ii) Assume 1 < p < oo, u E LP(V), and there exists a constant C such 

that 

(9) 

for all 0 < lhl < ! dist(V, au). Then 

u E W 1·P(V), with llDullLP(V) < C. 

Assertion (ii) is false for p = 1 (Problem 12). 

Proof. 1. Assume 1 < p < oo, and temporarily suppose u is smooth. Then 
for each x EV, i = 1, ... , n, and 0 < lhl < ! dist(V, au), we have 

u(x +he;) - u(x) = h fo1 u,,.(x +the;) dt, 

so that 

Ju(x +he;) - u(x)I < Jhl l JDu(x + the;)J dt. 

Consequently 

n 1 1 IDhuJP dx < CI: 11 JDu(x + the;)JP dtdx 
v i=l v 0 

n 1 

=CL 11 IDu(x +the;) IP dxdt. 
i=l 0 v 
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Thus i IDhulP dx < CL IDulP dx. 

This estimate holds should u be smooth, and thus is valid by approximation 
for arbitrary u E W 1•P(U). 

2. Now suppose estimate (9) holds for all 0 < lhl < ! dist(V, 8U) and 
some constant C. Choose i = 1, ... , n, </> E Cgc>(V), and note for small 
enough h that 

i u(x) [ <f>(x + h~) - </>(x)] dx = _ i [ u(x) - u~x - he;)] </>(x) dx; 

that is, 

(10) 

This is the "integration-by-parts" formula for difference quotients. Esti
mate (9) implies 

sup llDihullLP(V) < oo; 
h 

and therefore, since 1 < p < oo, there exists a function Vi E £P(V) and a 
subsequence hk ---+ 0 such that 

(11) 

(See §D.4 for weak convergence.) But then 

{ U</>xi dx = { U</>xi dx = lim { uD;k </> dx 
lv lu hk-o lu 

= - lim f Dihku<f>dx 
hk-+olv 

= - i v;</>dx = - L v;<f>dx. 

Thus Vi = Uxi in the weak sense (i = 1, ... , n), and so Du E £P(V). As 
u E LP(V), we deduce therefore that u E W1·P(V). D 

Difference quotients near the boundary. Variants of Theorem 3 can 
be valid even if it is not true that V cc U. For example if U is the open 
half-ball B 0 (o, 1) n {xn > O}, V = B 0 (o, 1/2) n {xn > O}, we have the bound 
fv IDfulP dx < fu luxi IP dx for i = 1, ... , n - 1. The proof is similar to that 
just given. 

We will need this comment in Chapter 6, §6.3.2. 
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b. Lipschitz functions and W 1·00 • 

THEOREM 4 (Characterization of W 1•00 ). Let U be open and bounded, 
with au of class C 1 . Then u : U ---+ IR is Lipschitz continuous if and only if 
u E W 1•00 (U). 

Proof. 1. First assume U =Rn and u has compact support. 

Suppose u E W 1•00 (1Rn). Then ue := 'f/e*u, where 'f/e is the usual mollifier, 
is smooth and satisfies 

{ 
ue ---+ u uniformly as c ---+ 0, 

II Due 11 vx> (JRn) < II Du II vx> (JRn) . 
Choose any two points x, y E Rn, x =/:- y. We have 

u'(x) - u'(y) = [ :t u'(tx + (1- t)y) dt 

= [ Du'(tx + (1- t)y) dt · (x -y), 

and so 

lue(x) - ue(y)I < llDuellvx>(JRn)lx - YI < llDullvx>(JRn)lx - YI· 

We let c ---+ 0 to discover 

lu(x) - u(y)I < llDullvx>(JRn)lx - YI· 

Hence u is Lipschitz continuous. 

2. On the other hand assume now u is Lipschitz continuous; we must 
prove that u has essentially bounded weak first derivatives. Since u is Lip-
schitz, we see 

llDihullvx>(JRn) < Lip(u), 

and thus there exists a function Vi E L 00 (Rn) and a subsequence hk ---+ 0 
such that 

(12) 

Consequently 

[ u<f>xi dx = lim [ uD?k ¢ dx 
}!Rn hk-o }JRn 

= - lim f Dihku<f>dx = - [ vi¢dx 
hk-o }!Rn }JRn 

by ( 12). The above equality holds for all ¢ E C<g° (Rn), and so Vi = Uxi in 
the weak sense (i = 1, ... , n). Consequently u E W 1•00 (1Rn). 

3. In the general case that U is bounded, with au of class C1, we as 
usual extend u to Eu = u and apply the above argument. D 
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Remark. The argument above adapts easily to prove that for any open set 
U, u E W1~~00 ( U) if and only if u is locally Lipschitz continuous in U. There 
is no corresponding characterization of the spaces W 1·P for 1 < p < oo. 
If n < p < oo, then each function u E W 1•P belongs to CO,l-n/p; but a 
function HOlder continuous with exponent less than one need not belong to 
any Sobolev space W 1·P. 

5.8.3. Differentiability a.e. 

Next we examine more closely the connections between weak partial 
derivatives and partial derivatives in the usual calculus sense. 

DEFINITION. A function u : U ---+ IR is differentiable at x E U if there 
exists a E Rn such that 

(13) u(y) = u(x) +a· (y - x) + o(IY - xi) as y---+ x. 

In other words, 
. lu(y) - u(x) - a· (y - x)I 

hm =0. 
y-+x IY- xi 

It is easy to check that a, if it exists, is unique. We henceforth write 

Du(x) 

for a and call Du the gradient of u. 
To be sure that this notation is consistent, we need to study the rela

tionships between the various notions of derivatives: 

THEOREM 5 (Differentiability almost everywhere). Assume u E W1~~(U) 
for some n < p < oo. Then u is differentiable a. e. in U, and its gradient 
equals its weak gradient a. e. 

Recall that we always identify u with its continuous version. 

Proof. 1. Assume first n < p < oo. From the remark after the proof of 
Theorem 4 in §5.6.2, we recall Morrey's estimate 

(14) lv(y) - v(x)I < Cr1-i f IDv(z)IP dz ( ) l~ 
J B(x,2r) 

(y E B ( x, r)), 

valid for any C 1 function v and thus, by approximation, for any v E W 1•P. 
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2. Choose u E W1~·%(U). Now for a.e. x E U, a version of Lebesgue's 
Differentiation Theorem (§E.4) implies 

(15) f IDu(x) - Du(z)IP dz--+ 0 
B(x,r) 

as r --+ 0, Du denoting as usual the weak derivative of u. Fix any such point 
x and set 

v(y) := u(y) - u(x) - Du(x) · (y - x) 

in estimate (14), where 

(16) r = lx-yl. 

We find 

lu(y) - u(x) - Du(x) · (y - x)I 

< Crl-n/p ( [ IDu(x) - Du(z)IP dz) l/p 

J B(x,2r) 

<Cr (f IDu(x) - Du(z)IP dz) l/p 
B(x,2r) 

= o(r) by (15) 

= o(lx - YI) by (16). 

Thus u is differentiable at x, and its gradient equals its weak gradient at x. 

3. In case p = oo, we note W1~~(U) c W.~:(u) for all 1 < p < oo and 
apply the reasoning above. D 

Finally, in view of Theorem 5, we obtain 

THEOREM 6 (Rademacher's Theorem). Let u be locally Lipschitz con
tinuous in U. Then u is differentiable almost everywhere in U. 

5.8.4. Hardy's inequality. 

In Chapter 12 we will need 

THEOREM 7 (Hardy's inequality). Assume n > 3 and r > 0. Suppose 
that u E H 1(B(O, r)). 

Then fxl" E L 2(B(O, r)), with the estimate 

(17) 1 u2 j 2 u2 -1 12 dx < C !Dul + 2dx. 
B(O,r) X B(O,r) r 

Observe that this is not a consequence of the Gagliardo-Nirenberg
Sobolev inequality. 
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Proof. We may assume u E C 00 (B(O,r)). Note that D (fxr) = - 1:i3 • Thus 

- dx = - u2 D - · - dx 1 u2 1 ( 1) x 
B(O,r) lxl2 B(O,r) lxl lxl 

1 x u2 la x = 2uDu · -1 12 + (n - 1)-1 12 dx - u2v · -1 12 dS. 
B(O,r) X X 8B(O,r) X 

Therefore 

1 u2 1 x 1 la (2-n) -dx=2 uDu·-dx-- u2 dS 
B(O,r) lxl2 B(O,r) lxl2 r 8B(O,r) ' 

and consequently 

(18) 1 u
2 1 CL - 2 dx < C 1Dul2 dx + - u2 dS. 

B(O,r) lxl - B(O,r) r 8B(O,r) 

Observe next that 

r f u2 dS = f div(xu2 ) dx = f nu2 + 2uDu · xdx 
laB(O,r) j B(O,r) j B(O,r) 

< C [ u2 + r21Dul2 dx. 
j B(O,r) 

Dividing by r 2 , we obtain the trace inequality 

! [ u2 dS < C [ 1Dul2 + u: dx. 
r JaB(O,r) J B(O,r) r 

Employing this inequality in ( 18) finishes the proof of ( 17). D 

5.8.5. Fourier transform methods. 

Next we employ the Fourier transform (§4.3) to give an alternate char
acterization of the spaces Hk (Rn). For this subsection all functions are 
complex-valued. 

THEOREM 8 (Characterization of Hk by Fourier transform). 

Let k be a nonnegative integer. 

(i) A function u E L 2 (Rn) belongs to Hk(Rn) if and only if 

(19) (1 + IYlk)u E L 2 (Rn). 

(ii) In addition, there exists a positive constant C such that 

(20) ~ llullHk(JRn) < 11(1 + IYlk)ullL2(Rn) < CllullHk(JRn) 

for each u E Hk(JR.n). 
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Proof. 1. Assume first u E Hk(JRn). Then for each multiindex lol < k, we 
have Dau E L2 (1Rn). Now if u E Ck has compact support, we have 

(21) 

according to Theorem 2 in §4.3.l. Approximating by smooth functions, we 
deduce formula (21) provided u E Hk(JRn). Thus (iy)au E L2 (1Rn) for each 
lol < k. In particular choosing o = (k, 0, ... , 0), (0, k, ... , 0), ... , (0, ... , k), 
we deduce 

Thus 

and so (1 + IYlk)u E L2 (IRn). 

2. Suppose conversely (1 + IYlk)u E L2 (1Rn) and lol < k. Then 

Set 

Then for each</> E C~(IRn) 

Thus Ua = Dau in the weak sense and, by (22), Dau E L2 (1Rn). Hence 
u E Hk(U), as required. D 

It is sometimes useful to define also fractional Sobolev spaces. 

DEFINITION. Assume 0 < s < oo and u E L2 (1Rn). Then u E H 8 (1Rn) 
if (1 + IYl 8 )u E L2 (1Rn). For noninteger s, we set 
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5.9. OTHER SPACES OF FUNCTIONS 

5.9.1. The space H-1 • 

As we will see later in our systematic study in Chapters 6 and 7 of linear 
elliptic, parabolic and hyperbolic PDE, it is important to have an explicit 
characterization of the dual space of HJ. (See Appendix D for definitions.) 

DEFINITION. We denote by H-1(U) the dual space to HJ(U). 

In other words f belongs to H- 1(U) provided f is a bounded linear 
functional on HJ(U). Note very carefully that we do not identify the space 
HJ with its dual. Instead, as we will see in a moment, we have 

NOTATION. We will write ( , ) to denote the pairing between H- 1(U) 
and HJ(U). 

DEFINITION. If f E H-1(U), we define the norm 

II/ llH-l(U) :=sup { (/, u) I u E HJ(U), llullHJ(U) < 1}. 

THEOREM 1 (Characterization of H-1). 

(i) Assume f E H-1(U). Then there exist functions / 0 , /1, ... , Jn in 
L 2 ( U) such that 

(1) 
n 

(/, v) = 1 J0v + L, /ivx, dx (v E HJ(U)). 
u i=l 

(ii) Furthermore, 

11/llH-l(U) =inf{ (fu ~ lll2 dx) l/21 

I satisfies (1) /or / 0 , .•• 'r E L 2(U) }· 

(iii) In particular, we have 

(2) (v,u)L2(U) = (v,u) 

for all u E HJ(U), v E L 2 (U) c H- 1(U). 

NOTATION. We write "/ = / 0 - L:~1 /!/' whenever (1) holds. 
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Proof. 1. Given u, v E HJ(U), we define the inner product (u, v) := fu Du· 
Dv + uvdx. Let f E H- 1(U). We apply the Riesz Representation Theorem 
(§D.3) to deduce the existence of a unique function u E HJ (U) satisfying 
(u, v) = (/, v) for all v E HJ(U); that is, 

(3) fu Du· Dv + uvdx = (f,v) 

for each v E HJ ( U). This establishes ( 1) for 

(4) { /~ = u 
f" = Uxi ( i = 1, ... , n). 

2. Assume now f E H- 1 (U), 

(5) 

for g0 , g1, ... , gn E L 2(U). Setting v = u in (3) and using (5), we deduce 

Thus ( 4) implies 

(6) 

3. From (1) it follows that 

( 
n ) 1/2 

l(f,v)I < L"fo ltl2 dx 

if llvllHJ(U) < 1. Consequently 

( 
n ) 1/2 

11/llH-l(U) < fu "fa ltl2 dx 

Setting v = II 11 u in (3), we deduce that in fact 
u HJ(U) 

( 
n ) 1/2 

llfllH-•(U) = fu "fa ill2 dx 

Assertion (ii) follows now from ( 4)-(6). 

4. The identity (2) follows from assertion (i). D 
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5.9.2. Spaces involving time. 

We study next some other sorts of Sobolev spaces, these comprising 
functions mapping time into Banach spaces. These will prove essential in 
our constructions of weak solutions to linear parabolic and hyperbolic PDE 
in Chapter 7 and to nonlinear parabolic PDE in Chapter 9. 

Let X denote a real Banach space, with norm II II- The reader should 
first of all read §E.5 about measure and integration theory for mappings 
taking values in X. 

DEFINITION. The space 

V(O,T;X) 

consists of all strongly measurable functions u: [O, T] ---+ X with 

(i) ( 
T ) l/p 

llnllv(o,T;X) := fo llu(t)llPdt < oo 

for 1 < p < oo and 

(ii) llnllvx>(O,T;X) := ess supllu(t)ll < oo. 
o::;t::;T 

DEFINITION. The space 

C([O, T]; X) 

comprises all continuous functions u : [O, T] ---+ X with 

llnllc([o,T];X) := o~t8tr llu(t)ll < oo. 

DEFINITION. Let u E L1 (0, T; X). We say v E L1 (0, T; X) is the weak 
derivative of u, written 

I u =v, 

provided 

foT <P'(t)u(t)dt = - foT ¢(t)v(t)dt 

for all scalar test functions </> E C~(O, T). 
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DEFINITIONS. (i) The Sobolev space 

W 11P(O, T; X) 

consists of all functions u E .LP(O, T; X) such that u' exists in the weak sense 
and belongs to LP(O, T; X). Furthermore, 

u 1 ·= { (J:llu(t)llP+llu'(t)llPdt) 11P 
II llw ·P(O,T;X) • ess sup(llu(t)ll + llu'(t)ll) 

0:9~T 

(ii) We write H 1 (0, T; X) = W112 (0, T; X). 

(1 <p < oo) 

(p = oo). 

THEOREM 2 (Calculus in an abstract space). Let u E W11P(O, T; X) for 
some 1 < p < oo. Then 

(i) u E C([O, T]; X) {after possibly being redefined on a set of measure 
zero). 

(ii) u(t) = u(s) + J: u'(r) dr for all 0 < s < t < T. 

(iii) Furthermore, we have the estimate 

(7) max llu(t) II < Cllullw1.p(o T-X)' 
O~t~T ' ' 

the constant C depending only on T. 

Proof. 1. Extend u to be 0 on (-oo, 0) and (T, oo ), and then set ue = 77e*U, 
77e denoting the usual mollifier on IR 1. We check as in the proof of Theorem 1 
in §5.3.1 that (ue)' = 77e * u' on (c, T - c). 

Then as E --+ 0,. 

(8) { 
ue--+ u in .LP(O, T; X) 

(ue)' --+ u' in LP (0 T· X) 
loc ' ' • 

Fixing 0 < s < t < T, we compute 

u'(t) = u'(s) + [ u''(r)dr. 

Thus 

(9) u(t) = u(s) + [ u'(r)dr 

for a.e. 0 < s < t < T, according to (8). As the mapping t 1-+ J~ u'(r) dr is 
continuous, assertions (i), (ii) follow. 

2. Estimate (7) follows easily from (9). D 

The next two propositions concern what happens when u and u' lie in 
different spaces. 
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THEOREM 3 (More calculus). Suppose u E L2 (0, T; HJ(U)), with u' E 

L2 (0, T; H-1 (U)). 

(i) Then 
u E C([O, T]; L2 (U)) 

(after possibly being redefined on a set of measure zero}. 

(ii) The mapping 

is absolutely continuous, with 

:t llu(t)lli2(u) = 2(u'(t), u(t)) 

for a. e. 0 < t < T. 

(iii) Furthermore, we have the estimate 

the constant C depending only on T. 

Proof. 1. Extend u to the larger interval [-u, T + u] for u > 0, and define 
the regularizations U'~: = 'f/e * u, as in the earlier proof. Then for £, 8 > 0, 

Thus 

llue(t) - u6(t)lli2(u) = llue(s) - u6(s)lli2(u) 
(11) 

+ 2 [ (u"' (r) - u6' (r), u"(r) - u6(r)) dr 

for all 0 < s, t < T. Fix any point s E (0, T) for which 

Consequently (11) implies 

limsup sup llue(t)-u6(t)lli2(u) < lim {Tllue'(r) - u6' (r)ll~-1(u) 
e 6-0 O<t<T e,6-0 lo , - -

+ llue(r) - u6(r)llirJ(U) dr 

-o - . 
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Thus the smoothed functions { ue}o<e~l converge in C([O, T); L2 (U)) to a 
limit v E C([O,T];L2 (U)). Since we also know ue(t)---+ u(t) for a.e. t, we 
deduce u = v a.e. 

2. We similarly have 

llu'(t)lli2(u) = llu'(s)lli2(u) + 2 [ (u<' (r), u'(r)) dr, 

and so, identifying u with v above, 

(12) llu(t)lli>cul = llu(s)lli2cu) + 2 [ (u'(r), u(r)) dr 

for all 0 < s, t < T. 

3. To obtain (10), we integrate (12) with respect to s, recall the inequal-
ity I (u', u) I < llu'llH-1(u) llnllHJ(u), and make some simple estimates. 0 

For use later in the regularity theory for second-order parabolic and hy
perbolic equations in Chapter 7, we will also need this extension of Theorem 
3. 

THEOREM 4 (Mappings into better spaces). Assume that U is open, 
bounded, and 8U is smooth. Take m to be a nonnegative integer. 

Suppose u E L2 (0, T; Hm+2 (U)), with u' E L2 (0, T; Hm(U)). 

(i) Then 
u E C([O, T); Hm+1(U)) 

(after possibly being redefined on a set of measure zero). 

(ii) Furthermore, we have the estimate 

the constant C depending only on T, U, and m. 

Proof. 1. Suppose first that m = 0, in which case 

We select a bounded open set V ::>::> U and then construct a correspond
ing extension fi =Eu, as in §5.4. In view of estimate (10) from that section, 
we see 
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and 

(14) llnllL2(0,T;H2(v)) < CllnllL2(0,T;H2(u)), 

for an appropriate constant C. In addition, u' E L2(0, T; L2(V)), with the 
estimate 

(15) llu'llL2(0,T;L2(v)) < Clln'llL2(0,T;L2(u))· 

This follows if we consider difference quotients in the t-variable, remember 
the methods in §5.8.2, and observe also that Eis a bounded linear operator 
from L 2 (U) into L 2 (V). 

2. Assume for the moment that fi is smooth. We then compute 

1:t([ IDiil2 dx)I = 21[ Dii· nu' dxl = 21[ Mn' dxl 
< C(llull~2(v) + llu'lli2(v))· 

There is no boundary term when we integrate by parts, since the extension 
fi = Eu has compact support within V. Integrating and recalling (14), (15), 
it follows that 

We obtain the same estimate if u is not smooth, upon approximating by 
U'~: := 'f/e * u, as before. As in the previous proofs, it also follows that 
u E C([O, T]; H 1 (U)). 

3. In the general case that m > 1, we let o: be a multiindex of order 
lo:I < m and set v := no:u. Then 

We apply estimate (16), with v replacing u, and sum over all indices lo:I < m, 
to derive (13). 0 

5.10. PROBLEMS 

In these exercises U always denotes an open subset of Rn, with a smooth 
boundary au. As usual, all given functions are assumed smooth, unless 
otherwise stated. 

1. Suppose k E {O, 1, ... }, 0 < / < 1. Prove Ck·"f(U) is a Banach space. 
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2. Assume 0 < f3 < 'Y < 1. Prove the interpolation inequality 

.!=.:r 1-/3 

llullco.-r(u) < llull~~~/3(U) llull~~~(U)" 

3. Denote by Uthe open square {x E IR2 I lxII < 1, lx2I < l}. Define 

1-xI if XI > 0, lx2I <XI 

u(x) = 
1 +xI if XI < 0, lx2I <-XI 

l -x2 if X2 > 0, lxII < x2 

1 +x2 if X2 < 0, lxII < -x2. 

For which 1 < p < oo does u belong to WI·P(U)? 

4. Assume n = 1 and u E WI,P(O, 1) for some 1 < p < oo. 

(a) Show that u is equal a.e. to an absolutely continuous function 
and u' (which exists a.e.) belongs to .LP(O, 1). 

{b) Prove that if 1 < p < oo, then 

( 
I ) I/p 

lu(x) - u(y)I <Ix -yl 1-~ fo iu'IPdt 

for a.e. x, y E [O, l]. 
5. Let U, V be open sets, with V cc U. Show there exists a smooth 

function ( such that ( _ 1 on V, ( = 0 near au. (Hint: Take 
V CC W CCU and mollify Xw·) 

6. Assume U is bounded and U CC U~I \ti. Show there exist C00 

functions (i ( i = 1, ... , N) such that 

{ 0: (i < 1, spt (i c Vi (i = 1, ... , N) 

Li=I (i = 1 on U. 

The functions { (i}~I form a partition of unity. 

7. Assume that U is bounded and there exists a smooth vector field a: 
such that a: . v > 1 along au' where v as usual denotes the outward 
unit normal. Assume 1 < p < oo. 

Apply the Gauss-Green Theorem to fau lulPo: · v dS, to derive a new 
proof of the trace inequality 

[ lulP dS < C [ IDulP + lulP dx lau lu 
for all u E cI (U). 
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8. Let Ube bounded, with a C 1 boundary. Show that a "typical" func
tion u E LP ( U) ( 1 < p < oo) does not have a trace on au. More 
precisely, prove there does not exist a bounded linear operator 

T: V(U) ~ V(aU) 

such that Tu= ulau whenever u E C(U) n LP(U). 

9. Integrate by parts to prove the interpolation inequality: 

for all u E Cgo(U). Assume U is bounded, au is smooth, and prove 
this inequality if u E H 2 (U) n HJ(U). 

(Hint: Take sequences {vk}~1 c Cgo(U) converging to u in HJ(U) 
and {wk}~1 c C00 (U) converging to u in H 2 (U).) 

10. (a) Integrate by parts to prove 

for 2 < p < oo and all u E Cgo(U). 

(Hint: fu IDulPdx = L~=l fuuxiUxilDulP- 2 dx.) 
(b) Prove 

llDullL2P < Cllull~~llD2ull~2 

for 1 < p < oo and all u E Cgo(U). 
11. Suppose U is connected and u E W 1·P(U) satisfies 

Du = 0 a.e. in U. 

Prove u is constant a.e. in U. 

12. Show by example that if we have llDhullL1(v) < C for all 0 < lhl < 
~ dist(V, au), it does not necessarily follow that u E W 1•1 (V). 

13. Give an example of an open set Uc Rn and a function u E W 1•00 (U), 
such that u is not Lipschitz continuous on U. (Hint: Take U to be the 
open unit disk in JR2 , with a slit removed.) 

14. Verify that if n > 1, the unbounded function u = log log( 1 + fxr) 
belongs to W 1·n(U), for U = B 0 (0, 1). 

15. Fix a > 0 and let U = B 0 (o, 1). Show there exists a constant C, 
depending only on n and a, such that 

L u 2 dx <CL 1Dul2 dx, 
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provided 
l{x EU I u(x) = O}I >a , u E H 1(U). 

16. (Variant of Hardy's inequality) Show that for each n > 3 there exists 
a constant C so that 

{ lu2l2 dx < C { IDul2 dx 
}Rn X }Rn 

for all u E H 1(Rn). 

(Hint: IDu + A1:i2 ul2 > 0 for each A ER.) 

17. (Chain rule) Assume F : R --+ R is C1 , with F' bounded. Suppose U 
is bounded and u E W 1·P(U) for some 1 < p < 00. Show 

v := F(u) E W 1·P(U) and Vxi = F'(u)uxi (i = 1, ... 'n). 

18. Assume 1 < p < oo and U is bounded. 

(a) Prove that if u E W 1·P(U), then lul E W 1•P(U). 
(b) Prove u E W 1•P(U) implies u+, u- E W 1·P(U), and 

{
Du 

nu+= 0 

Du-= { O 
-Du 

(Hint: u+ = lime-o Fe(u), for 

a.e. on {u > O} 

a.e. on {u < O}, 
a.e. on {u > O} 

a.e. on {u < O}. 

{ (z2 + c2 ) 1f2 - E if Z > 0 
Fe(z) := 0 if z < 0.) 

(c) Prove that if u E W 1·P(U), then 

Du= 0 a.e. on the set {u = 0}. 

19. Provide details for the following alternative proof that if u E H 1(U), 
then 

Du= 0 a.e. on the set {u = O}. 

Let ¢ be a smooth, bounded and nondecreasing function, such that ¢' 
is bounded and ¢(z) = z if lzl < 1. Set 
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Show that uE ~ 0 weakly in H 1(U) and therefore 

L Du'· Dudx = L <P'(u/E)IDul2 dx--+ O. 

Employ this observation to finish the proof. 

20. Use the Fourier transform to prove that if u E H 8 (Rn) for s > n/2, 
then u E L00 (Rn), with the bound 

for a constant C depending only on s and n. 

21. Show that if u, v E H 8 (Rn) for s > n/2, then uv E H 8 (Rn) and 

the constant C depending only on s and n. 

5.11. REFERENCES 

Sections 5.2-8 See Gilbarg-Trudinger [G-T, Chapter 7], Lieb-Loss [L-L], 
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SECOND-ORDER 
ELLIPTIC 
EQUATIONS 

6.1 Definitions 

6.2 Existence of weak solutions 

6.3 Regularity 

6.4 Maximum principles 

6.5 Eigenvalues and eigenfunctions 

6.6 Problems 

6. 7 References 

Chapter 6 

This chapter investigates the solvability of uniformly elliptic, second
order partial differential equations, subject to prescribed boundary condi
tions. We will exploit two essentially distinct techniques, energy methods 
within Sobolev spaces (§§6.1-6.3) and maximum principle methods (§6.4). 

6.1. DEFINITIONS 

6.1.1. Elliptic equations. 

We will in this chapter mostly study the boundary-value problem 

(1) { Lu= f in U 
u = 0 on au, 

where U is an open, bounded subset of Rn and u: U--+ IR. is the unknown, 
u = u(x). Here f : U--+ IR. is given, and L denotes a second-order partial 

-311 
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differential operator having either the form 

n n 

(2) Lu= - L (aii(x)uxi)x; + Lbi(x)uxi + c(x)u 
i,j=l i=l 

or else 

n n 

(3) Lu= - L aij (x)uxix; + L bi(x)uxi + c(x)u, 
i,j=l i=l 

for given coefficient functions a ij, bi, c ( i, j = 1, ... , n). 

We say that the PDE Lu= f is in divergence form if Lis given by (2) 
and is in nondivergence form provided Lis given by (3). The requirement 
that u = 0 on au in ( 1) is sometimes called Dirichlet's boundary condition. 

Remark. If the highest-order coefficients a ii ( i, j = 1, ... , n) are C 1 func
tions, then an operator given in divergence form can be rewritten into non
divergence structure, and vice versa. Indeed the divergence form equation 
(2) becomes 

n n 

(2') Lu= - L aii(x)uxix; + Lii(x)uxi + c(x)u 
i,j=l i=l 

for 'ii :=bi - ~J=l a~; (i = 1, ... , n), and (2') is obviously in nondivergence 
form. We will see, however, that there are definite advantages to considering 
the two different representations of L separately. The divergence form is 
most natural for energy methods, based upon integration by parts (§§6.1-
6.3), and the nondivergence form is most appropriate for maximum principle 
techniques (§6.4). 

We henceforth assume as well the symmetry condition 

aij = aii (,; · 1 n) "' J = ' ... ' . 

DEFINITION. We say the partial differential operator L is (uniformly) 
elliptic if there exists a constant(} > 0 such that 

n 

(4) L aii(x)eiej > e1e1 2 

i,j=l 

for a.e. x EU and all { E Rn. 
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Ellipticity thus means that for each point x E U, the symmetric n x n 
matrix A(x) = ((aii(x))) is positive definite, with smallest eigenvalue greater 
than or equal to 0. 

An obvious example is aii = 8ij, bi= 0, c = 0, in which case the operator 
Lis-~. Indeed we will see that solutions of the general second-order elliptic 
PDE Lu = 0 are similar in many ways to harmonic functions. However, 
for these partial differential equations we do not have available the various 
explicit formulas developed for harmonic functions in Chapter 2: we must 
instead work directly with the PDE. Readers should continually be alert in 
the following calculations for uses of the structural condition of ellipticity 
(4). 

Physical interpretation. As just noted, second-order elliptic PDE gener
alize Laplace's and Poisson's equations. As in the derivation of Laplace's 
equation set forth in §2.2, u in applications typically represents the density 
of some quantity, say a chemical concentration, at equilibrium within a re
gion U. The second-order term A : D2u = :L::,j=l aiiuxix; represents the 
diffusion of u within U, the coefficients ((aii)) describing the anisotropic, 
heterogeneous nature of the medium. In particular, F := -ADu is the 
diffusive flux density, and the ellipticity condition implies 

F ·Du< O; 

that is, the flow is from regions of higher to lower concentration. The first
order term b · Du = :L:?=l biuxi represents transport within U, and the 
zeroth-order term cu describes the local increase or depletion of the chemical 
(owing, say, to reactions). A careful analysis of these interpretations requires 
the probabilistic study of diffusion processes. 

Nonlinear second-order elliptic PDE also arise naturally in the calculus 
of variations (as the Euler-Lagrange equations of convex energy integrands) 
and in differential geometry (as expressions involving curvatures). We will 
encounter some such nonlinear equations later, in Chapters 8 and 9. 

6.1.2. Weak solutions. 

Let us consider first the boundary-value problem (1) when L has the di
vergence form (2). Our overall plan is first to define and then construct an 
appropriate weak solution u of (1) and only later to investigate the smooth
ness and other properties of u. 

We will assume in the following exposition that 

(5) aii,bi,cEL00 (U) (". 1 ) i, J = , ... , n 
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and 

(6) 

Motivation for definition of weak solution. How should we define 
a weak or generalized solution? Assuming for the moment u is really a 
smooth solution, let us multiply the PDE Lu= f by a smooth test function 
v E C~ ( U) and integrate over U, to find 

where we have integrated by parts in the first term on the left-hand side. 
There are no boundary terms since v = 0 on BU. By approximation we 
find the same identity holds with the smooth function v replaced by any 
v E HJ(U), and the resulting identity makes sense if only u E HJ(U). (We 
choose the space HJ(U) to incorporate the boundary condition from (1) that 
"u = 0 on BU".) 

DEFINITIONS. (i) The bilinear form B[ , ] associated with the diver
gence form elliptic operator L defined by (2) is 

(8) 
n n 

B[u, v] := 1 L aiiu.,,v.,; + L biu.,,v + cuv dx 
u i,j=l i=l 

for u, v E HJ(U). 

(ii) We say that u E HJ(U) is a weak solution of the boundary-value 
problem ( 1) if 

(9) B[u, v] = (/, v) 

for all v E HJ(U), where ( , ) denotes the inner product in L2 (U). 

The identity (9) is sometimes called the variational formulation of (1). This 
terminology will be explained later, in Example 2 of §8.1.2. 

More generally, let us consider the boundary-value problem 

(10) { Lu = / 0 - I::=l f~i in U 
u =0 on au, 

where L is defined by (2) and Ji E L2 (U) (i = 0, ... , n). In view of the 
theory set forth in §5.9.1 we see that the right-hand term f = / 0 - I::=l f~i 
belongs to H-1(U), the dual space of HJ(U). 
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DEFINITION. We say u E HJ(U) is a weak solution of problem (10) 
provided 

B[u, v] = (/, v) 
1 f 0 n · for all v E H 0 (U), where (f, v) = Ju f v + Li= I f'"vxi dx and ( , ) is the 

pairing of H-1(U) and HJ(U). 

Other boundary conditions. We will hereafter, as above, focus our at
tention exclusively on the case of zero boundary conditions, but in fact a 
problem with prescribed, nonzero boundary values can easily be transformed 
into this setting. We spell this out by supposing now that au is C 1 and 
u E H 1(U) is a weak solution of 

{ Lu= f in U 
u = g on au. 

This means that u = g on au in the trace sense and furthermore that the 
bilinear form identity (9) holds for all v E HJ(U). For this to be possible, 
it is necessary for g to be the trace of some H 1 function, say w. But then 
u := u - w belongs to HJ(U) and is a weak solution of the boundary-value 
problem 

{ Lu=} 
u=O 

in U 
on au, 

where J := f - Lw E H-1(U). 

See Problems 3-6 to learn how to cast some other sorts of PDE and 
boundary conditions into weak formulations. 

6.2. EXISTENCE OF WEAK SOLUTIONS 

6.2.1. Lax-Milgram Theorem. 

We now introduce a fairly simple abstract principle from linear func
tional analysis, which will later in §6.2.2 provide in certain circumstances 
the existence and uniqueness of a weak solution to our boundary-value prob
lem. 

We assume for this section His a real Hilbert space, with norm II II and 
inner product ( , ). We let ( , ) denote the pairing of H with its dual space. 
Readers should review as necessary the basic Hilbert space theory described 
in §D.2-D.3. 

THEOREM 1 (Lax-Milgram Theorem). Assume that 

B:HxH---+"IR 
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is a bilinear mapping, for which there exist constants a, f3 > 0 such that 

(i) IB[u, v] I < ollull llvll ( u, v E H) 

and 

(ii) f311ull 2 < B[u, u] (u EH). 

Finally, let f : H -+ IR be a bounded linear functional on H. 

Then there exists a unique element u E H such that 

(1) B[u, v] = (f, v) 

for all v EH. 

Proof. 1. For each fixed element u E H, the mapping v ~ B[u, v] is a 
bounded linear functional on H, whence the Riesz Representation Theorem 
(§D.3) asserts the existence of a unique element w EH satisfying 

(2) B[u, v] = (w, v) (v EH). 

Let us write Au= w whenever (2) holds, so that 

(3) B[u, v] = (Au, v) (u, v EH). 

2. We first claim A : H -+ H is a bounded linear operator. Indeed if 
..X1, ..X2 E IR and u1, u2 EH, we see for each v EH that 

(A(..X1u1 + ..X2u2), v) = B[..X1u1 + ..X2u2, v] by (3) 

= ..X1B[ui, v] + ..X2B[u2, v] 
= ..X1(Aui, v) + ..X2(Au2, v) by (3) again 

= (..X1Au1 + ..X2Au2, v). 

This equality obtains for each v EH, and so A is linear. Furthermore 

llAull2 =(Au, Au)= B[u, Au]< ollull llAull· 

Consequently llAull < ollull for all u E H, and so A is bounded. 

3. Next we assert 

(4) { 
A is one-to-one and 

R(A), the range of A, is closed in H. 
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To prove this, let us compute 

,Bllull 2 < B[u, u] = (Au, u) < llAull llull
Hence ,Bllull < llAull· This inequality easily implies (4). 

4. We demonstrate now 

(5) R(A) = H. 
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For if not, then, since R(A) is closed, there would exist a nonzero element 
w E H with w E R( A )..l. But this fact in turn implies the contradiction 
,Bllwll 2 < B[w, w] = (Aw, w) = 0. 

5. Next, we observe once more from the Riesz Representation Theorem 
that 

(f,v)=(w,v) forallvEH 

for some element w EH. We then utilize (4) and (5) to find u EH satisfying 
Au =w. Then 

B[u, v] =(Au, v) = (w, v) = (/, v) (v EH), 

and this is (1 ). 

6. Finally, we show there is at most one element u E H verifying ( 1). For 
if both B[u, v] = (/, v) and B[u, v] = (/, v), then B[u - u, v] = 0 (v E H). 
We set v = u - u to find ,Bllu - ii.11 2 < B[u - u, u - u] = 0. D 

Remark. If the bilinear form B[ , ] is symmetric, that is, if 

B[u, v] = B[v, u] (u, v EH), 

we can fashion a much simpler proof by noting ((u, v)) := B[u, v] is a new 
inner product on H, to which the Riesz Representation Theorem directly 
applies. Consequently, the Lax-Milgram Theorem is primarily significant in 
that it does not require symmetry of B[ , ]. 

6.2.2. Energy estimates. 

We return now to the specific bilinear form B[ , ], defined in §6.1.2 by 
the formula 

n n 

B[u,v] = 1 L aiiu.,,v.,; + Lbiu.,,v + cuvdx 
u i,j=l i=l 

for u, v E HJ(U), and try to verify the hypothesis of the Lax-Milgram 
Theorem. 



318 6. SECOND-ORDER ELLIPTIC EQUATIONS 

THEOREM 2 (Energy estimates). There exist constants a, f3 > 0 and 
r > 0 such that 

(i) IB[u, v] I < allullHJ(U) llvllHJ(U) 

and 

(ii) f311ull~J(U) < B[u, u] + 1llulli2(u) 

for all u, v E HJ(U). 

Proof. 1. We readily check 

n 

IB[u, v]I < L llaijllL00 J 1Dul IDvl dx 
i,j=l u 

n 

+ L llbillL00 J 1Dul lvl dx + llcllL00 J lul lvl dx 
i=l u u 

< allullHJ(U) llvllHJ(U)' 

for some appropriate constant a. 

2. Furthermore, in view of the ellipticity condition ( 4) from §6.1 we have 

(6) 
n 

= B[u,u] -1 Lbiu.,,u+cu2 dx 
U i=I 
n 

< B[u, u] + L II bi II Loo J 1Dul lul dx + llcllLoo 1 u2 dx. 
~I U U 

Now from Cauchy's inequality with c (§B.2), we observe 

L IDul lul dx < c L IDul2 dx + :c L u2 dx (c > 0). 

We insert this estimate into (6) and then choose c > 0 so small that 

Thus 

~ { 1Dul2 dx < B [u, u] + C f u2 dx 
2}u lu 
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for some appropriate constant C. In addition we recall from Poincare's 
inequality in §5.6. l that 

It easily follows that 

,Bllull~J(U) < B[u, u] + "Yllulli2cu> 

for appropriate constants ,8 > 0, ')' > 0. D 

Observe now that if')'> 0 in these energy estimates, then B[, ] does not 
precisely satisfy the hypotheses of the Lax-Milgram Theorem. The following 
existence assertion for weak solutions must confront this possibility: 

THEOREM 3 (First Existence Theorem for weak solutions). There is a 
number ')' > 0 such that for each 

(7) 

and each function 

there exists a unique weak solution u E HJ (U) of the boundary-value problem 

(8) { Lu + µu = f in U 
u=O on8U. 

Proof. 1. Take')' from Theorem 2, let µ > ')', and define then the bilinear 
form 

Bµ[u, v] := B[u, v] + µ(u, v) (u, v E HJ(U)), 

which corresponds as in §6.1 to the operator Lµu := Lu+µu. As before (, ) 
means the inner product in L2 (U). Then Bµ[ , ] satisfies the hypotheses of 
the Lax-Milgram Theorem. 

2. Now fix f E L 2(U) and set (f, v) := (f, v)L2(u)· This is a bounded 
linear functional on L 2 ( U) and thus on HJ ( U). 

We apply the Lax-Milgram Theorem to find a unique function u E 

HJ (U) satisfying 
Bµ[u, v] = (f, v) 

for all v E HJ(U); u is consequently the unique weak solution of (8). 0 
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Mapping HA to H-1 • We can similarly show that for all 

Ji E L2 (U) (i = 0, ... ,n), 

there exists a unique weak solution u of the PDE 

(9) { Lu+ µu = / 0 - L?=l f~i in U 
u = 0 on au. 

Indeed, it is enough to note (/, v) = f u J0v + L?=i Jivxi dx is a bounded 
linear functional on HJ(U), as previously discussed in §5.9.1. 

In particular, we deduce that the mapping 

Lµ := L +µI: HJ(U)--+ H- 1(U) (µ > "Y) 

is an isomorphism. 

Examples. In the case Lu = -~u, so that B[u, v] = f u Du · Dv dx, we 
easily check using Poincare's inequality that Theorem 2 holds with')'= 0. A 
similar assertion holds for the general operator Lu= - L~j=l (aiiuxi)x; + 
cu, provided c > 0 in U. 0 

6.2.3. Fredholm alternative. 

We next employ the Fredholm theory for compact operators (discussed in 
§D.5) to glean more detailed information regarding the solvability of second
order elliptic PDE. 

DEFINITIONS. (i) The operator L*, the formal adjoint of L, is 
n n n 

L*v := - L (aiivx;)xi - L bivxi + (c - L b~Jv, 
iJ=l i=l i=l 

provided bi E C1(U) (i = 1, ... , n). 

(ii) The adjoint bilinear form 

B*: HJ(U) x HJ(U)--+ IR 

is defined by 
B*[v, u] := B[u, v] 

for all u, v E HJ(U). 

(iii) We say that v E HJ(U) is a weak solution of the adjoint problem 

{ L*v=f inU 
v = 0 on au, 

provided 
B*[v, u] = (/, u) 

for all u E HJ(U). 
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THEOREM 4 (Second Existence Theorem for weak solutions). 
(i) Precisely one of the following statements holds: 

either 

(a) 

or else 

(/3) 

for each f E L 2 (U) there exists a unique 
weak solution u of the boundary-value problem 

{ 
Lu= f in U 

(lO) u = 0 on au 

there exists a weak solution u "¥= 0 of 
the homogeneous problem 

{ 
Lu= 0 in U 

( 11) u = 0 on au. 
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(ii) Furthermore, should assertion (/3) hold, the dimension of the sub
space NC HJ(U) of weak solutions of (11) is finite and equals the 
dimension of the subspace N* C HJ(U) of weak solutions of 

(12) { 
L*v = 0 

v=O 

in U 

onaU. 

(iii) Finally, the boundary-value problem (10) has a weak solution if and 
only if 

(f,v) = 0 for all v EN*. 

The dichotomy (a), (/3) is the Fredholm alternative. 

Proof. 1. Choose µ = 'Y as in Theorem 3 and define the bilinear form 

B-y[u, v] := B[u, v] + 'Y(u, v), 

corresponding to the operator L-yu := Lu+ "'fU. Then for each g E L 2 (U) 
there exists a unique function u E HJ(U) solving 

(13) B-y[u, v] = (g, v) for all v E HJ(U). 

Let us write 

(14) 

whenever (13) holds. 

2. Observe next u E HJ(U) is a weak solution of (10) if and only if 

(15) B-y[u, v] =('Yu+ f, v) for all v E HJ(U), 
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that is, if and only if 

(16) 

We rewrite this equality to read 

(17) u-Ku=h, 

for 

(18) 

and 

(19) 

3. We now claim K : L2 (U) --+ L2 (U) is a bounded, linear, compact 
operator. Indeed, from our choice of 'Y and the energy estimates from §6.2.2 
we note that if ( 13) holds, then 

,BllullirJ(U) < B-y[u, u] = (g, u) < llYllL2(u) llullL2(u) < llYllL2(u) llullHJ(U)' 

so that (18) implies 

for some appropriate constant C. But since HJ(U) cc L 2 (U) according to 
the Rellich-Kondrachov compactness theorem (§5.7), we deduce that K is 
a compact operator. 

4. We may consequently apply the Fredholm alternative from §D.5: 
either 

(20) (a) 

or else 

(21) (,8) 

{ 
for each h E L 2 (U) the equation 

u-Ku=h 

has a unique solution u E L 2 (U) 

{ 
the equation 

u-Ku = 0 

has nonzero solutions in L 2 (U). 

Should assertion (a) hold, then according to (15)-(19) there exists a 
unique weak solution of problem (10). On the other hand, should assertion 
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({3) be valid, then necessarily / =/= 0 and we recall further from §D.5 that 
the dimension of the space N of the solutions of (21) is finite and equals the 
dimension of the space N* of solutions of 

(22) v - K*v = 0. 

We readily check however that (21) holds if and only if u is a weak solution 
of (11) and that (22) holds if and only if v is a weak solution of (12). 

5. Finally, we recall (20) has a solution if and only if 

(23) (h, v) = 0 

for all v solving (22). But from (18), (19) and (22) we compute 

(h,v) = !(Kf,v) = !(f,K*v) = !(f,v). 
I I I 

Consequently the boundary-value problem (10) has a solution if and only if 
(f, v) = 0 for all weak solutions v of (12). D 

THEOREM 5 (Third Existence Theorem for weak solutions). 

(24) 

(i) There exists an at most countable set EC IR such that the boundary
value problem 

{ Lu = AU + f in U 
u = 0 on au 

has a unique weak solution for each f E L2 (U) if and only if A¢_ E. 
(ii) If E is infinite, then E = {Ak}~1 , the values of a nondecreasing 

sequence with 

DEFINITION. We call E the (real) spectrum of the operator L. 

Note in particular that the boundary-value problem 

{ Lu= AU in U 
u = 0 on au 

has a nontrivial solution w "t 0 if and only if A E E, in which case A is called 
an eigenvalue of L, w a corresponding eigenfunction. The partial differential 
equation Lu= AU for L =-~is sometimes called Helmholtz's equation. 
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Proof. 1. Let 'Y be the constant from Theorem 2 and assume 

(25) A> -1. 

Assume also with no loss of generality that 'Y > 0. 

2. According to the Fredholm alternative, the boundary-value problem 
(24) has a unique weak solution for each f E L 2(U) if and only if u = 0 is 
the only weak solution of the homogeneous problem 

{ Lu= AU in U 
u = 0 on au. 

This is in turn true if and only if u - 0 is the only weak solution of 

(26) {Lu+ /U = ('Y + A)u in U 
u = 0 on au. 

Now (26) holds exactly when 

r +A 
(27) u = L:;1(1 + A)u = Ku, 

'Y 
where, as in the proof of Theorem 4, we have set Ku= 1L":;1u. Recall also 
from that proof that K : L2 (U) ---+ L2 (U) is a bounded, linear, compact 
operator. 

Now if u = 0 is the only solution of (27), we see 

(28) / A is not an eigenvalue of K. 
1+ 

Consequently we see the PDE (24) has a unique weak solution for each 
f E L 2(U) if and only if (28) holds. 

3. According to Theorem 6 in §D.5 the collection of all eigenvalues of K 
comprises either a finite set or else the values of a sequence converging to 
zero. In the second case we see, according to (25) and (27), that the PDE 
(24) has a unique weak solution for all f E L2 (U), except for a sequence 
Ak ---+ +oo. D 

Finally, we explicitly note: 

THEOREM 6 (Boundedness of the inverse). If A ¢:. E, there exists a 
constant C such that 

(29) 

whenever f E L2 (U) and u E HJ(U) is the unique weak solution of 

{ Lu = AU+ f in U 
u = 0 on au. 

The constant C depends only on A, U and the coefficients of L. 

This constant will blow up if A approaches an eigenvalue. 
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Proof. If not, there would exist sequences {/k}~1 C L 2(U) and {uk}~1 C 

HJ ( U) such that 

{ Luk = >..uk + fk in U 
Uk= 0 On au 

in the weak sense, but 

As we may with no loss suppose llukllL2(u) = 1, we see fk --+ 0 in L2(U). 
According to the usual energy estimates the sequence { uk}~1 is bounded 
in HJ(U). Thus there exists a subsequence {ukj}~1 C {uk}~1 such that 

(30) { 
uki ~ u weakly in HJ(U), 

Uki --+ u in L2(U). 

(See §D.4 for weak convergence.) Then u is a weak solution of 

{
Lu= >..u in U 

u = 0 on au. 

Since >.. ¢ :E, u = 0. However (30) implies as well that llullL2(u) = 1, a 
contradiction. D 

Complex solutions. The foregoing theory extends easily to include com
plex-valued solutions. Given complex-valued u, v E H 1(U), write 

(u, v)L2(U) := fu uiidx, (u, v)H•(U) := fu Du· DV + uiidx, 

and set 
n n 

B[u, v] := 1 L aii Ux/iix; + L biux, ii + cuV dx, 
uiJ=l i=l 

where - denotes complex conjugate. We check 

IB[u, v] I < odlullHJ(U) llvllHJ(U)> 

,BllullirJ(U) < Re B[u, u] + 1llulli2(u) ( u, v E HJ (U)) 

for appropriate constants a, ,8 > 0, 'Y > 0. Complex variants of the Lax
Milgram Theorem and Fredholm alternative lead to analogues of Theo
rems 3-6 above. D 
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6.3. REGULARITY 

We now address the question as to whether a weak solution u of the PDE 

(1) Lu= f in U 

is in fact smooth: this is the regularity problem for weak solutions. 

Motivation: formal derivation of estimates. To see that there is some 
hope that a weak solution may be better than a typical function in HJ(U), 
let us consider the model problem 

(2) -Llu = f in Rn. 

We assume for heuristic purposes that u is smooth and vanishes sufficiently 
rapidly as lxl ---+ oo to justify the following calculations. We then compute 

(3) 

Thus we see the L2-norm of the second derivatives of u can be estimated 
by (and in fact equals) the L2-norm off. Similarly, we can differentiate the 
PDE (2), to find 

-Llu = f, 
for u := uxk and f := fxk (k = 1, ... , n). Applying the same method, we 
discover that the L2-norm of the third derivatives of u can be estimated by 
the first derivatives of f. Continuing, we see the L2-norm of the ( m + 2)nd 
derivatives of u can be controlled by the L2-norm of the mth derivatives of 
f, form= 0, 1,... D 

These computations suggest that for Poisson's equation (2), we can ex
pect a weak solution u E HJ to belong to Hm+2 whenever the inhomoge
neous term f belongs to Hm (m = 1, ... ). Informally we say that u has "two 
more derivatives in L2 than f has". This will be particularly interesting for 
m = oo, in which case u belongs to Hm for all m = 1, ... and thus belongs 
to C00 • 

Observe, however, the calculations above do not really constitute a proof. 
We assumed u was smooth, or at least say C3, in order to carry out the 
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calculation (3), whereas if we start with merely a weak solution in HJ, we 
cannot immediately justify these computations. We will instead have to rely 
upon an analysis of certain difference quotients. 

The following calculations are often technically difficult but eventually 
yield extremely powerful and useful assertions concerning the smoothness of 
weak solutions. As always, the heart of each computation is the invocation 
of ellipticity: the point is to derive analytic estimates from the structural, 
algebraic assumption of ellipticity. 

6.3.1. Interior regularity. 

We as always assume that UC Rn is a bounded, open set. Suppose also 
u E HJ(U) is a weak solution of the PDE (1), where L has the divergence 
form 

n n 

(4) Lu= - E (aii(x)uxi)xi + E bi(x)uxi + c(x)u. 
i,j=l i=l 

We continue to require the uniform ellipticity condition from §6.1.1 and 
will as necessary make various additional assumptions about the smoothness 
of the coefficients aii, bi, c. 

THEOREM 1 (Interior H 2-regularity). Assume 

(5) aii E C1(U), bi, c E L00 (U) (i,j = 1, ... , n) 

and 

(6) f E L 2(U). 

Suppose furthermore that u E H 1 (U) is a weak solution of the elliptic PDE 

Lu= f in U. 

Then 

(7) u E H~c(U) ; 

and for each open subset V CC U we have the estimate 

(8) 

the constant C depending only on V, U, and the coefficients of L. 
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Remarks. (i) Note carefully that we do not require u E HJ(U); that is, 
we are not necessarily assuming the boundary condition u = 0 on au in the 
trace sense. 

(ii) Observe additionally that since u E H1~c(U), we have 

Lu = f a.e. in U. 

Thus u actually solves the PDE, at least for a.e. point within U. (To 
see this, note that for each v E Cgo(U), we have 

B[u, v] = (f, v). 

Since u E H1~c(U), we can integrate by parts: 

B[u, v] = (Lu, v). 

Thus (Lu - f, v) = 0 for all v E Cgo(U), and so Lu= f a.e.) 

Proof. 1. Fix any open set V cc U, and choose an open set W such that 
V cc W cc U. Then select a smooth function ( satisfying 

{ ( = 1 on V, ( = 0 on Rn - W, 

O<(<l. 

We call ( a cutoff function. Its purpose in the subsequent calculations will 
be to restrict all expressions to the subset W, which is a positive distance 
away from au. This is necessary as we have no information concerning the 
behavior of u near au. (As an interesting technical point, notice carefully in 
the following calculations why we put "(2" and not just "(" in (11) below.) 

2. Now since u is a weak solution of (1), we have B[u, v] = (f, v) for all 
v E HJ(U). Consequently 

(9) 

where 

(10) 

n 

L 1 aiiUx,Vx; dx = 1 ]vdx, 
i,j=l u u 

n 

] := f - L:;biuxi - cu. 
i=l 

3. Now let lhl > 0 be small, choose k E {1, ... , n }, and then substitute 

(11) 
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into (9), where as in §5.8.2 the expression D~u denotes the difference quo
tient 

Dh ( ) _ u(x + hek) - u(x) 
ku x - h ( h E JR, h # 0). 

We write the resulting expression as 

(12) 

for 

(13) 

and 

(14) 

A=B, 

B := fuJvdx. 

4. Estimate of A. We have 
n 

A= - L 1 a;iux, [Dkh ((2Dtu)L dx 
i,j=l u J 

n 

= L 1 D~(a;;Ux,) ((2D~ut dx 
(15) i,j=l u J 

n 

= L 1 a;;,h (vtux,) ((2D~ut 
i,j=l u J 

+ ( D~aii) Uxi ( ( 2 D~u) x. dx. 
J 

Here we used the formulas 

(16) L vDkhwdx = - L wD~vdx 
and 

(17) D~(vw) = vhD~w + wD~v, 
for vh(x) := v(x + hek)· 

Returning now to ( 15), we find 

(18) 



330 6. SECOND-ORDER ELLIPTIC EQUATIONS 

The uniform ellipticity condition implies 

(19) 

Furthermore we see from (5) that 

for some appropriate constant C. But then Cauchy's inequality with t (§B.2) 
yields the bound 

IA2I < tj (2 ID~Dul 2 dx + C { ID~ul2 +1Dul2 dx. 
u t lw 

We choose t =~and further recall from Theorem 3(i) in §5.8.2 the estimate 

f w IDtul2 dx < CL IDul2 dx, 

thereby obtaining the inequality 

IA2I < ~ L (2 1DtDul2 dx+CL1Dul2 dx. 

This estimate, (19) and (18) imply finally 

(20) A > ~ j c2 1n~Dul 2 dx - C j 1nu12 dx. 
2 u u 

5. Estimate of B. Recalling now (10), (11), and (14), we estimate 

(21) IBI < CL (I/I + IDul + lul)lvl dx. 

Now Theorem 3(i) in §5.8.2 implies 

L lvl2 dx < CL ID((2 Dtu)l2 dx 

< C fw IDtul2 + (2IDtDul2 dx 

< CL 1Dul2 + (21DtDul2 dx. 

Thus (21) and Cauchy's inequality with t imply 

IBI < t { (2 ID~Dul 2 dx + C f f 2 + u2 dx + C f 1Dul2 dx. 
lu t lu t lu 
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Select E = ~, to obtain 

6. We finally combine (12), (20) and (22), to discover 

for k = 1, ... , n and all sufficiently small lhl =/=- 0. 

In view of Theorem 3(ii) in §5.8.2, we deduce Du E H1~c(U; Rn), and 
thus u E Hfoc(U), with the estimate 

(23) 

7. We now refine estimate (23) by noting that if V CC W CCU, then 
the same argument shows 

(24) 

for an appropriate constant C depending on V, W, etc. Choose a new cutoff 
function ( satisfying 

{ ( = 1 on W, spt ( c U, 

O<(<l. 

Now set v = ( 2u in identity (9) and perform elementary calculations, to 
discover 

Thus 

llullHl(W) < c (ll!llL2(U) + llullL2(U)) . 

This inequality and (24) yield (8). D 

Our intention next is to iterate the argument above, thereby deducing 
our weak solution lies in various higher Sobolev spaces (provided the coef
ficients are smooth enough and the right-hand side lies in sufficiently good 
spaces). 
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THEOREM 2 (Higher interior regularity). Let m be a nonnegative inte
ger, and assume 

(25) ij bi rrm+1(U) ( · · _ 1 ) a , , c E v i, J - , ... , n 

and 

(26) 

Suppose u E H 1(U) is a weak solution of the elliptic PDE 

Lu= f in U. 

Then 

(27) u E nm+2 (U)· 
loc ' 

and for each V Cc U we have the estimate 

(28) 

the constant C depending only on m, U, V and the coefficients of L. 

Proof. 1. We will establish (27), (28) by induction on m, the case m = 0 
being Theorem 1 above. 

2. Assume now assertions (27) and (28) are valid for some nonnegative 
integer m and all open sets U, coefficients aij, bi, c, etc., as above. Suppose 
then 

(29) 

(30) 

and u E H 1 (U) is a weak solution of Lu = f in U. By the induction 
hypotheses, we have 

(31) 

with the estimate 

(32) 

for each W CC U and an appropriate constant C, depending only on W, 
the coefficients of L, etc. Fix V cc W cc U. 
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3. Now let o: be any multiindex with 

(33) lo:I = m + 1, 

and choose any test function v E Cgc>(W). Insert 

v := (-l)lnlnov 

333 

into the identity B[u, v] = (J, v)L2(u), and perform some integrations by 
parts, eventually to discover 

(34) B[u, v] = (f, v) 

for 

(35) 

and 

(36) 

j := DQ !- L (;) [-.t (DQ-Paij vPux.lx; 
{35,o i,3=1 
{3-:J.o 

+ i~DQ-PbiDPu.,, + DQ-PclJllu]. 

Since the identity (34) holds for each v E Cgc>(W), we see that u is a weak 
solution of 

Lu=f inW. 

In view of (29)-(32) and (36), we have f E L 2 (W), with 

(37) 

4. In light of Theorem 1 then, we see u E H 2 (V), with the estimate 

llullH2(v) < C(llJllL2(w) + llullL2(w)) 
< C(llJ llH=+l(U) + llullL2(u))· 

This inequality holds for each multiindex 0: with lo:I = m + 1 and u = D0 u 
as above. Consequently u E Hm+3 (V), and 

D 

We can now repeatedly apply Theorem 2 form= 0, 1, 2, ... to deduce 
the infinite differentiability of u. 
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THEOREM 3 (Infinite differentiability in the interior). Assume 

a ij, bi, c E C00 ( U) ( i, j = 1, ... , n) 

and 
f E C00 (U). 

Suppose u E H 1 (U) is a weak solution of the elliptic PDE 

Lu= f in U. 

Then 
u E C00 (U). 

We are again making no assumptions here about the behavior of u on 
au. Therefore, in particular, we are asserting that any possible singularities 
of u on the boundary do not "propagate" into the interior. 

Proof. According to Theorem 2, we have u E Hk:c(U) for each integer 
m = 1, 2,.... Hence Theorem 6 in §5.6.3 implies u E Ck(U) for each 
k = 1, 2,.... D 

6.3.2. Boundary regularity. 

Now we extend the estimates from §6.3.1 to study the smoothness of 
weak solutions up to the boundary. 

THEOREM 4 (Boundary H 2-regularity). Assume 

(38) aii E C1(U), bi, c E L 00 (U) (i, j = 1, ... , n) 

and 

(39) 

Suppose that u E HJ (U) is a weak solution of the elliptic boundary-value 
problem 

(40) 

Assume finally 

(41) 

Then 

and we have the estimate 

(42) 

{ Lu= f in U 
u = 0 on au. 

au is c 2• 

the constant C depending only on U and the coefficients of L. 
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Remarks. (i) If u E HJ(U) is the unique weak solution of (40), estimate 
( 42) simplifies to read 

This follows from Theorem 6 in §6.2. 

(ii) Observe also that in contrast to Theorem 1 in §6.3.1, we are now 
assuming u = 0 along au (in the trace sense). 

Proof. 1. We first investigate the special case that U is a half-ball: 

(43) u = n°(o, 1) n JR~. 

Set V := B 0 (o, ! ) n JR+. Then select a smooth cutoff function ( satisfying 

{ ( = 1 on B(O, !), ( - 0 on JRn - B(O, 1), 

O<(<l. 

So ( - 1 on V and ( vanishes near the curved part of au. 
2. Since u is a weak solution of (40), we have B[u, v] = (f, v) for all 

v E Hc}(U); consequently 

(44) 

for 

(45) 
n 

] := f- ~biuxi - cu. 
i=l 

3. Now let h > 0 be small, choose k E {1, ... , n - 1}, and write 

Let us note carefully 

1 
v(x) = - h n;h((2(x)[u(x + hek) - u(x)]) 

1 2 = h2 (( (x - hek)[u(x) - u(x - hek)] 

- ( 2 (x)[u(x + hek) - u(x)]) 

if x E U. Now since u = 0 along { Xn = 0} in the trace sense and ( = 0 near 
the curved portion of au, we see v E Hc}(U). 
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We may therefore substitute v into the identity (44) and write the re
sulting expression as 

(46) A=B 
' 

for 

(47) 

and 

(48) B := fuJvdx. 

4. We can now estimate the terms A and Bin almost exactly the same 
way that we estimated their counterparts in the proof of Theorem 1. After 
some calculations we find 

(49) 

and 

(50) 

for appropriate constants C. We then combine (46), (49), and (50) to dis-
cover iv ID~Dul2 dx < C fu f 2 + u2 + IDul2 dx 
fork= 1, ... , n - 1. Thus recalling the remark after the proof of Theorem 
3 in §5.8.2, we deduce 

Uxk E H 1(V) (k = l, ... ,n-1), 

with the estimate 

n 

(51) E lluxkxzllL2(v) < C(ll/llL2(u) + llullH1(u))· 
k,l=l 

k+l<2n 

5. We must now augment (51) with an estimate of the L2-norm of Uxnxn 

over V. For this we recall from the Remarks after Theorem 1 that Lu = f 
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a.e. in U. Remembering the definition of L, we can rewrite this equality into 
nondivergence form, as 

n n 

(52) - L aiiuxix; + L iiuxi +cu=/, 
i,j=l i=l 

£ b- i ·- bi ""n ij (. - 1 ) S d. or .- - L..Jj=l ax; i - , ... , n . o we iscover 

n n 

(53) annUxnXn = - L aiiuxix; + L'fiuxi +cu - /. 
i,j=l i=l 

i+j<2n 

Now according to the uniform ellipticity condition, L~j=l aii(x)~i~j > 
01~1 2 for all x E U, ~ E Rn. We set~= en= (0, ... , 0, 1), to conclude 

(54) 

for all x E U. But then (38), (53) and (54) imply 

(55) lux.x.I < c( t lux,x;I + IDul + lul + 111) 
i,3=1 

i+j<2n 

in U. Utilizing this estimate in inequality (51), we conclude u E H 2 (V) and 

(56) 

for some appropriate constant C. 

6. We now drop the assumption that U is a half-ball and so has the 
special form ( 43). In the general case we choose any point x0 E au and 
note that since au is C2 ' we may assume-upon relabeling the coordinate 
axes if needs be-that 

u n B(x0 , r) = {x E B(x0 , r) I Xn > 1(xi, ... 'Xn-1)} 

for some r > 0 and some C 2 function 'Y: IRn-l ~IR. As usual, we change 
variables utilizing §C.l and write 

(57) y = ~(x), x = '1t(y). 
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7. Choose s > 0 so small that the half-ball U' := B0 (o, s) n {Yn > O} 
lies in ~(Un B(x0 , r)). Set V' := B 0 (o, s/2) n {Yn > 0}. Finally define 

(58) u'(y) := u('ll(y)) (y EU'). 

It is straightforward to check 

(59) 

and 

(60) u' = 0 on 8U' n {Yn = 0} 

in the trace sense. 

8. We now claim u' is a weak solution of the PDE 

(61) L'u' = J' in U', 

for 

(62) !'(y) := f('ll(y)) 

and 
n n 

(63) LI I ~ ( 'kl I ) ~ b'k I I I 
U := - L..J a UYk Yi + L..J UYk + C U ' 

k~=l k=l 

where 
n 

(64) a'kl(y) := L ar8 ('1t(y))4>~r('ll(y))4>~8 ('1t(y)) (k, l = 1, ... , n), 
r,s=l 

n 

(65) b'k(y) := L br('ll(y))4>~r('ll(y)) (k = 1, ... , n), 
r=l 

and 

(66) c'(y) := c('ll(y)) 

for y E U', k, l = 1, ... , n. 

If v' E HJ(U') and B'[ , ] denotes the bilinear form associated with the 
operator L', we have 

(67) 
n n 

B'[u' v'] = f ~ a'klu' v' + ~ b'ku' v' + c'u'v' dy ' Ju, L..J Yk Yi L..J Yk • 
kJ=l k=l 
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Now define 
v(x) := v' ( 4.>(x) ). 

Then from (67) we calculate 

(68) 

n n 

B l [ I I] _ ~ ~ { 1 kl .T,i .T,j d 
u 'v - L.J L.J Ji' a Uxi '.I.' Yk Vx; '.I.' Yl y 

i,j=l k,l=l u 
n n 

+LL J, b'kux,lll~.vdy+ L c'uvdy. 
i=l k=l u u 

Now according to ( 64), we find for each i, j = 1, ... , n that 

since Df! = (Dw)-1. Similarly for i = 1, ... , n, we have 

Substituting these calculations into (68) and changing variables yields, since 
I det Dt!I = 1, 

n n 

B'[u', v'] = 1 L aii Uz, Vz; + L biuz, v + cuv dx 
u i,j=l i=l 

= B[u,v] = (J,v)L2(u) = (f1,v')L2(U')· 

This establishes (61). 

9. We now check that the operator L' is uniformly elliptic in U'. Indeed 
if y EU' and e E Rn, we note that 

n n n 

L a'kl(y)ekel = L L ars(w(y))4.>~r 4.>~sekel 

(69) 
k,l=l r,s=l k,l=l 

n 

= L ars("1(y))'fJr'f/s > Ol'f/1 2 , 

r,s=l 

where 'f/ = enf!; that is, 'f/r = 2::~=1 4.>~rek (r = 1, ... , n). But then, since 
Df!D"1 = I, we have e = rJD"1; and so lel < Cl'f/I for some constant C. 
This inequality and (69) imply 

n 

(70) L a'kl(y)ekel > 0'1e1 2 

k,l=l 
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for some()'> 0 and ally EU',~ E Rn. 

Observe also from (64) that the coefficients a'kl are C 1, since ~ and "1 
are C2 • 

10. In view of (61) and (70), we may apply the results from steps 1-5 
in the proof above to ascertain that u' E H 2 (V'), with the bound 

Consequently 

(71) 

for V := "1(V'). 

Since au is compact, we can as usual cover au with finitely many sets 
Vi, ... , VN as above. We sum the resulting estimates, along with the interior 
estimate, to find u E H2 (U), with the inequality (42). D 

Now we derive higher regularity for our weak solutions, all the way up 
to au. 

THEOREM 5 (Higher boundary regularity). Let m be a nonnegative in
teger, and assume 

(72) ii bi cm+1(U-) ( .. - 1 ) a , , c E i, J - , ... , n 

and 

(73) 

Suppose that u E HJ(U) is a weak solution of the boundary-value problem 

(74) {Lu= f in U 
u = 0 on au. 

Assume finally 

(75) au is cm+2 • 

Then 

(76) 

and we have the estimate 

(77) 

the constant C depending only on m, U and the coefficients of L. 
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Remark. If u is the unique solution of (74), then estimate (77) simplifies 
to read 

Proof. 1. We first investigate the special case 

(78) u := B0 (o, s) n IR+. 

for some s > 0. Fix O < t <sand set V := B0 (o, t) n IR+. 

2. We intend to prove by induction on m that whenever u = 0 along 
{xn = O} in the trace sense, (72) and (73) imply 

(79) 

with the estimate 

(80) 

for a constant C depending only on U, V and the coefficients of L. The case 
m = 0 follows as in the proof of Theorem 4 above. 

Suppose then 

(81) 

(82) 

and u is a weak solution of Lu= fin U, which vanishes in the trace sense 
along {xn = 0}. Fix any 0 < t < r < s, and write W := B 0 (o, r) n IR+. By 
the induction assumption we have 

(83) 

with the estimate 

(84) 

Furthermore according to the interior regularity Theorem 2, u E Hk:c+3(U). 

3. Next, let a be any multiindex with 

(85) lal =m+l 

and 

(86) O:n =0. 
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Then 

(87) ii,:= no:u 

belongs to H 1(U) and vanishes along the plane {xn = O} in the trace sens~ 
Furthermore, as in the proof of Theorem 2, ii, is a weak solution of Lu= f 
in U, for 

In view of (72), (73), (82) and (84), we see ] E L2 (W), with 

(88) 

Consequently the proof of Theorem 4 shows ii, E H 2(V), with the estimate 

llullH2(V) < c (11fllL2(W) + llullL2(W)) 
< C (llfllHm+1(U) + llullL2(U)) · 

In light of (85)-(88), we thus deduce 

(89) 

for any multiindex /3 with 1/31=m+3 and 

(90) f3n = 0, 1, or 2. 

4. We must extend estimate ( 89) to remove the restriction ( 90). For 
this, let us suppose by induction 

(91) 

for any multiindex /3 with lf31=m+3 and 

(92) /3n = 0, 1, ... , j, 

for some j E {2, ... , m + 2}. Assume then 1/31 = m + 3, 

(93) 
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Let us write {3 = 1+8, for 8 = (0, ... , 2) and Iii= m+l. Since u E H~c+3(U) 
and Lu = f in U, we have D'Y Lu = D'Y f a.e. in U. Now 

D'Y Lu= ann Df3u+ {sum of terms involving at most j 

derivatives of u with respect to Xn and 

at most m + 3 derivatives in all }. 

Since ann > (} > 0, we thus find by utilizing (91), (92) that 

(94) 

provided lfJI = m + 3 and f3n = j + 1. By induction on j then, we have 

llul1Hm+3(U) < C (11/llHm+l(U) + llullL2(U)) · 
This estimate in turn completes the induction on m, begun in step 2. 

5. We have now shown that (72) and (73) imply (79) and (80), provided 
U has the form (78). The general case follows once we straighten out the 
boundary, using the ideas explained in the proof of Theorem 4. D 

We finally iterate the foregoing estimates to obtain 

THEOREM 6 (Infinite differentiability up to the boundary). Assume 

aii, bi, c E C 00 (U) (i,j = 1, ... 'n) 

and 
f E C00 (U). 

Suppose u E HJ (U) is a weak solution of the boundary-value problem 

{ Lu= f in U 
u = 0 on au. 

Assume also that au is C00 • Then 

Proof. According to Theorem 5 we have u E Hm ( U) for each integer m = 

1, 2, .... Thus Theorem 6 in §5.6.3 implies u E Ck(tJ) for each k = 1, 2, .... 
D 

The computations in this section have basically been repeated appli
cations of "energy" methods to higher and higher partial derivatives. The 
basic tool of integration by parts has eventually taken us from weak solutions 
(belonging merely to HJ (U)) to smooth, classical solutions. 



344 6. SECOND-ORDER ELLIPTIC EQUATIONS 

6.4. MAXIMUM PRINCIPLES 

This section develops the maximum principle for second-order elliptic partial 
differential equations. 

Maximum principle methods are based upon the observation that if a 
C 2 function u attains its maximum over an open set U at a point xo E U, 
then 

(1) Du(xo) = 0, D2u(xo) < 0, 

the latter inequality meaning that the symmetric matrix D2u = ( ( Uxix;)) 
is nonpositive definite at xo. Deductions based upon (1) are consequently 
pointwise in character and are thus utterly different from the integral-based 
energy methods set forth in §§6.1-6.3. 

Furthermore we will need to require that our solutions u are at least C 2 ' 

so that it makes sense to consider the pointwise values of Du, D2u. (In view 
of the -regularity theory from §6.3 we know however that a weak solution is 
this smooth, at least provided the coefficients are sufficiently regular.) As 
we will shortly learn, it is also most appropriate now to consider elliptic 
operators L having the nondivergence form 

n n 

(2) Lu = - L aiiuxix; + L biuxi +cu, 
i,j=l i=l 

where the coefficients aii, bi, c are continuous and-as always-the uniform 
ellipticity condition (4) in §6.1 holds. We continue also to assume, without 
loss of generality, the symmetry condition aii = aii (i, j = 1, ... , n). 

6.4.1. Weak maximum principle. 

First, we identify circumstances under which a function must attain its 
maximum (or minimum) on the boundary. We always assume U c Rn is 
open, bounded. 

THEOREM 1 (Weak maximum principle). Assume u E C 2 (U) n C(U) 
and 

c = 0 in U. 

(i) If 

(3) Lu< 0 in U, 

then 
maxu = maxu. v au 
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(ii) If 

(4) Lu> 0 in U, 

then 
. . 

m1nu = m1nu. u au 

Remark. A function satisfying (3) is called a subsolution. We are thus 
asserting that a subsolution attains its maximum on au. Similarly, if ( 4) 
holds, u is a supersolution and attains its minimum on au. D 

Proof. 1. Let us first suppose we have the strict inequality 

(5) Lu< 0 in U, 

and yet there exists a point xo EU with 

(6) u(xo) = m~u. 
u 

Now at this maximum point xo, we have 

(7) Du(xo) = 0 

and 

(8) 

2. Since the matrix A= ((aii(x0 ))) is symmetric and positive definite, 
there exists an orthogonal matrix 0 = ( ( Oij)) so that 

(9) OAOT = diag(di, ... , dn), OOT =I, 

with dk > 0 (k = 1, ... ,n). Write y = xo + O(x - xo). Then x - xo 
QT(y - xo), and SO 

n n 

Uxi = L UykOki, UxiXj = L UykyzOkiDlj (i,j = 1, ... 'n). 

k=l k,l=l 

Hence at the point xo, 

(10) 

n n n 

L aiiuxix; • L L aiiuYkYtokiDlj 

i,j=l k,l=l i,j=l 

n 

= L dkuYkYk by (9) 
k=l 

< 0, 
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since dk > 0 and uYkYk(xo) < 0 (k = 1, ... ,n), according to (8). 

3. Thus at xo 

n n 

Lu = - L aij Uxix; + L biuxi > 0, 
i,j=l i=l 

in light of (7) and (10). So (5) and (6) are incompatible, and we have a 
contradiction. 

4. In the general case that (3) holds, write 

where A > 0 will be selected below and E > 0. Recall (as in the proof of 
Theorem 4 in §6.3.2) that the uniform ellipticity condition implies aii(x) > (} 
(i = 1, ... , n, x E U). Therefore 

LuE =Lu+ EL(e>.xi) 

< Ee>.x1 [-..X2a11 + AblJ 

< Ee>.xi [-..X20 + llbllvx>A] 
< 0 in U, 

provided we choose A > 0 sufficiently large. Then according to steps 1 and 
2 above maxv uE = maxau uE. Let E ~ 0 to find maxv u = maxau u. This 
proves (i). 

5. Since -u is a subsolution whenever u is a supersolution, assertion (ii) 
full~. D 

We next modify the maximum principle to allow for a nonnegative 
zeroth-order coefficient c. Remember from §A.3 that u+ = max(u, 0), u- = 

-min(u,O). 

THEOREM 2 (Weak maximum principle for c > 0). Assume u E C 2(U)n 
C(U) and 

c > 0 in U. 

(i) If 
Lu< 0 in U, 

then 

(11) maxu < maxu+. v - au 
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(ii) Likewise, if 

then 

(12) 

Lu> 0 in U, 

minu > -maxu-. u - au 

Remark. So in particular, if Lu= 0 in U, then 

(13) 
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Proof. 1. Let u be a subsolution and set V := {x EU I u(x) > O}. Then 

Ku:=Lu-cu 

<-cu < 0 in V. 

The operator K has no zeroth-order term and consequently Theorem 1 im
plies maxv u = maxav u = maxau u+. This gives (11) in the case that 
V =J=. 0. Otherwise u < 0 everywhere in U, and (11) likewise follows. 

2. Assertion (ii) follows from (i) applied to -u, once we observe that 
(-u)+=u-. D 

6.4.2. Strong maximum principle. 

We next substantially strengthen the foregoing assertions, by demon
strating that a subsolution u cannot attain its maximum at an interior point 
of a connected region at all, unless u is constant. This statement is the strong 
maximum principle, which depends on the following subtle analysis of the 
outer norma.1 derivative g: at a boundary maximum point. 

LEMMA (Hopf's Lemma). Assume u E C 2 (U) n C 1(U) and 

c = 0 in U. 

Suppose further 
Lu< 0 in U 

and there exists a point XO E {)U such that 

(14) u(x0 ) > u(x) for all x E U. 
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Assume finally that U satisfies the interior ball condition at x0 ; that is, there 
exists an open ball B c u with x 0 E a B. 

(i) Then 
au 0 
av(x) > 0, 

where v is the outer unit normal to B at x0 . 

(ii) If 
c > 0 in U, 

the same conclusion holds provided 

u(x0 ) > 0. 

The importance of (i) is the strict inequality: that ~ (x0 ) > 0 is obvious. 
Note that the interior ball condition automatically holds if au is C2 • 

Proof. 1. Assume c > 0. We may as well further assume B = B 0 (o, r) for 
some radius r > 0. Define 

v(x) := e->.lxl2 - e->.r2 (x E B(O, r)) 

for ,\ > 0 as selected below. Then using the uniform ellipticity condition, 
we compute 

n n 

Lv = - L aij Vxix; + L bivxi + cv 
i,j=l i=l 

n 

= e->.lxl2 L aij (-4,\2xiXj + 2,\8ij) 
i,j=l 

n 
- e->.lxl2 L bi2,\xi + c(e->.lxl2 - e->.r2) 

i=l 

for A = ( (a ij)), b = ( b1, ... , bn). Consider next the open annular region 
R := B 0 (o, r) - B(O, r/2). We have 

(15) Lv < e->.lxl\-8..\2r 2 + 2,\ tr A+ 2..\lblr + c) < 0 

in R, provided ,\ > 0 is fixed large enough. 

2. In view of (14) there exists a constant f > 0 so small that 

(16) u(x0 ) > u(x) + Ev(x) (x E aB(O, r/2)). 
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In addition note 

(17) u(x0 ) > u(x) + ev(x) (x E aB(O, r)), 

since v = 0 on aB(O, r). 

3. From (15) we see 

L(u + ev - u(x0 )) < -cu(x0 ) < 0 in R, 

and from (16), (17) we observe 

u + ev - u(x0 ) < 0 on aR. 
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In view of the weak maximum principle, Theorem 2, u+ev-u(x0 ) < 0 in R. 
But u(x0 ) + ev(x0 ) - u(x0 ) = 0, and so 

au 0 av 0 
av(x )+eav(x) >O. 

Consequently 

8u (xo) > -e av (x0 ) = _!Dv(x0 ) • x0 = 2.Xere->.r2 > 0, av av r 

as required. D 

Hopf's Lemma is the primary technical tool in the next proof: 

THEOREM 3 (Strong maximum principle). Assume u E C 2(U) n C(fJ) 
and 

c = 0 in U. 
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Suppose also U is connected, open and bounded. 
(i) If 

Lu< 0 in U 

and u attains its maximum over U at an interior point, then 

u is constant within U. 

(ii) Similarly, if 
Lu> 0 in U 

and u attains its minimum over U at an interior point, then 

u is constant within U. 

Proof. Write M := maxo u and C := {x E U I u(x) = M}. Then if u ¢. M, 
set 

V := {x EU I u(x) < M}. 

Choose a point y E V satisfying dist(y, C) < dist(y, BU), and let B denote 
the largest ball with center y whose interior lies in V. Then there exists 
some point x0 E c' with x0 E a B. Clearly v satisfies the interior ball 
condition at x0 , whence Hopf's Lemma, (i), implies g~(x0 ) > 0. But this is a 
contradiction: since u attains its maximum at x0 EU, we have Du(x0 ) = 0. 

D 

If the zeroth-order term c is nonnegative, we have this version of the 
strong maximum principle: 

THEOREM 4 (Strong maximum principle with c > 0). Assume u E 

C2(U) n C(U) and 
c > 0 in U. 

Suppose also U is connected. 
(i) If 

Lu< 0 in U 

and u attains a nonnegative maximum over U at an interior point, 
then 

u is constant within U. 

(ii) Similarly, if 
Lu> 0 in U 

and u attains a nonpositive minimum over U at an interior point, 
then 

u is constant within U. 
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The proof is like that above, except that we use statement (ii) in Hopf's 
Lemma. 

6.4.3. Harnack's inequality. 

Harnack's inequality states that the values of a nonnegative solution are 
comparable, at least in any subregion away from the boundary. We assume 
as usual that 

n n 

Lu= - L aiiuxixi + Lbiuxi +cu. 
i,j=l i=l 

THEOREM 5 (Harnack's inequality). Assume u > 0 is a C 2 solution of 

Lu= 0 in U, 

and suppose V CC U is connected. Then there exists a constant C such that 

(18) supu < Cinf u. 
v v 

The constant C depends only on V and the coefficients of L. 

This assertion is true if the coefficients are merely bounded and measur
able: see Gilbarg-Trudinger [G-T]. We will however provide a proof only 
for the special case that bi _ c _ 0 and the a ij are smooth ( i, j = 1, ... , n). 

Proof. 1. We may assume u > 0 in U, for otherwise we could apply the 
result to u + E and then let E ~ o+. 

Set 

(19) v := logu. 

Since Lu = 0, we compute 

(20) in U. 
i,j=l 

Define 

(21) W ·-.-

so that (20) says 

n 

(22) ""' ij -- ~a VxiXj -W. 

i,j=l 
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2. We calculate for k, l = 1, ... , n that 

n 

Wxkxz = L 2aijVxixkxzVx; + 2aijVxixk Vx;xz + R, 
i,j=l 

where the remainder term R, resulting from derivatives falling upon the 
coefficients, satisfies an estimate of the form 

(23) 

for each t > 0. Thus 

n n 
~kl -~ij 

- ~ a Wxkxl - 2 ~ a Vx; 

(24) k,l=l i,j=l 

Differentiating (22), we see that 

(25) 
n 

- L alkvxixkxz = Wxi + ~ (i = 1, ... 'n), 
k,l=l 

where~ denotes another remainder term satisfying estimate (23). Further
more, the uniform ellipticity condition implies 

(26) 
k,l=l 

Substituting (25) and (26) into (24) and then choosing t > 0 small 
enough, we derive the differential inequality 

n n 

(27) - L aklwxkxz + L bkwxk > 82ID2vl 2 - CIDvl2 , 

where 

(28) 

kJ=l k=l 

n 

bk := -2 L aklVxz (k = 1, ... , n). 
l=l 

3. Suppose next V CC U is an open ball of radius r > 0. Choose a 
cu to ff function ( E C00 ( U) such that 

0 < ( < 1, ( = 0 on au' ( = 1 on v. 
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Let 

{29) 

We now assume 

{30) z attains its maximum at some point xo E U. 

Then at xo we have 

{31) 

Furthermore, at this point we have the inequality 

n n n n 

0 < - L aklzxkxl + Lbkzxk = - L akl((4w)xkxl + Lbk((4w)xk· 
kJ=l k=l kJ=l k=l 

Hence 

(32) 

" where the remainder term R, which comprises terms for which derivatives 
fall upon the cutoff function (, satisfies the estimate 

Recalling now {31), we see that in fact 

(33) 

Insert this estimate and (27) into (32): 

(4ID2vl2 < C(41Dvl2 + C(2w. 

But OIDvl2 < w, and furthermore w < CID2vl, according to {22). It follows 
that 

and therefore 
z = (4w < C at the point xo. 

Since z attains its maximum at xo and since ( = 1 on V, we consequently 
have the estimate 

(34) IDvl < C within the region V. 
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4. Now select xi, x2 E V. Then 

v(x2) - v(x1) < sup IDvl r < C, 
v 

where we recall that r is the radius of the ball V. We exponentiate to deduce 

This inequality is valid for all x 1, x2 E V, and so the Harnack inequality 
(18) is valid if V is a ball. In the general case we cover V CC U with balls 
and repeatedly apply the inequality above. D 

6.5. EIGENVALUES AND EIGENFUNCTIONS 

We consider in this section the boundary-value problem 

(1) { Lw = >..w in U 
w = 0 on au, 

where U is open and bounded, and recall that ).. is an eigenvalue of L pro
vided there exists a nontrivial solution w of (1). From the theory developed 
in §6.2 we recall that the set E of eigenvalues of L is at most countable. 

The theorems in §6.5.1 below are analogues for elliptic PDE of the stan
dard linear algebra assertion that a real symmetric matrix possesses real 
eigenvalues and an orthonormal basis of eigenvectors. Similarly, the results 
in §6.5.2 are PDE versions of the Perron-Frobenius theorem that a matrix 
with positive entries has a real, positive eigenvalue and a corresponding 
eigenvector with positive entries (cf. Gantmacher [Ga]). 

6.5.1. Eigenvalues of symmetric elliptic operators. 

For simplicity, we consider now an elliptic operator having the divergence 
form 

(2) 
n 

Lu= - L (aijUxi)x;, 

i,j=l 

where aij E C00 (U) (i,j = 1, ... , n). We suppose the usual uniform elliptic
ity condition to hold and as usual suppose 

(3) a ij = aii (,; J. 1 n) "' = ' ... ' . 

The operator L is thus formally symmetric, and in particular the associated 
bilinear form B[ , ] satisfies B[u, v] = B[v, u] (u, v E HJ(U)). Assume also 
U is connected. 
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THEOREM 1 (Eigenvalues of symmetric elliptic operators). 
(i) Each eigenvalue of L is real. 

(4) 

(ii) Furthermore, if we repeat each eigenvalue according to its (finite) 
multiplicity, we have 

E = {,\k}~1' 

where 

and 
Ak ---+ oo as k ---+ oo. 

(iii) Finally, there exists an orthonormal basis { wk}k=I of L2 (U), where 
Wk E HJ(U) is an eigenfunction corresponding to ,\k: 

fork= 1, 2, .... 

in U 
on au, 

Owing to the regularity theory in §6.3, Wk E C 00 (U), and furthermore 
Wk E C00 (U) if au is smooth, for k = 1, 2, .... 

Proof. 1. As in §6.2, 

is a bounded, linear, compact operator mapping L2 (U) into itself. 

2. We claim further that Sis symmetric. To see this, select f, g E L2 (U). 
Then Sf = u means u E HJ (U) is the weak solution of 

{ Lu= f in U 
u = 0 on au, 

and likewise Sg = v means v E HJ(U) solves 

in the weak sense. Thus 

and 

{ Lv = g in U 
v=O onaU 

(Sf, g) = (u, g) = B[v, u] 

(f, Sg) = (f, v) = B[u, v]. 
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Since B[u, v] = B[v, u], we see (SJ, g) = (J, Sg) for all J, g E L 2 (U). There
fore S is symmetric. 

3. Notice also 

(SJ,J) = (u,J) = B[u,u] > 0 (J E L2 (U)). 

Consequently the theory of compact, symmetric operators from §D.6 implies 
that all the eigenvalues of S are real, positive, and there are corresponding 
eigenfunctions which make up an orthonormal basis of L2 (U). But observe 
as well that for 71 =/:- 0, we have Sw = 71w if and only if Lw =AW for A=~
The theorem follows. D 

Weyl 's Law. The study of the distribution of the eigenvalues of elliptic 
operators is extremely important in mathematical physics. A landmark 
assertion concerning the asymptotic distribution of eigenvalues is due to 
H. Weyl. For the special case of the eigenvalues {Ak}~1 of the Laplacian in 
the smooth, bounded open set U C Rn, taken with zero boundary conditions, 
Weyl's Law asserts 

n 

lim _Ak_2 = (27r )n 
k-+oo k IUla(n)" 

Here IUI denotes the volume of U. 
We next scrutinize more carefully the first eigenvalue of L. 

DEFINITION. We call Ai > 0 the principal eigenvalue of L. 

THEOREM 2 (Variational principle for the principal eigenvalue). 
(i) We have 

(5) Al = min{ B[u, u] I u E HJ (U), llullL2 = 1 }. 

(ii) Furthermore, the above minimum is attained for a function w1, pos
itive within U, which solves 

in U 
on au. 

(iii) Finally, if u E HJ (U) is any weak solution of 

then u is a multiple of w1. 

in U 
on au, 
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Remarks. (i) Assertion (iii) says the principal eigenvalue AI is simple. In 
particular 

0 < Ai < A2 < AJ < · · · . 

(ii) Expression (5) is Rayleigh's formula and is equivalent to the state-
ment 

, . B[u, u] 
"'1 == min 2 . 

uEHJ(U) llull£2(U) 
u~O 

Proof. 1. In view of ( 4) we see 

(6) 

and 

(7) 

for k, l == 1, 2, ... , k -=/=- l. 

2. As { Wk}k:::1 is an orthonormal basis of L 2 (U), if u E HJ(U) and 
llullL2(u) == 1, we can write 

(8) 

for dk = (u, wk)L2(u), the series converging in L2 (U): see §D.2. In addition 

00 

(9) L d~ == llulli2cu> = 1. 
k=l 

3. Furthermore from (6) and (7) we see that { ~'2 }
00 

is an orthonor-
>.k k=l 

mal subset of HJ(U), endowed with the new inner product B[, ). 

We claim further that { ~'2 } 
00 

is in fact an orthonormal basis of 
>.k k=l 

HJ(U), with this new inner product. To see this, it suffices to verify that 

B[wk, u] = 0 (k = 1, 2, ... ) 

implies u = 0. But this assertion is clearly true, since the identities 
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force u - 0, as { wk}k:::1 is a basis of L2 (U). Consequently 

for µk = B [ u, >-1'2 ] , the series converging in HJ (U). But then according to 

(8), µk = dkA~/2 ; and so the series (8) in fact converges also in HJ(U). 

4. Thus (6) and (8) imply 

00 

B[u, u] = L d~Ak > A1 by (9). 
k=I 

As equality holds for u = wi, we obtain formula (5). 

5. We next claim that if u E HJ(U) and llullL2(u) = 1, then u is a weak 
solution of 

(10) { Lu=A1u inU 
u = 0 on au 

if only only if 

(11) B[u, u] = A1. 

Obviously (10) implies (11). On the other hand, suppose (11) is valid. 
Then, writing dk = (u, wk) as above, we have 

00 00 

(12) L d~A1 = A1 = B[u, u] = L d~Ak· 
k=l k=l 

Hence 

00 

(13) L(Ak - A1)d~ = o. 
k=l 

Consequently 
dk=(u,wk)=O if Ak>A1. 

Since A1 has finite multiplicity, it follows that 

(14) 
m 

u = L(u,wk)wk 
k=l 
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for some m, where Lwk = A1Wk· Therefore 

(15) 

This proves ( 10). 

m 

Lu= L(u,wk)Lwk = A1u. 
k=l 
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6. Next we will show that if u E HJ(U) is a weak solution of (10), u "t 0, 
then either 

(16) u > 0 in U 

or else 

(17) u < 0 in U. 

To see this, let us assume without loss of generality that llullL2 = 1 and note 

(18) a.+{J=l 

for 

a:= l (u+)2 dx, (3 := l (u-)2 dx. 

Furthermore since u± E HJ(U), with 

+ { Du a.e. on {u > O} 
Du = 

0 a.e. on {u < O}, 

_ { 0 a.e. on { u > O} 
Du = 

-Du a.e. on {u < O} 

(cf. Problem 18 in Chapter 5), we have B[u+, u-] = 0. Accordingly 

A1 = B[u, u] = B[u+, u+] + B[u-, u-] 

> A1 llu+ lli2cu> + A1 llu-lli2cu> by (5) 
= (a+ {J)A1 = A1. 

But then we see that the inequality above must in fact be an equality, and 
so 

B[u+,u+] = A1llu+lli2cu)' B[u-,u-] = A1llu-lli2cu>· 
Therefore the claim proved in step 5 asserts 

(19) 
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and 

(20) 

in the weak sense. 

7. Next, since the coefficients aii are smooth, we deduce from (19) that 
u+ E C00 (U) and 

Lu+ = A1 u + > 0 in U. 

The function u+ is therefore a supersolution. Thus the strong maximum 
principle implies either u+ > 0 in U or else u+ = 0 in U. Similar arguments 
apply to u-, and so either (16) or (17) holds. 

8. Finally assume that u and u are two nontrivial weak solutions of (10). 
In view of steps 6 and 7 above 

fu Udx i- 0, 

and so there exists a real constant x such that 

(21) fu u - xUdx = 0. 

But since u - xu is also a weak solution of (10), steps 6 and 7 and the 
equality (21) imply u = xu in U. Hence the eigenvalue ..X1 is simple. 0 

6.5.2. Eigenvalues of nonsymmetric elliptic operators. 

We will now consider a uniformly elliptic operator L in the nondivergence 
form: 

n n 

Lu= - L aiiuxix; + Lbiuxi +cu. 
i,j=l i=l 

Let us for simplicity assume that aii, bi, c E C00 ("U), that U is open, bounded 
and connected, and that au is smooth. We suppose also aii = aii (i,j = 
1, ... , n) and 

(22) c > 0 in U. 

Notice however that in general the operator L will not equal its formal 
adjoint. We therefore cannot invoke as above the abstract theory from §D.6. 
And in fact L will in general have complex eigenvalues and eigenfunctions. 

Remarkably, however, the principal eigenvalue of Lis real, and the cor
responding eigenfunction is of one sign within U. 
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THEOREM 3 (Principal eigenvalue for nonsymmetric elliptic operators). 
(i) There exists a real eigenvalue ..\1 for the operator L, taken with zero 

boundary conditions, such that if,\ EC is any other eigenvalue, we 
have 

(ii) There exists a corresponding eigenfunction w1, which is positive 
within U. 

(iii) The eigenvalue ..\1 is simple; that is, if u is any solution of (1), then 
u is a multiple of w1. 

Proof*. 1. Choose m = [ ~] + 3 and consider the Banach space X 
Hm(U) n HJ(U). According to Theorem 6 in §5.6.3, X c C2 (U). We define 
the linear, compact operator A: X--+ X by setting Af = u, where u is the 
unique solution of 

(23) { Lu= f in U 
u = 0 on au. 

Next define the cone 

C = {u EX I u > 0 in U}. 

According to the maximum principle, A: C--+ C. 

2. Hereafter fix any function w E C, w ¢ 0. Employing the strong 
maximum principle and Hopf's Lemma, we deduce 

(24) 0 . U av OonaU 
V > Ill , av < 

for v = A(w). 

Remember that w = o on au. So in view of (24) there exists a constant 
µ > 0 so that 

(25) µv > w in U. 

3. Fix E > 0, 71 > 0, and consider then the equation 

(26) u = 71A[u + Ew] 

for the unknown u EC. We claim that 

(27) if (26) has a solution u, then 71 < µ. 

*Omit on first reading. 



362 6. SECOND-ORDER ELLIPTIC EQUATIONS 

To verify this assertion, suppose in fact u EC solves (26). We compute 

U > 77A[t:w] = 77t:v > 77 t:W, 
µ 

according to (25). Hence 

Continuing, we deduce 

u > (:) ~w (k = 1, ... ), 

a contradiction unless 77 < µ. This observation confirms the assertion (27). 

4. Define 

sf := { u E c I there exists 0 < 77 < 2µ such that u = 71A[u + t:w]}. 

We assert that 

(28) sf is unbounded in x. 

Indeed, if this were not so, it would follow that the equation 

u = 2µA[u + t:w] 

has a solution, in contradiction to (27). To draw this conclusion we have 
applied the variant for mappings on convex sets of Schaefer's fixed point 
theorem, stated in §9.2.2. 

5. Owing to (28), there exist 

(29) 

and vf E C, with llvfllx > ~' satisfying 

(30) 

Renormalize by setting 

(31) 
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Using (29)-(31) and the compactness of the operator A, we obtain a subse
quence Ek --+ 0 so that 

Then (31) implies 

(32) llullx = 1, u E C. 

Since Ue = 17eA [ Ue + llv:if x J , we deduce in the limit that u = 17Au. In view 

of (32), 77 > 0. We may consequently rewrite the above to read 

{ Lw1 = ..\1w1 in U 
WI= 0 On au, 

for ..\1 = 77, u = w1. Thus ..\1 is a real eigenvalue for the operator L, taken 
with zero boundary conditions, and w1 > 0 is a corresponding eigenfunction. 
In view of the strong maximum principle and Hopf's Lemma, we have 

(33) WI > 0 in U, aa:l < 0 on au. 

Additionally, we know w1 is smooth, owing to the regularity theory in §6.3. 

6. All expressions occurring in steps 1-5 above are real. Suppose now 
,\ E C and u is a complex-valued solution of 

(34) { Lu= ,\u in U 
u = 0 on au. 

Now choose any smooth function w : U --+ IR, with w > 0 in U, and set 
v := u . We compute 

w 

1 
,\v = -L(vw) by (34) 

w 
(35) n 

2 L .. v = Lv - cv - - a'3wx.Vx- + -Lw. w J i w 
i,j=l 

Writing 
n n 

Kv := - L aiivxix; + L b'ivxi 
i,j=l i=l 

for b'i :=bi - ! ~J=l aiiwx; (i = 1, ... , n), we deduce from (35) that 

(36) Kv + ( L: - A) v = 0 in U. 
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Take complex conjugates: 

(37) ( Lw -) Kv + -;;; - ,\ v = 0 in U. 

Next we compute 

n 

(38) K(lvl2) = K(vv) = vKv + vKv - 2 L aiivxiVx; < vKv + vKv, 
i,j=l 

since 
n n 

L aii(.i"(,j = L aii(Re((.i) Re((.j) + Im((.i) Im((.j)) > 0 
i,j=l i,j=l 

for(. E en. Combining (36)-(38), we discover 

K(lvl2) < 2 (Re A - L::) lvl2. 

Now choose 

(39) 

Consequently 

W ·-wI-1: 
.- 1 

K(lvl 2 ) < 2(Re,\ - (1 - t:)..\1)1vl 2 in U. 

Thus if Re(,\)< (1-t:)..\i, then K(lvl2) < 0 in U. As v = 0 on au, according 
to (33) and (39), we deduce from the maximum principle that v = : = 0 
in U. Thus u = 0 in U and so ,\ cannot be an eigenvalue. This conclusion 
obtains for each t: > 0, and so Re,\> ,\1 if,\ is any complex eigenvalue. 

7. Finally, let u be any (possibly complex-valued) solution of 

(40) { Lu = ..\1 u in U 
u = 0 on au. 

Since Re(u) and Im(u) also solve (40), we may as well suppose from the 
outset u is real-valued. Replacing u by -u if needs be, we may also suppose 
u > 0 somewhere in U. Now set 

(41) X := sup{µ > 0 I w1 - µu > 0 in U}. 
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Then 0 < x < 00. Write v = W1 - xu; so that v > 0 in u and 

{ Lv = ..\1 v > 0 in U 
v = 0 on au. 

Now if v is not identically zero, the strong maximum principle and Hopf's 
Lemma imply 

Thus 

0 . u av 0 on au. v > in ' av < 

v - EU> 0 in U for some E > 0, 

and so 
w1 - (x + E)u > 0 in U, 

a contradiction to (41). Hence v = 0 in U, and sou is a multiple of w1. D 

6.6. PROBLEMS 

In the following exercises we assume the coefficients of the various PDE are 
smooth and satisfy the uniform ellipticity condition. Also U c Rn is always 
an open, bounded set, with smooth boundary au. 
1. Consider Laplace's equation with potential function c: 

-~u+cu = 0, 

and the divergence structure equation: 

-div(aDv) = 0, 

where the function a is positive. 

(a) Show that if u solves (*)and w > 0 also solves (*),then v := u/w 
solves ( **) for a := w2 • 

(b) Conversely, show that if v solves ( ** ), then u := va112 solves ( *) 
for some potential c. 

2. Let 
n 

Lu= - L (aiiu .) +cu. Xi x· 
3 

i,j=l 

Prove that there exists a constant µ > 0 such that the correspond
ing bilinear form B[·, ·] satisfies the hypotheses of the Lax-Milgram 
Theorem, provided 

c(x) > -µ (x E U). 
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3. A function u E H6 (U) is a weak solution of this boundary-value prob
lem for the biharmonic equation 

provided 

in U 
onaU 

fu ~u~vdx = fu!vdx 
for all v E H6(U). Given f E L 2 (U), prove that there exists a unique 
weak solution of ( *). 

4. Assume U is connected. A function u E H 1(U) is a weak solution of 
Neumann's problem 

if 

{ -Au= f in U 
~~ = 0 on au 

fu Du· Dvdx = fu!vdx 
for all v E H 1(U). Suppose f E L2 (U). Prove(*) has a weak solution 
if and only if 

fu!dx =0. 

5. Explain how to define u E H 1(U) to be a weak solution of Poisson's 
equation with Robin boundary conditions: 

{ -Au= f in U 
u+ ~ = 0 on au. 

Discuss the existence and uniqueness of a weak solution for a given 
f E L2 (U). 

6. Suppose U is connected and au consists of two disjoint, closed sets r 1 

and r2. Define what it means for u to be a weak solution of Poisson's 
equation with mixed Dirichlet-Neumann boundary conditions: 

{
-Au= f in U 

u = 0 on ri 
au - 0 on r2 8v - · 

Discuss the existence and uniqueness of weak solutions. 

7. Let u E H 1(Rn) have compact support and be a weak solution of the 
semilinear PDE 

-Au+ c(u) = f in Rn, 
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where f E L2 (Rn) and c: IR---+ IR is smooth, with c(O) = 0 and c' > 0. 

Prove u E H 2 (Rn). 

(Hint: Mimic the proof of Theorem 1 in §6.3.1, but without the cutoff 
function (.) 

8. Let u be a smooth solution of the uniformly elliptic equation Lu = 

- L~j=l aii(x)uxix; = 0 in U. Assume that the coefficients have 
bounded derivatives. 

Set v := 1Dul2 + AU2 and show that 

Lv < 0 in U 

if A is large enough. Deduce 

llDullvx>(U) < C(llDullvx>(8U) + llullvx>(8U))· 

9. Assume u is a smooth solution of Lu = - L~j=l aiiuxix; = f in U, 
u = 0 on au' where I is bounded. Fix x0 E au. A barrier at x0 is a 
C2 function w such that 

Lw > 1 in U, w(x0 ) = 0, w > 0 on au. 

Show that if w is a barrier at x0 , there exists a constant C such that 

1Du(x0 )1 < C ~: (x0 ) . 

10. Assume U is connected. Use (a) energy methods and (b) the maximum 
principle to show that the only smooth solutions of the Neumann 
boundary-value problem 

{ -Au= 0 in U 
g~ = 0 on au 

are u = C, for some constant C. 

11. Assume u E H 1 (U) is a bounded weak solution of 

n 

- ~ (aiiux.) = 0 in U. L....J i Xj 

i,j=l 

Let </> : IR ---+ IR be convex and smooth, and set w = </>( u). Show w is a 
weak subsolution; that is, B[w, v] < 0 for all v E HJ(U), v > 0. 
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12. We say that the uniformly elliptic operator 

n n 

Lu= - L aiiuxix; + L biuxi +cu 
i,j=l i=l 

satisfies the weak maximum principle if for all u E C2(U) n C(U) 

{
Lu< 0 in U 

u < 0 on au 

implies that u < 0 in U. 

Suppose that there exists a function v E C2 (U) n C(U) such that 
Lv > 0 in U and v > 0 on [J. Show that L satisfies the weak maximum 
principle. 

(Hint: Find an elliptic operator M with no zeroth-order term such 
that w := u/v satisfies Mw < 0 in the region {u > O}. To do this, 
first compute ( v2wxi )x;.) 

13. (Courant minimax principle) Let L = - L::,j=l (aiiuxJx;, where ((aii)) 
is symmetric. Assume the operator L, with zero boundary conditions, 
has eigenvalues 0 < A1 < A2 < · · · . Show 

Ak = max min B[u, u] (k = 1, 2, ... ). 
SEEk-1 uES.l. 

llullL2=l 

Here Ek-1 denotes the collection of ( k - 1 )-dimensional subspaces of 
HJ(U). 

14. Let Al be the principal eigenvalue of the uniformly elliptic, nonsym
metric operator 

n n 

Lu= - L aiiuxix; + L biuxi +cu, 
i,j=l i=l 

taken with zero boundary conditions. Prove the "max-min" represen
tation formula: 

. Lu(x) 
A1 =sup inf ( ) , 

u x u x 

the "sup" taken over functions u E C00 (U) with u > 0 in U, u = 0 on 
au, and the "inf" taken over points x E U. 

(Hint: Consider the eigenfunction wi corresponding to A1 for the ad
joint operator L *.) 
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15. (Eigenvalues and domain variations) Consider a family of smooth, 
bounded domains U ( T) C Rn that depend smoothly upon the param
eter T E R. As T changes, each point on au ( T) moves with velocity 
v. 

For each r, we consider eigenvalues A= A(r) and corresponding eigen
functions w = w(x, r): 

{ -Aw= AW 
w =0 

in U(r) 
on au(r), 

normalized so that llwllL2(u(r)) = 1. Suppose that A and ware smooth 
functions of T and x. 

Prove Hadamard's variational formula 

. l aw 2 A = - - v · v dS, 
8U(r) av 

where . = t and V · lJ is the normal velocity of au ( T). 
(Hint: Use the calculus formula from §C.4.) 

16. (Radiation condition) If we separate variables to look for a complex
valued solution of the wave equation having the form u = e-iutw for 
w = w(x) and a ER, a=/= 0, we are led to the eigenvalue problem 

-Aw= AW in Rn 

where A:= a 2 . 

(a) Show that w = eiuw·x solves ( *), provided lw I = 1. Then u = 
eiu(w·x-t) is a traveling wave solution of the wave equation. 

• iulzl 
(b) Show that for n = 3, the function ~ := ~1rlxl solves 

-A~ = A~ + 60 in R3 . 

( c) The Sommerfeld radiation condition requires for a solution of 
(*) that 

lim r(wr - iaw) = 0, 
r-oo 

for Wr := Dw · 1 ~ 1 • Prove that the solution w from (a) does not 
satisfy this condition but that ~ from (b) does. 

17. (Continuation) Prove that if w is a complex-valued solution of eigen
value problem ( *) in R3 and if w satisfies the radiation condition, then 
w=O. 
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(Hints: First observe that 

0 = { wAw - wAw dx = { WWr - WWr dS. 
j B(O,R) j 8B(O,R) 

Use this and the radiation condition to show 

as R ~ oo. Given now a point xo E IR3 , select R > lxol· Then 

w(xo) = { ~Wr - W~r dS, 
laB(O,R) 

where ~ = ~ ( x - xo). Show the integral goes to zero as R ~ oo.) 
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7 .1 Second-order parabolic equations 

7.2 Second-order hyperbolic equations 

7.3 Hyperbolic systems of first-order equations 

7.4 Semigroup theory 

7.5 Problems 

7. 6 References 

Chapter 7 

This long chapter studies various linear partial differential equations 
that involve time. We often call such PDE evolution equations, the idea 
being that the solution evolves in time from a given initial configuration. 
We will study by energy methods general second-order parabolic and hyper
bolic equations and also certain first-order hyperbolic systems. The Fourier 
transform, utilized in §7.3.3, and the semigroup technique, discussed in §7.4, 
provide alternative approaches. 

7.1. SECOND-ORDER PARABOLIC EQUATIONS 

Second-order parabolic PDE are natural generalizations of the heat equa
tion (§2.3). We will study in this section the existence and uniqueness of 
appropriately defined weak solutions, their smoothness and other properties. 

-371 
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7.1.1. Definitions. 

a. Parabolic equations. For this chapter we assume U to be an open, 
bounded subset of Rn and as before set UT= U x (0, T] for some fixed time 
T > 0. 

(1) 

We will first study the initial/boundary-value problem 

{ 
Ut + Lu = f in UT 

u = 0 on oU x [O, T] 
u = g on U x { t = 0}, 

where f : UT ~ R and g : U ~ R are given and u : UT ~ R is the unknown, 
u = u ( x, t). The letter L denotes for each time t a second-order partial 
differential operator, having either the divergence form 

n n 

(2) Lu= - L (aii(x, t)uxJxi + L bi(x, t)uxi + c(x, t)u 
i,j=l i=l 

or else the nondivergence form 

n n 

(3) Lu= - L aii(x, t)uxixi + L bi(x, t)uxi + c(x, t)u, 
i,j=l i=l 

£ • ffi . t ij bi ( . . - 1 ) or given coe c1en s a , , c i, J - , ... , n . 

DEFINITION. We say that the partial differential operator ft +Lis (uni
formly) parabolic if there exists a constant () > 0 such that 

n 

(4) L aij (x, t)eiej > 01e1 2 

i,j=l 

for all (x, t) E UT, e E Rn. 

Remark. Note in particular that for each fixed time 0 < t < T the operator 
Lis a uniformly elliptic operator in the spatial variable x. 

An obvious example is aii = dij, bi= c = f = 0, in which case L = -~ 
and the PDE 88:, +Lu= 0 becomes the heat equation. We will see in fact 
that solutions of the general second-order parabolic PDE are similar in many 
ways to solutions of the heat equation. 

General second-order parabolic equations describe in physical applica
tions the time-evolution of the density of some quantity u, say a chemical 
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concentration, within the region U. As noted for the equilibrium setting (i.e., 
second-order elliptic PDE, in §6.1.1), the second-order term L:~j=l aiiuxixi 
describes diffusion, the first-order term L:~1 biuxi describes transport, and 
the zeroth-order term CTt describes creation or depletion. 

The Fokker-Planck and Kolmogorov equations from the probabilistic 
study of diffusion processes are also second-order parabolic equations. 

b. Weak solutions. Mimicking the developments in §6.1.2 for elliptic 
equations, we consider first the case that L has the divergence form (2) and 
try to find an appropriate notion of weak solution for the initial/boundary
value problem (1). We assume for now that 

(5) 

(6) 

(7) 

aii,bi,c E L00 (Ur) (i,j = 1, ... ,n), 

f E L2 (Ur), 

g E L 2 (U). 

We will also always suppose aii = aii (i, j = 1, ... , n). 

Let us now define, by analogy with the notation introduced in Chapter 
6, the time-dependent bilinear form 

n n 

(8) B[u,v;t] := 1 L aij(·,t)u.,,v.,; + Lb\,t)u.,,v+c(·,t)uvdx 
uiJ=l i=l 

for u, v E HJ(U) and a.e. 0 < t < T. 

Motivation for definition of weak solution. To make plausible the 
following definition of weak solution, let us first temporarily suppose that 
u = u(x, t) is in fact a smooth solution of our parabolic problem (1). We 
now switch our viewpoint, by associating with u a mapping 

u: [O, T] ~ HJ(U) 

defined by 
[u(t)](x) := u(x, t) (x EU, 0 < t < T). 

In other words, we are going to consider u not as a function of x and t 
together, but rather as a mapping u oft into the space HJ(U) of functions 
of x. This point of view will greatly clarify the following presentation. 

Returning to problem (1), let us similarly define 

f : [O, T] ~ L 2 (U) 
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by 
[f(t)](x) := f(x, t) (x EU, 0 < t < T). 

Then if we fix a function v E HJ(U), we can multiply the PDE 8; +Lu= f 
by v and integrate by parts, to find 

(9) (u', v) + B[u, v; t] = (f, v) (' = :t) 
for each 0 < t < T, the pairing ( , ) denoting inner product in L2(U). 

Next, observe that 

n 

(10) 0 ~. 
Ut =g + ~g~i in Ur 

j=l 

for g0 := f - L~=l biuxi - CTt and gJ := L~=l aijuxi (j = 1, ... , n). Con
sequently (10) and the definitions from §5.9.1 imply the right-hand side of 
(10) lies in the Sobolev space H- 1(U), with 

This estimate suggests it may be reasonable to look for a weak solution with 
u' E H-1(U) for a.e. time 0 < t < T, in which case the first term in (9) can 
be reexpressed as (u', v), (, ) being the pairing of H-1(U) and HJ(U). D 

All these considerations motivate the following 

DEFINITION. We say a function 

u E L2 (0, T; HJ(U)), with u' E L2(0, T; H-1(U)), 

is a weak solution of the parabolic initial/boundary-value problem (1) pro
vided 

(i) (u', v) + B[u, v; t] = (f, v) 

for each v E HJ(U) and a.e. time 0 < t < T and 

(ii) u(O) = g. 

Remark. In view of Theorem 3 in §5.9.2, we see u E C([O, T]; L 2(U)), and 
thus the equality (ii) makes sense. 
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7.1.2. Existence of weak solutions. 

a. Galerkin approximations. We intend to build a weak solution of the 
parabolic problem 

(11) { 
Ut + Lu = f in Ur 

u = 0 on 8U x [O, T] 
u = g on U x { t = 0} 

by first constructing solutions of certain finite-dimensional approximations 
to (11) and then passing to limits. This is called Galerkin's method. 

More precisely, assume the functions Wk = wk(x) (k = 1, ... ) are 
smooth, 

(12) {wk}k:::1 is an orthogonal basis of HJ(U), 

and 

(13) { wk}k:::1 is an orthonormal basis of L2 (U). 

(For instance, we could take {Wk} k:::1 to be the complete set of appropriately 
normalized eigenfunctions for L =-~in HJ(U): see §6.5.1.) 

Fix now a positive integer m. We will look for a function Um : [O, T] --+ 

HJ(U) of the form 

m 

(14) Um(t) := :E d~(t)wk, 
k=l 

where we hope to select the coefficients d~(t) (0 < t < T, k = 1, ... , m) so 
that 

(15) d~(O) = (g, Wk) (k = 1, ... , m) 

and 

(16) (~,wk)+ B[um, wk; t] = (f, wk) (0 < t < T, k = 1, ... , m). 

(Here, as before, ( , ) denotes the inner product in L 2 (U).) 

Thus we seek a function Um of the form (14) that satisfies the "projec
tion" (16) of problem (11) onto the finite-dimensional subspace spanned by 
{wk}~1· 
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THEOREM 1 (Construction of approximate solutions). For each integer 
m = 1, 2,... there exists a unique function Um of the form (14) satisfying 
(15), (16). 

Proof. Assuming Um has the structure (14), we first note from (13) that 

(17) (u~(t), wk) = d':n' (t). 
Furthermore 

m 

(18) B[um, Wk; t] = :E ekl(t)d!n(t), 
l=l 

for ekl(t) := B[wl, wk; t] (k, l = 1, ... , m). Let us further write fk(t) ·
(f(t), wk) (k = 1, ... , m). Then (16) becomes the linear system of ODE 

m 

(19) d':n' (t) + L ekl(t)d!n(t) = fk(t) (k = 1, ... , m), 
l=l 

subject to the initial conditions (15). According to standard existence theory 
for ordinary differential equations, there exists a unique absolutely contin
uous function dm(t) = (din(t), ... , cFm(t)) satisfying (15) and (19) for a.e. 
0 < t < T. And then Um defined by (14) solves (16) for a.e. 0 < t < T. D 

b. Energy estimates. We propose now to send m to infinity and to show 
a subsequence of our solutions Um of the approximate problems (15), (16) 
converges to a weak solution of (11). For this we will need some uniform 
estimates. 

THEOREM 2 (Energy estimates). There exists a constant C, depending 
only on U, T and the coefficients of L, such that 

(20) 
O~t8t"T llum(t)llL2(U) + llumllL2(0,T;HJ(U)) + llu~llL2(0,T;H-l(U)) 

< C(llfllL2(0,T;L2(u)) + llYllL2(u)) 

form= 1, 2, .... 

Proof. 1. Multiply equation (16) by d~(t), sum fork= 1, ... , m, and then 
recall ( 14) to find 

(21) 

for a.e. 0 < t < T. We proved in §6.2.2 that there exist constants {3 > 0, 
r > 0 such that 

(22) 
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for all 0 < t < T, m = 1,.... Furthermore l(f, um)I < !llflli2cu) + 
!llumlli2cu)' and (u~, um) = Ji (!llumlli2cu)) for a.e. 0 < t < T. Con
sequently (21) yields the inequality 

for a.e. 0 < t < T and appropriate constants C1 and C2. 

2. Now write 

(24) 

and 

(25) 

Then (23) implies 
r/(t) < C1'T/(t) + C2e(t) 

for a.e. 0 < t < T. Thus the differential form of Gronwall's inequality (§B.2) 
yields the estimate 

(26) 71(t) < eCit ( 71(0) + C2 l {(s) ds) (0 < t < T). 

Since 'T/(O) = llum(O)lli2cu) < llglli2(u) by (15), we obtain from (24)-(26) 
the estimate 

3. Returning once more to inequality (23), we integrate from 0 to T and 
employ the inequality above to find 

llt1mlli2(0,T;HJ(U)) = foT llumll~J(U) dt 

< c (llglli2cu) + llflli2co,r;L2cun) · 

4. Fix any v E HJ(U), with llvllHJ(U) < 1, and write v = v1 + v2, where 
v1 E span{ wk}k=l and (v2 , wk) = 0 (k = 1, ... , m). Since the functions 
{wk}~0 are orthogonal in HJ(U), llv1llHJ(U) < llvllHJ(U) < 1. Utilizing 
(16), we deduce for a.e. 0 < t < T that 

(u~, v1) + B[um, v1; t] = (f, v1 ). 
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Then (14) implies 

(u~, v) = (u~, v) = (u~, v1) = (f, v1) - B[um, v1; t]. 

Consequently 
I (u~, v) I < C(llfllL2(u) + llumllHJ(u)), 

since llv1 llHJ(U) < 1. Thus 

llu~llH-l(U) < C(llfllL2(u) + llumllHJ(u)), 

and therefore 

foT 11u:..111--•(U) dt < c foT 11r111,(U) + llu,,.111-J(U) dt 

< C(llYlli2cu) + llflli2co,T;L2(u))). D 

c. Existence and uniqueness. Next we pass to limits as m --+ oo, to 
build a weak solution of our initial/boundary-value problem (11). 

THEOREM 3 (Existence of weak solution). There exists a weak solution 
of (11). 

Proof. 1. According to the energy estimates (20), we see that the se
quence { Um}~-l is bounded in L2(0, T; HJ(U)) and { u~}~=l is bounded 
in L2 (0, T; H-1(U)). 

Consequently there exists a subsequence { Umt }b,1 C { um}~=l and a 
function u E L2 (0, T; HJ(U)), with u' E L2 (0, T; H-1(U)), such that 

(27) 

(See §D.4 and Problem 5.) 

weakly in L2 (0, T; HJ(U)) 

weakly in L2 (0, T; H-1(U)). 

2. Next fix an integer N and choose a function v E C1 ([0, T]; HJ(U)) 
having the form 

N 

(28) v(t) = L dk(t)wk, 
k=l 

where {dk}f=1 are given smooth functions. We choose m > N, multiply 
(16) by dk(t), sum k = 1, ... , N, and then integrate with respect tot to find 

(29) foT (U:,., v) + B[u,,., v; t] dt = foT (f, v) dt. 
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We set m =ml and recall (27), to find upon passing to weak limits that 

(30) laT (u', v) + B[u, v; t] dt = laT (f, v) dt. 

This equality then holds for all functions v E L2 (0, T; HJ(U)), as functions 
of the form (28) are dense in this space. Hence in particular 

(31) (u', v) + B[u, v; t] = (f, v) 

for each v E HJ(U) and a.e. 0 < t < T. From Theorem 3 in §5.9.2 we see 
that furthermore u E C([O, T]; L 2 (U)). 

3. In order to prove u(O) = g, we first note from (30) that 

(32) laT -(v', u) + B[u, v; t] dt = laT (f, v) dt + (u(O), v(O)) 

for each v E C 1([0, T]; HJ(U)) with v(T) = 0. Similarly, from (29) we 
deduce 

(33) laT -(v', Um)+ B[um, v; t] dt = laT (f, v) dt + (Um(O), v(O)). 

We set m =mt and once again employ (27) to find 

T T 
(34) la -(v', u) + B[u, v; t] dt =la (f, v) dt + (g, v(O)), 

since Umt (0) ~ g in L2(U). As v(O) is arbitrary, comparing (32) and (34), 
we conclude u(O) = g. D 

THEOREM 4 (Uniqueness of weak solutions). A weak solution of (11) is 
unique. 

Proof. It suffices to check that the only weak solution of ( 11) with f = g = 0 
IS 

(35) u -o. 
To prove this, observe that by setting v = u in identity (31) (for f = 0) we 
learn, using Theorem 3 in §5.9.2, that 

(36) ! G llulll2(U)) + B [u, u; t] = (u', u) + B [u, u; t] = 0. 

Since 
B[u, u; t] > .Bllull~J(U) - 1llulli2(u) > -1llulli2(u)' 

Gronwall's inequality and (36) imply (35). D 
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7.1.3. Regularity. 

In this section we discuss the regularity of our weak solutions u to the 
initial/boundary-value problem for second-order parabolic equations. Our 
eventual goal is to prove that u is smooth, provided the coefficients of the 
PDE, the boundary of the domain, etc. are smooth. The following presen
tation mirrors that from §6.3. 

Motivation: formal derivation of estimates. (i) To gain some insight 
as to what regularity assertions could possibly be valid, let us temporarily 
suppose u = u(x, t) is a smooth solution of this initial-value problem for the 
heat equation: 

(37) { 
Ut - Au = f in Rn x (0, T] 

u = g on Rn X { t = 0}, 

and assume also u goes to zero as lxl ~ oo sufficiently rapidly to justify the 
following computations. We then calculate for 0 < t < T 

J. f 2 dx = J. (ut - Au)2 dx 
JRn JRn 

(38) = !. u~ - 2AUUt + (Au)2 dx 
JRn 

= J. u~ + 2Du · Dut + (Au)2 dx. 
JRn 

Now 2Du · Dut = 1t (IDul2), and consequently 

ftJ. 2Du · Dutdxds = J. 1Dul 2 dxl::~. lo JRn JRn 

Furthermore, as demonstrated in §6.3, 

We utilize the two equalities above in (38) and integrate in time, to obtain 

sup f 1Dul2 dx + {T f u~ + ID2ul2 dxdt 
O~t~T lJRn lo lJRn 

< C (lT kn J2 dxdt + f..n IDgl2 dx) • 

(39) 

We therefore see that we can estimate the L2-norms of Ut and D2u within 
Rn x (0, T), in terms of the L2-norm of f on Rn x (0, T) and the L2-norm 
of Dg on Rn. 
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(ii) Next differentiate the PDE with respect tot and set u := Ut. Then 

(40) { 
ftt - Aft=] in Rn x (0, T] 

u = g on Rn x { t = 0}, 

for f :=ft, g := Ut(·,O) = J(·,O) +Ag. Multiplying by u, integrating by 
parts and invoking Gronwall's inequality, we deduce 

(41) 

But 

according to Theorem 2(iii) of §5.9.2. Furthermore, writing -Au = f - Ut, 
we find as in §6.3 that 

(43) f ID2ul2 dx < CJ. f 2 + u~ dx. 
lan an 

Combining ( 41)-(43) leads us to the estimate 

sup f lutl2 + ID2ul2 dx + {T { 1Dutl2 dxdt 
(44) 0$.t$.T}an Jo Jan 

<c(for L.ll+J2 dxdt+ L.ID2gl 2 dx), 

for some constant C. D 

The foregoing formal computations suggest that we have estimates cor
responding to (39) and (44) for our weak solution to a general second-order 
parabolic PDE. These calculations do not constitute a proof, however, since 
our weak solution of (11), constructed in §7.1.2, is not smooth enough to 
justify the foregoing computations. 

We will instead calculate using the Galerkin approximations. To stream
line the presentation, we hereafter assume that {wk} ~1 is the complete col
lection of eigenfunctions for -A on HJ(U) and that U is bounded, open, 
with au smooth. We furthermore suppose that 

(45) { 
~he coefficients aii, bi, c ( i, j = 1, ... , n) are smooth on 

U and do not depend on t. 
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THEOREM 5 (Improved regularity). 

(i) Assume 
g E HJ(U), f E L2 (0, T; L 2 (U)). 

Suppose also u E L2 (0, T; HJ(U)), with u' E L2 (0, T; H-1(U)), is the weak 
solution of 

{ 
Ut + Lu = f in Ur 

u = 0 on 8U x [O, T] 
u = g on U x { t = 0}. 

Then in fact 

u E L2 (0, T; H 2 (U)) n L 00 (0, T; HJ(U)), u' E L2 (0, T; L 2 (U)), 

and we have the estimate 

(46) 
ess supllu(t)llHl(U) + llull£2(0,T;H2(U)) + llu'llL2(0,T;L2(U)) 
O~t~T o 

< C (llfllL2(0,T;L2(U)) + llgllHJ(U)) ' 

the constant C depending only on U, T and the coefficients of L. 

(ii) If, in addition, 

then 

u E L 00 (0, T; H 2 (U)), u' E L 00 (0, T; L 2 (U)) n L2 (0, T; HJ(U)), 

u" E L2 (0, T; H- 1(U) ), 

with the estimate 

ess sup(llu(t)llH2(u) + llu'(t)llL2(u)) + llu'llL2(oT·H1(u)) 
O~t~T ' ' o 

(47) +llu"llL2(0,T;H-1(u)) < C(llfllH1(0,T;L2(u)) + llgllH2(u))· 

Assertions (i), (ii) of Theorem 5 are precise versions of the formal esti
mates (39), (44) (for the heat equation on U =Rn). 

Proof. 1. Fixing m > 1, we multiply equation (16) in §7.1.2 by d~' (t) and 
sum k = 1, ... , m, to discover 
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for a.e. 0 < t < T. Now 

n 

B[Um, u:,,] = 1 L aijUm,x,U:,,,x; dx 
u i,j=l 

f ~ . I I + Jr L.J b"um,xi um + cum um dx 
u i=l 

=:A+B. 

383 

Since a ij = aii ( i, j = 1, ... , n) and these coefficients do not depend on t, 
we see A= Ji (!A[um, um]), for the symmetric bilinear form 

n 

A[u,v] := j L aiiu,,,v,,; dx (u,v E HJ(U)). 
u i,j=l 

Furthermore, 

for each € > 0. 

2. Combining the above inequalities, we deduce 

llu:nlli2(u) + ! GA[Um, Um]) 

< ~ (llumll~J(U) + llflli2(u)) + 2€llu~lli2cu)· 

Choosing € = ! and integrating, we find 

{T llu~lli2(u)dt + sup A[um(t), um(t)] 
lo O~t~T 

< c ( A[t1m(O), Um(O)] + 1T llt1mll1J(U) + llflli2cu)dt) 

< C(llgll~J(u) + llflli2co,r;L2(u))), 

according to Theorem 2 in §7.1.2, where we estimated llum(O)llHJ(U) < 
llYllHJ(U)· As A[u, u] > () fu 1Dul2 dx for each u E HJ(U), we find that 

(48) sup llum(t)ll~1(u) < C(llgll~1(u) + llflli2co T·L2(U))). 
O~t~T o o • • 
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Passing to limits as m = ml -+ oo, we deduce u E L 00 (0, T; HJ(U)), 
u' E L2 (0, T; L 2 (U)), with the stated bounds; cf. Problem 6. 

3. In particular, for a.e. t we have the identity 

(u',v) + B[u,v] = (f,v) 

for each v E HJ(U). This equality we rewrite to read 

B[u, v] = (h, v) 

for h := f - u'. Since h(t) E L2 (U) for a.e. 0 < t < T, we deduce from the 
elliptic regularity Theorem 4 in §6.3.2 that u(t) E H 2 (U) for a.e. 0 < t < T, 
with the estimate 

llnll~2(u) < C(llhlli2cu) + llnlli2cu)) 

(49) < C(llflli2cu> + llu'lli2cu) + llnlli2cu)). 

Integrating and utilizing the estimates from step 2, we complete the proof 
of (i). 

4. The goal next is to establish higher regularity for our weak solution. 
So now suppose g E H 2 (U) n HJ(U), f E H 1(0, T; L 2 (U)). Fix m > 1 and 
differentiate equation (16) in §7.1.2 with respect to t. Owing to (45), we 
find 

(50) (ii~, Wk)+ B[iim, Wk] = (f', Wk) (k = 1, ... , m), 

where iim := u~. Multiply (50) by d~(t) and sum k = 1, ... , m: 

(ii~, Um)+ B[iim, Um] = (f', Um)· 

Employing Gronwall's inequality, we deduce 

(51) 

sup llu~(t)lli2cu) + [T llu~ll~1(u) dt 
O~t~T lo o 

< C(ll~(O)lli2cu> + llf'lli2co,r;L2cun) 

< C(llfll~1(0,T;L2(u)) + llum(O)ll~2(u)). 

We employed (16) in the last inequality. 

5. We must estimate the last term in (51). Remember that we have 
taken { wk}~1 to be the complete collection of (smooth) eigenfunctions for 
-~on HJ(U). In particular, ~um= 0 on 8U. Thus 

llum(O)ll~2(u) < Cll~um(O)lli2cu) = C(um(O), ~2um(O)). 
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Since A 2um(O) E span{wk}k::1 and (um(O), wk) = (g, wk) fork= 1, ... , m, 
we have 

llum(O)ll~2(u) < C(g, A 2um(O)) = C(Ag, Aum(O)) 

1 2 2 
< 2llum(O)llH2(U) + CllYllH2(u)· 

Hence llum(O)llH2(u) < CllYllH2(u)· Therefore (51) implies 

(52) 
sup llu~(t)lli2(u) + [T llu~ll~1(u) dt 

o:::;t:::;T lo 0 

< C(llfll~1(0,T;L2(u)) + llYll~2(u)). 

6. Now 
B[um, wk] = (f - u~, wk) (k = 1, ... , m). 

Let Ak denote the kth eigenvalue of -A on HJ(U). Multiplying the above 
identity by Akd~(t) and summing k = 1, ... , m, we deduce for 0 < t < T 
that 

(53) 

Since Aum = 0 on au, we see B[um, -Aum] = (Lum, -Aum)- Next we 
invoke the inequality 

(54) .Bllull~2(u) <(Lu, -Au)+ 1llulli2cu) (u E H 2 (U) n HJ(U)) 

for constants ,B > 0, ')' > 0. (See Problem 9 and also the remark following 
the proof.) 

We thereupon conclude from (53) that 

llumllH2(u) < C(llfllL2(U) + llu~llL2(u) + llumllL2(u))· 

This inequality, (52), (48) and Theorem 2 in §5.9.2 imply 

sup (llu~(t)lli2cu) + llum(t)ll~2(u)) + [T llu~ll~1(u) dt 
o:::;t:::;T lo 0 

< C(llfll~1(0,T;L2(u)) + llYll~2(u)). 

Passing to limits as m =ml~ oo, we deduce the same bound for u. 

7. It remains to show u" E L2 (0, T; H- 1(U)). To do so, take v E HJ(U), 
with llvllHJ(U) < 1, and write v = v1 + v2 , as in the proof of Theorem 2 in 
§7.1.2. Then for a.e. time 0 < t < T 

(u~, v) = (u~, v) = (u~, v1) = (f', v1) - B[u~, v1] 
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according to ( 50), since u~ = ii~. Consequently 

I (u~, v) I < C(llf'llL2(u) + llu~ llHJ(u)), 

since llv111HJ(U) < 1. Thus 

llu~llH-1(u) < C(llf'llL2(u) + llu~llHJ(U)), 
and so u~ is bounded in L2 (0, T; H- 1(U)). Passing to limits, we deduce 
that u" E L2 (0, T; H- 1(U)), with the stated estimate. D 

Remark. If L were symmetric, we could alternatively have taken { wk}k-._1 

to be a basis of eigenfunctions of L on HJ ( U) and so avoided the need for 
inequality (54). 

Let us now build upon the previous regularity assertion: 

THEOREM 6 (Higher regularity). Assume 

g E H 2m+l(U), ~:! E £ 2 (0, T; H 2m-2k(U)) (k = 0, ... , m). 

Suppose also that the following mth_order compatibility conditions hold: 

{ 
go:= g E HJ(U), gl := f(O) - Lgo E HJ(U), 

·- cF-1r (0) L H.1 (U) · · ·' gm .- dtm.-1 - gm-1 E o · 
Then 

~:~ E L2 (0, T; H 2m+2- 2k(U)) (k = 0, ... , m + 1); 

and we have the estimate 

dku 

dtk £2(0,T;H2m.+2-2k(U)) 

( 
m dkf ) 

< c L dtk + llgllH2m.+I(U) , 
k=O £2(0,T;H2m.-2k(U)) 

m+l 

L 
k=O (55) 

the constant C depending only on m, U, T and the coefficients of L. 

Remark. Taking into account Theorem 4 in §5.9.2, we see that 

f(O) E H 2m-1(U), f'(O) E H 2m-3 (U), ... , f(m-l}(O) E H 1(U), 

and consequently 

go E H 2m+1(U), gl E H 2m- 1(U), ... , gm E H 1(U). 

The compatibility conditions are consequently the requirements that in ad
dition each of these functions equals 0 on au, in the trace sense. 
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Proof. 1. The proof is an induction on m, the case m = 0 being Theo
rem 5(i) above. 

Assume now the theorem is valid for some nonnegative integer m, and 
suppose then 

(56) g E H2m+3 (U), ~:! E £ 2 (0, T; H 2m+2- 2k(U)) (k = 0, ... , m + 1) 

and the (m + l)th_order compatibility conditions hold. Now set ii := u'. 
Differentiating the PDE with respect to t, we check that ii is the unique 
weak solution of 

(57) { 
iLt + Lu = f in Ur 

u = 0 on 8U x [O, T] 
u = g on U x { t = 0}, 

for]:= ft, g := f(·,0)-Lg. In particular, form= 0 we rely upon Theorem 
5(ii) to be sure that ii E L2 (0, T; HJ(U)), ii' E L2 (0, T; H- 1(U)). 

Since f and g satisfy the (m + l)th_order compatibility conditions, it 
follows that ] and g satisfy the mth_order compatibility condition. Thus 
applying the induction assumption, we deduce 

and 
m+l 

L 
k=O 

dkii 
dtk 

dk-
~ E L2(0 T· H 2m+2- 2k(U)) (k 0 + 1) dtk ' ' = ' ... 'm 

£2 (O,T;H2m+2-2k (U)) 

dkf ) 
dtk + lliJllH2m+l(U) 

£2 (O,T;H2m-2k(U)) 

for f := f'. Since ii= u', we can rewrite the foregoing: 

dku E L2(0 T· H2m+4-2k(U)) (k 1 + 2) 
dtk ' ' = ' ... ' m ' 

m+2 dk """""'_u (58) LI 
k=l dtk £2(0,T;H2m+4-2k(U)) 

(
m+l dkf ) 

< C L -d k + llf(O)llH2m+l(U) + ll£gllH2m+l(U) 
k=l t £2(0,T;H2m+2-2k(U)) 
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Here we used the estimate 

(59) llf(O)llH2m+l(U) < C(llfllL2(0,T;H2m+2(U)) + llf'llL2(0,T;H2m(u))), 

which follows from Theorem 4 in §5.9.2. 

2. Now write for a.e. 0 < t < T: Lu = f - u' =: h. According to 
Theorem 5 in §6.3.2, we have 

llullH2m+4(U) < C(llhl!H2m+2(U) + llul!L2(u)) 

< C(llfllH2m+2(U) + llu'llH2m+2(U) + llull£2(U))· 

Integrating with respect to t from 0 to T and adding the resulting expression 
to (58), we deduce 

m+2 dku 

~ dtk £2(0,T;H2-+4-2k(U)) 

(60) 

Since 

llullL2(0,T;L2(u)) < C(llfllL2(0,T;L2(u)) + llYllL2(u)), 

we thereby obtain the assertion of the theorem form+ 1. 

THEOREM 7 (Infinite differentiability). Assume 

g E C00 (U), f E C00 (Ur), 

D 

and the mth_order compatibility conditions hold form= 0, 1, .... Then the 
parabolic initial/boundary-value problem ( 11) has a unique solution 

u E C00 (Ur). 

Proof. Apply Theorem 6 form= 0, 1, .... D 

As we did for elliptic operators in Chapter 6, we have succeeded in 
repeatedly applying fairly straightforward "energy" estimates to produce a 
smooth solution of our parabolic initial/boundary-value problem (1). This 
assertion requires that the compatibility conditions (53) hold for all m, and 
it is easy to see that these conditions are necessary for the existence of a 
solution smooth on all of Ur. 

Interior estimates, analogous to those developed for elliptic PDE in 
§6.3.1, can also be derived, and these in particular do not require the com
patibility conditions. 
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7.1.4. Maximum principles. 

This section develops the maximum principle and Harnack's inequality 
for second-order parabolic operators. 

a. Weak maximum principle. We will from now on assume that the 
operator L has the nondivergence form 

n n 

(61) Lu = - L aiiuxix; + L biuxi +cu, 
i,j=l i=l 

where the coefficients aii, bi, c are continuous. We will always suppose the 
uniform parabolicity condition from §7.1.1 and also that aii = aii (i,j = 
1, ... , n). Recall also that the parabolic boundary of Ur is rr =Ur - Ur. 

THEOREM 8 (Weak maximum principle). Assume u E Ct(Ur) n C(Ur) 
and 

(62) c = 0 in Ur. 

(i) If 

(63) Ut +Lu < 0 in Ur, 

then 

(ii) Likewise, if 

(64) Ut +Lu> 0 in Ur, 

then . . 
m1nu = rmnu. 
[JT rT 

A function u satisfying the inequality (63) is called a subsolution, and 
so we are asserting that a subsolution attains its maximum on the parabolic 
boundary rr. Similarly, u is a supersolution provided (64) holds, in which 
case u attains its minimum on rr. 
Proof. 1. Let us first suppose we have the strict inequality 

(65) Ut + Lu < 0 in Ur, 

but there exists a point (xo, to) E Ur with u(xo, to) = maxaT u. 
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2. If 0 < to < T, then (xo, to) belongs to the interior of Ur and conse
quently 

(66) Ut = 0 at (xo, to), 

since u attains its maximum at this point. On the other hand Lu > 0 at 
(xo, to), as explained in the proof of Theorem 1 in §6.4. Thus Ut +Lu > 
0 at (xo, to), a contradiction to (65). 

3. Now suppose to= T. Then since u attains its maximum over Ur at 
(xo, to), we see 

Ut > 0 at (xo, to). 

Since we still have the inequality Lu > 0 at (xo, to), we once more deduce 
the contradiction 

Ut +Lu > 0 at (xo, to). 

4. In the general case that (63) holds, write u«:(x, t) := u(x, t)- et where 
e > 0. Then 

u~ +Lu€= Ut +Lu - e < 0 in Ur, 

and so maxvT u«: = maxrT u€. Let e ---+ 0 to find maxvT u = maxrT u. This 
proves assertion (i). 

5. As -u is a subsolution whenever u is a supersolution, assertion (ii) 
follows at once. D 

Next we allow for zeroth-order terms. 

THEOREM 9 (Weak maximum principle for c > 0). Assume u E C~(Ur) 
n C(Ur) and 

(i) If 
Ut + Lu < 0 in Ur, 

then 
maxu < maxu+. 
VT - rT 

(ii) If 
Ut + Lu > 0 in Ur, 

then 
minu > -maxu-. 
VT - rT 
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Remark. In particular, if Ut + Lu = 0 within UT, then 

Il!.ax lul =max lul. 
uT rT 

Proof. 1. Assume u satisfies 

(67) Ut + Lu < 0 in UT 

and attains a positive maximum at a point (xo, to) E UT. Since u(xo, to) > 0 
and c > 0, we as above derive the contradiction 

Ut +Lu > 0 at (xo, to). 

2. If instead of (67), we have only 

Ut + Lu < 0 in Ur, 

then as before u«:(x, t) := u(x, t) - f.t satisfies 

u~ +Lu€ < 0 in Ur. 

Furthermore if u attains a positive maximum at some point in UT, then u«: 
also attains a positive maximum at some point belonging to UT, provided 
f. > 0 is small enough. But then, as in the previous proof, we obtain a 
contradiction. 

3. Assertion (ii) follows similarly. D 

Remark. Unlike the situation for elliptic PDE, various versions of the max
imum principle obtain for parabolic PDE, even if the zeroth-order coefficient 
is negative: see Problem 8. 

b. Harnack's inequality. Harnack's inequality states that if u is a non
negative solution of our parabolic PDE, then the maximum of u in some 
interior region at a positive time can be estimated by the minimum of u in 
the same region at a later time. 

THEOREM 10 (Parabolic Harnack inequality). Assume u E Cf (UT) 
solves 

(68) Ut + Lu = 0 in UT 
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and 
u > 0 in Ur. 

Suppose V CC U is connected. Then for each 0 < ti < t2 < T, there exists 
a constant C such that 

(69) supu(·,ti) < Cinfu(·,t2). 
v v 

The constant C depends only on V, ti, t2, and the coefficients of L. 

This is true if the coefficients are continuous, or even merely bounded 
and measurable; see Lieberman [Lb]. We will however provide a proof only 
for the special case that bi = c _ 0 and the a ii are smooth ( i, j = 1, ... , n). 
The following computations are elementary but tricky. 

Proof*. 1. We may assume u > 0 in Ur, for otherwise we could apply the 
result to u + E and then let E --+ o+. 

Set 

(70) v := logu in Ur. 

Using (68), we compute 

(71) in Ur. 

Define 

n n 

(72) w := L aiivxixi' ii.J := L aiivxiVxi' 

i,j=i i,j=i 

so that (71) reads 

(73) Vt= W + W. 

2. We calculate using (72), (73) for k, l = 1, ... , n that 

n 

Vxkxit = Wxkxl + L 2aiivxixkx1Vx; + 2aijVxiXk Vx;xi + R, 
i,j=i 

where the remainder term R satisfies an estimate of the form 

(74) 

*Omit on first reading. 
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for each e > 0. Thus 

where R now denotes another remainder term satisfying estimate (74). 
Therefore choosing e > 0 small enough in (7 4) and remembering the uniform 
parabolicity condition, we discover 

n n 

(75) Wt - L aklwxkxt + L bkwxk > 02 ID2vl 2 - CIDvl 2 - C, 

where 

(76) 

k,l=l k=l 

n 

bk:= -2 L aklvxl (k = 1, ... , n). 
l=l 

3. Estimate (75) is a differential inequality for w, and our task next is to 
obtain a similar inequality for w. Indeed, using (72) and (71), we compute 

n n ( n ) - kl - - ij kl Wt - La Wxkxl - 2 La Vxi Vtxi - La Vxkxlxi 
k,l=l i,j=l k,l=l 

R yet another remainder term satisfying (74) for each e > 0. Recalling (71) 
and (76), we simplify to discover that 

n n 

(77) 
Wt - L aklwXkXl + L bkwxk 

k,l=l k=l 

> -CID2vl2 - CIDvl 2 - C in UT. 

4. Next set 

(78) w := w +KW, 
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"'> 0 to be selected below. Combining (75) and (77), we deduce 

(79) 
n n ()2 

Wt - L aklwxkxl + Lbkwxk > 21D2vl2 - CIDvl 2 - C 
k,l=l k=l 

provided 0 < "' < ~ is now fixed to be sufficiently small. 

5. Suppose next V CCU is an open ball and 0 <ti < t2 < T. Choose 
a cutoff function ( E C00 (Ur) such that 

(80) { 0 < ( < 1, ( = 0 on rr' 
( = 1 on V x [t1, t2]· 

Note that ( vanishes along { t = 0}. 

Let µ be a positive constant (to be adjusted below), and assume then 

(81) 

Consequently 

{ 
( 4w + µt attains a negative minimum 

at some point (xo, to) E U x (0, T]. 

(82) (wxk + 4(xk w = 0 at (xo, to) (k = 1, ... , n). 

In addition 
n 

O > ((4w + µt)t - L akl((4w + µt)xkxt at (xo, to). 
k,l=l 

Hence at the point ( xo, to), 

(83) 0 > µ + (4 (wt - t aklwxkxt) - 2 t akl((4 )xtwxk + R, 
k,l=l k,l=l 

where 

(84) 

R another remainder term satisfying estimate (84). Utilizing (82) and (76), 
we deduce 

(85) 
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where now 

(86) 

Remember that (85), (86) are valid at the point (x0 , t 0 ) where ( 4w + µt 
attains a negative minimum. In particular, at this point w = w + K/W < 0. 
Recalling the definition (72) of w, w, we deduce 

(87) 1Dvl2 < CID2vl, 

and so 
lwl < CID2vl at (xo, to). 

Consequently (86) implies the estimate 

(88) IRI < C(2ID2vl + C(3 ID2vl3/ 2 < €(4 ID2vl2 + C(E), 

where we employed Young's inequality with € from §B.2. Making use of 
(85), (87), (88), we at last discover a contradiction to (81), provided µ is 
large enough. 

6. Therefore ( 4w + µt > 0 in Ur, and so in particular 

w + µt > 0 in V x [ti ,t2]. 

Using (73), we deduce then that 

(89) Vt > o:IDvl2 - {3 in V x [ti, t2] 

for appropriate constants o:, {3 > 0. 

7. The differential inequality (89) for v = log u now leads us to the 
Harnack inequality, as follows. Fix xi, X2 E V, t2 > ti. Then 

[I d 
v(x2, t2) - v(xi, t1) =Jo ds v(sx2 + (1 - s)xi, st2 + (1 - s)ti) ds 

= fo1 
Dv · (x2 - xi)+ v1(t2 - ti) ds 

> [ -IDvl lx2 - xii+ (t2 - ti)[alDvl2 - Pl ds by (89) 

> -'V - ,, 
where 1 depends only upon o:, {3, lx1 - x2I, lt1 - t21· Thus (70) implies 

logu(x2, t2) > logu(xi, ti) -1, 

and so 
u(x2, t2) > e-"Yu(xi, ti). 

This inequality is valid for each xi, x2 E V, and so (69) is valid in the case 
V is a ball. In the general case we cover V CC U with balls and repeatedly 
apply the estimate above. D 
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Parabolic strong maximum principle 

c. Strong maximum principle. Now we employ Harnack's inequality to 
establish 

THEOREM 11 (Strong maximum principle). Assume u E C~(Ur) n 
C(Ur) and 

c - 0 in Ur. 

Suppose also U is connected. 
(i) If 

Ut + Lu < 0 in Ur 

and u attains its maximum over Ur at a point (xo, to) E Ur, then 

u is constant on Ut0 • 

(ii) Likewise, if 
Ut + Lu > 0 in Ur 

and u attains its minimum over Ur at a point (xo, to) E Ur, then 

u is constant on Ut0 • 

Thus our uniformly parabolic partial differential equations support "in
finite propagation speed of disturbances". 

We will for the following proofs assume that u and the coefficients of L 
are in fact smooth. 
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Proof. 1. Assume Ut + Lu < 0 in UT and u attains its maximum at some 
point (xo, to) E UT. 

Select a smooth, open set W CC U, with xo E W. Let v solve 

{ 
Vt + Lv = 0 in WT 

v = u on AT, 

where AT denotes the parabolic boundary of WT. 

Then by the weak maximum principle u < v. Since 

u < v < M, 

for M := maxuT u, we deduce that v = M at (xo, to). 

2. Now write v := M - v. Then, since c = 0, we have 

(90) Vt+ Lv = 0, v > 0 in WT. 

Choose any V CC W with xo E V, V connected. Let 0 < t < to. Then 
owing to the Harnack inequality, 

(91) max v( ·, t) < c inf v( ·,to). 
v v 

But infv v(·, t0 ) < v(x0 , to) = 0. As v > 0, (91) therefore implies v - 0 on 
V x {t}, for each 0 < t <to. This deduction holds for each set Vas above, 
and so v = 0 in Wto· But therefore v =Min Wto· As v = u on AT, we 
conclude u = M on 8W x [O, to]. 

This conclusion holds for all sets Was above, and therefore u =Mon 

~o· D 

THEOREM 12 (Strong maximum principle for c > 0). Assume u E 

C[(UT) n C(UT) and 

Suppose also U is connected. 
(i) If 

Ut + Lu < 0 in UT 

and u attains a nonnegative maximum over OT at a point (xo, to) E 

UT, then 
u is constant on Ut0 • 

(ii) Similarly, if 
Ut + Lu > 0 in UT 

and u attains a nonpositive minimum over OT at a point (xo, to) E 

UT, then 
u is constant on Ut0 • 
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Proof. 1. As above, set M := maxoT u. Assume M > 0, Ut + Lu < 0 in 
Ur, and u attains this maximum of Mat some point (xo, to) E Ur. 

If M = 0, the foregoing proof directly applies, as then 

Vt + Lv = o, v > o in W r· 

2. Assume instead that M > 0. Select as in the previous proof a smooth, 
open set W CCU, with xo E W. Now let v solve 

{ vt+Kv=O inWr 
v = u+ on Ar, 

where 
Kv := Lv- cv. 

Note 0 < v < M. Since Ut+Ku <-cu< 0 on {u > O}, we deduce from 
the weak maximum principle that u < v. As before it follows that v = M 
at (xo, to). 

3. Now write v := M-v. Then, since the operator K has no zeroth-order 
term, we have 

Vt + Kv = o, v > o in Wr. 

Select any V CC W with xo EV, V connected. Let 0 < t <to. Then the 
Harnack inequality implies as above that v = u+ = M on aw x [O, to]. Since 
M > 0, we conclude that u =Mon aw x [O, to]. 

This deduction is valid for all sets Was above, and therefore u =Mon 

~o· D 

7.2. SECOND-ORDER HYPERBOLIC EQUATIONS 

Second-order hyperbolic equations are natural generalizations of the wave 
equation (§2.4). We will build in this section appropriately defined weak 
solutions and study their uniqueness, smoothness and other properties. It 
is interesting, given the utterly different physical character of second-order 
parabolic and hyperbolic PDE, that we can provide rather similar functional 
analytic constructions of weak solutions. 

7.2.1. Definitions. 

a. Hyperbolic equations. As in §7.1 we write Ur = U x (0, T], where 
T > 0 and UC Rn is an open, bounded set. 
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We will next study the initial/boundary-value problem 

{ 
Utt + Lu = f in Ur 

(1) u = 0 on 8U x [O, T] 
u = g, Ut = h on U x { t = 0}, 

where f: Ur~ IR, g, h: U ~IR are given, and u: Ur~ IR is the unknown, 
u = u( x, t). The symbol L denotes for each time t a second-order partial 
differential operator, having either the divergence form 

n n 

(2) Lu= - L (aii(x, t)uxi)x3 + L bi(x, t)uxi + c(x, t)u 
i,j=l i=l 

or else the nondivergence form 
n n 

(3) Lu = - L aij (x, t)uxixj + L bi(x, t)uxi + c(x, t)u 
i,j=l i=l 

£ . ffi . t ij bi ( . . - 1 ) or given coe c1en s a , , c i, J - , ... , n . 

DEFINITION. We say the partial differential operator "1 + L is (uni
formly) hyperbolic if there exists a constant (} > 0 such that 

(4) 
n 

L aii (x, t)~i~j > OJ~l2 
i,j=l 

for all (x, t) E Ur, ~ E IRn. 

If aii = 8ij, bi = c = f = 0, then L = -A and the partial differential 
equation becomes the wave equation, already studied in Chapter 2. General 
second-order hyperbolic PDE model wave transmission in heterogeneous, 
nonisotropic media. 

b. Weak solutions. As before, in §6.1.2 and §7.1.1, we first assume L has 
the divergence form (2) and look for an appropriate notion of weak solution 
for problem (1). We will suppose initially that 

(5) 

(6) 

(7) 

aii, bi, c E Cl('Trr) (,; . 1 n) U' ei,J = , ... , , 

f E L 2 (Ur), 

g E HJ(U), h E L 2 (U) 

and always assume aii = aii (i,j = 1, ... , n). 

As in §7.1.1, let us also introduce the time-dependent bilinear form 
n n 

(8) B[u, v; t] := 1 L aii(·, t)ux,Vx; +Lb\, t)ux,v + c(-, t)uvdx 
u i,j=l i=l 

for u,v E HJ(U) and 0 < t < T. 
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Motivation for definition of weak solution. We begin by supposing u = 

u(x, t) to be a smooth solution of (1) and defining the associated mapping 

u: [O, T] ~ HJ(U), 

by 
[u(t)](x) := u(x, t) (x E U, 0 < t < T). 

We similarly introduce the function 

f: [O, T] ~ L 2 (U) 

defined by 
[f(t)](x) := f (x, t) (x E U, 0 < t < T). 

Now fix any function v E HJ(U), multiply the PDE Utt+ Lu= f by v, 
and integrate by parts, to obtain the identity 

(9) (u",v) + B[u,v;t] = (f,v) 

for 0 < t < T, where ( , ) denotes the inner product in L 2(U). Almost 
exactly as in the parallel discussion for parabolic PDE in §7.1.1, we see from 
the PDE Utt + Lu = f that 

n 
0 ~. 

Utt= g + ~!fxj 
j=l 

for g0 := f - L.:~1 biuxi - CTt and gi := L.:~1 aiiuxi (j = 1, ... , n). This 
suggests that we should look for a weak solution u with u" E H-1 ( U) for 
a.e. 0 < t < T and then reinterpret the first term of (9) as (u", v), ( , ) 
denoting as usual the pairing between H-1(U) and HJ(U). 0 

DEFINITION. We say a function 

u E L 2 (0,T;HJ(U)), with u' E L 2(0,T;L2 (U)), u" E L 2 (0,T;H- 1(U)), 

is a weak solution of the hyperbolic initial/boundary-value problem (1) pro
vided 

(i) (u", v) + B[u, v; t] = (f, v) 

for each v E HJ(U) and a.e. time 0 < t < T and 

(ii) u(O) = g, u'(O) = h. 
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Remark. In view of Theorem 2 in §5.9.2, we know u E C([O, T]; L 2 (U)) 
and u' E C([O, T]; H-1(U)). Consequently the equalities (ii) above make 
sense. 

7.2.2. Existence of weak solutions. 

a. Galerkin approximations. By analogy with the approach taken in 
§7.1.2 we will construct our weak solution of the hyperbolic initial/boundary
value problem 

(10) { 

Utt + Lu = f in Ur 
u = 0 on 8U x [O, T] 

u = g, Ut = h on U x { t = 0} 

by first solving a finite-dimensional approximation. We thus once more 
employ Galerkin's method by selecting smooth functions wk = wk(x) (k = 
1, ... ) such that 

(11) {wk}~1 is an orthogonal basis of HJ(U) 

and 

(12) {Wk} ~1 is an orthonormal basis of L 2 (U). 

Fix a positive integer m, and write 

m 

(13) Um(t) := L d~(t)wk, 
k=l 

where we intend to select the coefficients d~ ( t) ( 0 < t < T, k = 1, ... , m) 
to satisfy 

(14) 

(15) 

and 

d~(O) = (g, Wk) (k = 1, ... , m), 

d~' (0) = (h, wk) (k = 1, ... , m), 

(16) (u~, wk)+ B[um, wk; t] = (f, wk) (0 < t < T, k = 1, ... , m). 

THEOREM 1 (Construction of approximate solutions). For each integer 
m = 1, 2, ... , there exists a unique function Um of the form (13) satisfying 
(14)-(16). 
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Proof. Assuming Um to be given by (13), we observe using (12) 

(17) (u~(t), wk) = d':n" (t). 
Furthermore, exactly as in the proof of Theorem 1 in §7.1.2, we have 

m 

B[um, Wk; t] = E ekl(t)d!n(t) 
l=l 

for ekl(t) := B[wz, wk; t] (k, l = 1, ... , m). We also write fk(t) := (f(t), wk) 
(k = 1, ... , m). Consequently (16) becomes the linear system of ODE 

m 

(18) d':n" (t) + E ekl(t)d!n(t) = fk(t) (0 < t < T, k = 1, ... , m), 
l=l 

subject to the initial conditions (14), (15). According to standard theory 
for ordinary differential equations, there exists a unique function dm ( t) = 

(d~(t), ... , ~(t)), satisfying (14), (15) and solving (18) for 0 < t < T. D 

b. Energy estimates. Our plan is hereafter to send m ~ oo, and so we 
will need some estimates, uniform in m. 

THEOREM 2 (Energy estimates). There exists a constant C, depending 
only on U, T and the coefficients of L, such that 

O~t8tr (llum(t)llHJ(U) + llu~(t)llL2(U)) + lln~llL2(0,T;H-l(U)) 

(19) < C (llfllL2(0,T;L2(U)) + llYllHJ(U) + llhllL2(u)) , 

form= 1, 2, .... 

Proof. 1. Multiply equality (16) by d~(t), sum k = 1, ... , m, and recall 
( 13) to discover 

(20) 

for a.e. 0 < t < T. Observe next (u~, u~) = ~ (~lln~lli2 (u)). Furthermore, 
we can write 

(21) 
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S. ij ji (. . 1 ) ince a = a i, J = , ... , n , we see 

(22) 

for the symmetric bilinear form 

n 

A[u,v;t] := l L a;iu,,,v,,; dx (u,v E HJ(U)). 
u i,j=l 

The equality ( 22) implies 

(23) 

and we note also 

(24) 

Combining estimates (20)-(24), we discover 

403 

! (llu~lli2(u) + A[um, Um; t]) < C (llu~lli2(u) + llumll~J(U) + llflli2(u)) 

(25) < C (llu~lli2(u) + A[um, Um; t] + llflli2(u) ), 

where we used the inequality 

(26) () L IDul2 dx < A[u, u; t] (u E HJ(U)), 

which follows from the uniform hyperbolicity condition. 

2. Now write 

(27) 'T/(t) := llu~(t)lli2(u) + A[um(t), Um(t); t] 

and 

(28) 

Then inequality (25) reads 
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for 0 < t < T and appropriate constants Ci, C2. Thus Gronwall's inequality 
(§B.2) yields the estimate 

(29) 17(t) < ec,t ( 17(0) + C2 l ~(s) ds) (0 < t < T). 

However, 

77(0) = llu~(O)lli2(u) + A[um(O), um(O); O] 

< C (llhlli2(u) + llgllt-J(u))' 

according to (14) and (15) and the estimate llnm(O)llHJ(U) < ll9llHJ(U)· Thus 
formulas (27)-(29) provide the bound 

llu~(t)lli2(u) + A[um(t), Um(t); t] 

< C (llgllt-J(u) + llhlli2cu) + llflli2co,T;L2(u))) · 

Since 0 < t <Twas arbitrary, we see from this estimate and (26) that 

max (llnm(t)ll~1(u) + llu~(t)lli2(u)) 
O~t~T o 

< C(llgllt-J(u) + llhlli2cu) + llflli2(0,T;L2(u))) · 

3. Fix any v E HJ(U), llvllHJ(U) < 1, and write v = vI + v2 , where 

vI E span{wk};:i=I and (v2,wk) = 0 (k = 1, ... ,m). Note llvillHJ(U) < 1. 
Then (13) and (16) imply 

Thus 

l(u~, v)I < C(llfllL2(u) + llnmllHJ(u)), 

since llvillHJ(U) < 1. Consequently 

foT Hu::.1ik-1(u)dt < C foT 1iflll2(U) + Humllkcl(U)dt 

< C(llgllt-J(U) + llhlli2(u) + llflli2(0,T;L2(u))) · D 
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c. Existence and uniqueness. Now we pass to limits in our Galerkin 
approximations. 

THEOREM 3 (Existence of weak solution). There exists a weak solution 
of (1). 

Proof. 1. According to the energy estimates ( 19), we see that the se
quence { um}~=l is bounded in L2 (0, T; HJ (U) ), { u~}~=l is bounded in 
£ 2(0, T; L2(U)), and { u~}~=l is bounded in £ 2 (0, T; H- 1(U)). 

As a consequence there exists a subsequence {um1 }~1 C {um}~=l and 
u E L 2 (0,T;HJ(U)), with u' E L 2(0,T;L2 (U)), u" E L 2 (0,T;H- 1(U)), 
such that 

(30) 

weakly in £ 2 (0, T; HJ(U)) 

weakly in £ 2 (0, T; L2(U)) 

weakly in £ 2 (0, T; H- 1(U)). 

2. Next fix an integer N and choose a function v E C 1([0, T]; HJ(U)) of 
the form 

N 

(31) v(t) = L dk(t)wk, 
k=l 

where {dk}f"=1 are smooth functions. We select m > N, multiply (16) by 
dk(t), sum k = 1, ... , N, and then integrate with respect tot, to discover 

(32) 1T (u:;,, v) + B[um, v; t] dt = 1T (£, v) dt. 

We set m =ml and recall (30), to find in the limit that 

(33) 1T (u", v) + B[u, v; t] dt = 1T (£, v) dt. 

This equality then holds for all functions v E £ 2 (0, T; HJ (U)), since 
functions of the form (31) are dense in this space. From (33) it follows 
further that 

(u", v) + B[u, v; t] = (f, v) 

for all v E HJ(U) and a.e. 0 < t < T. Furthermore, ti E C([O, T]; L 2 (U)) 
and u' E C([O, T]; H- 1(U)). 

3. We must now verify 

(34) u(O) = g, 
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(35) u'(O) = h. 

For this, choose any function v E C 2 ([0, T]; HJ(U)), with v(T) = v'(T) = 0. 
Then integrating by parts twice with respect tot in (33), we find 

(36) 
foT (v'', u) + B[u, v; t] dt = foT (f, v) dt 

- (u(O), v'(O)) + (u'(O), v(O)). 

Similarly from (32) we deduce 

foT (v'', u,,,) + B[um, v; t] dt = foT (f, v) dt 

- (Um ( 0), v' ( 0)) + ( u~ ( 0), v ( 0)) . 

We set m =ml and recall (14), (15) and (30), to deduce 

(37) foT (v", u) + B[u, v; t] dt = foT (f, v) dt - (g, v'(O)) + (h, v(O)). 

Comparing identities (36) and (37), we conclude (34), (35), since v(O), v'(O) 
are arbitrary. Hence u is a weak solution of (1). D 

Recalling the energy estimates from Theorem 2, we observe that in fact 
u E L00 (0, T; HJ(U)), u' E L00 (0, T; L 2 (U)), u" E L2 (0, T; H-1 (U)): see 
Theorem 5 below. 

THEOREM 4 (Uniqueness of weak solution). A weak solution of (1) is 
unique. 

The following tricky demonstration would be greatly simplified if we 
knew u'(t) itself were smooth enough to insert in place of v in the definition 
of weak solution. This is not so, however. 

Proof. 1. It suffices to show that the only weak solution of (1) with f = 
g=h=Ois 

(38) u = 0. 

To verify this, fix 0 < s < T and set 

{ ft u(r) dr if 0 < t < s 
v(t) := 

0 if s < t < T. 
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Then v(t) E HJ(U) for each 0 < t < T, and so 

1• (u", v) + B[u, v; t] dt = 0. 

Since u'(O) = v(s) = 0, we obtain after integrating by parts in the first term 
above: 

(39) 1• -(u', v') + B[u, v; t] dt = 0. 

Now v' = -u ( 0 < t < s), and so 

1• (u', u) - B[v', v; t] dt = 0. 

Thus 

rs d (1 1 ) rs Jo dt 2 llnlli2cu) - 2B[v, v; t] dt = - Jo C[u, v; t] + D[v, v; t] dt, 

where 
r~. 1. 

C[u, v; t] := - Jr, ~ bivxi u + "2b~i uv dx 
u i=l 

and 

for u, v E HJ(U). Hence 

1 1 rs 
2lln(s)lli2cu) + 2B[v(O), v(O); t] = - Jo C[u, v; t] + D[v, v; t] dt, 

and consequently 

llu(s) lli2(u) +llv(O) 111J(U) 
(40) 

< c(f llvll~J(U) + 1iulli2(u)dt + 1iv(O)lli2(U)). 

2. Now let us write 

w(t) := l u(r) dr (0 < t < T), 
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whereupon (40) becomes 

llu(s) lli2cu) + llw(s) ll~J(U) 
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(41) < c(f llw(t) - w(s)ll1"J(U) + llu(t)lli2cu) dt + llw(s)lli2cu)). 

But llw(t)-w(s)ll~J(U) < 2llw(t)ll~J(u)+2llw(s)ll~J(U)' and llw(s)llL2(u) < 
J; llu(t)llL2(u)dt. Therefore (41) implies 

llu(s)lli2(U) + (1 - 2sC1)llw(s)i11"J(U) <Ci f llwll1",icu> + 1iulli2cu)dt. 

Choose Ti so small that 

Then if 0 < s < T1, we have 

1iu(s)lli2(U) + llw(s)ll1",icu> <Cf llulli2cu) + llwll1"J(U)dt. 

Consequently the integral form of Gronwall's inequality (§B.2) implies u = 0 
on [O, T1]. 

3. We apply the same argument on the intervals [T1, 2T1], [2T1, 3T1], 
etc., eventually to deduce (38). D 

7.2.3. Regularity. 

As in our earlier treatments of second-order elliptic and parabolic PDE, 
the next task is to study the smoothness of our weak solutions. 

Motivation: formal derivation of estimates. (i) Suppose for the mo
ment u = u(x, t) is a smooth solution of this initial-value problem for the 
wave equation: 

{
Utt - du = f in Rn X (0, T] 
u = g, Ut = h on Rn x { t = 0} 

and assume also u goes to zero as !xi ~ oo sufficiently rapidly to justify the 
following calculations. Then as in §2.4.3, we compute 

! (Ln IDul2 + u"f dx) = 2 Ln Du · Dut + utUtt dx 

= 2 r Ut( Utt - du) dx = 2 r Utf dx }Rn }Rn 
< r u; dx + r ! 2 dx. }Rn }Rn 
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Applying Gronwall's inequality, we deduce 

(42) sup [ 1Dul2 + u~ dx < c( [T !. ! 2 dxdt + [ IDgl 2 + h2 dx)' 
0:9~T }Rn J 0 Rn }Rn 

with the constant C depending only on T. 

(ii) Next differentiate the PDE with respect tot and set u := Ut. Then 

{ 
Utt - ~ii,= f in Rn x (0, T] 

( 43) ii, = g, Ut = h on Rn x { t = 0}, 

for J :=ft, g := h, h :=Utt(·, 0) = !(·, 0) + ~g. Applying estimate (42) to 
u, we discover 

(44) 

Now 

sup [ IDut 12 + u~t dx 
O~t~T}Rn 

< c(foT LJt2dxdt + Ln ID2gl2 +1Dhl2 + /(·,0)2 dx). 

(45) O~t8tT llJ(·, t)11£2(Rn) < C(llJllL2(Rnx(O,T)) + llJtllL2(Rnx(O,T))), 

according to Theorem 2 in §5.9.2. Furthermore, writing -~u = f - Utt, we 
deduce as in §6.3 that 

(46) J. ID2ul2 dx <CJ. f 2 + u~t dx 
Rn Rn 

for each 0 < t < T. Combining (44)-(46), we conclude 

sup J. ID2ul 2 +1Dutl2 + u~t dx 
O~t~T Rn 

< C (lT Ln ft2 + / 2 dxdt + Ln ID2gl2 + IDhl2 dx), 

(47) 

the constant C depending only on T. D 

This estimate suggests that bounds similar to ( 42) and ( 47) should be 
valid for our weak solution of a general second-order hyperbolic PDE. 

We will calculate using the Galerkin approximations. To simplify the 
presentation, we hereafter assume that { wk}~1 is the complete collection 
of eigenfunctions for-~ on HJ(U) and also that U is bounded, open, with 
8U smooth. In addition we suppose 

(48) { 
~he coefficients aii, bi, c ( i, j = 1, ... , n) are smooth on 

U and do not depend on t. 
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THEOREM 5 (Improved regularity). 

(i) Assume 

and suppose also u E £ 2(0, T; HJ(U)), with u' E £ 2(0, T; L2 (U)), u" E 

£ 2 (0, T; H-1(U)), is the weak solution of the problem 

(49) { 
Utt + Lu = f in UT 

u = 0 on au x (0, T] 
u = g, Ut = h on U x { t = 0}. 

Then in fact 

u E £ 00 (0, T; HJ(U)), u' E £ 00 (0, T; L2 (U)), 

and we have the estimate 

(50) 
ess sup (llu(t)llH1(u) + llu'(t)llL2(u)) 
O~t~T o 

< C(llfll£2(0,T;£2(U)) + llYllHJ(U) + llhll£2(U))· 

(ii) If, in addition, 

then 

g E H 2(U), h E HJ(U), f' E £ 2 (0, T; L2(U)), 

u E £ 00 (0, T; H 2(U)), u' E £ 00 (0, T; HJ(U)), 

u" E £ 00 (0, T; L2(U)), u"' E £ 2(0, T; H- 1(U)), 

with the estimate 

(51) 
ess sup (llu(t)llH2(u) + llu'(t)llH1(u) + llu"(t)llL2(u)) 
O~t~T o 

+ llu"'llL2(0,T;H-1(u)) < C(llfllH1(0,T;L2(u)) + llYllH2(u) + llhllH1(u))· 

Assertions (i), (ii) of this theorem are precise versions of the formal 
estimates (42), (47) (for the wave equation in U =Rn). 

Proof. 1. In the proof of Theorem 2, we have already derived the bounds 

(52) 
sup (llum(t)llH1(u) + llu~(t)llL2(u)) 
O~t~T o 

< C(llfllL2(0,T;L2(U)) + llYllHJ(U) + llhll£2(U))· 
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Passing to limits as m = ml --+ oo, we deduce (50). 

2. Assume now the hypotheses of assertion (ii). Fix a positive integer m, 
and next differentiate the identity (16) with respect tot. Writing Um := u~1P 
we obtain 

(53) (ii~, wk)+ B[iim, Wk] = (f', Wk) (k = 1, ... , m). 

Multiplying by d~" (t) and adding fork= 1, ... , m, we discover 

(54) ( -II - I ) B [- - I ] (f' - I ) Um, Um + Um, Um = 'Um . 
Arguing as in the proof of the energy estimates, we observe 

ddt (llii~lli2cu) + A[iim, iim]) 
(55) 

< C(llii~lli2cu) + A[iim, iim] + llf'lli2cu)), 

the bilinear form A[ , ] defined as before. 

3. Now 

(56) 

Recall we are taking { wk}k:::1 to be the complete collection of eigenfunctions 
for -Ll on HJ(U). Multiplying (56) by Akd~(t) and summing k = 1, ... , m, 
we deduce 

(57) 

Since Ll Um = 0 on au' we have 

(58) B[um, -Llum] =(Lum, -Llum)-

Next we employ the inequality 

(59) ,Bllull~2(u) <(Lu, -Llu) + 1llulli2cu) (u E H 2(U) n HJ(U)); 

see Problem 9. We deduce from (56)-(59) that 

(60) llumll~2(u) < C(llflli2cu) + llu~lli2cu) + llumlli2cu)). 

Using this estimate in (55), recalling Um = u~, and applying Gronwall's 
inequality, we deduce 

sup (llum(t)ll~2(u) + llu~(t)ll~1(u) + llu~(t)lli2cu)) 
(61) O~t~T 

< C(llfll~1co,T;L2(u)) + llYll~2(u) + llhll~1(u)). 
Here we estimated llum(O)llH2(u) < CllgllH2(u), as in the proof of Theorem 
5 in §7.1.3. 

Passing to limits as m =ml--+ oo, we derive the same bound for u. 

4. As in the earlier proof of Theorem 5 in §7.1.3, we likewise deduce 
u"' E L2(0, T; H- 1(U)), with the stated estimate. D 
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Remark. If L were symmetric, we could alternatively have taken {Wk} k:::i 
to be a basis of eigenfunctions of Lon HJ(U) and so avoided the need for 
inequality (59). 

Now let m be a nonnegative integer. 

THEOREM 6 (Higher regularity). Assume 

{ 
g E Hm+1(U), h E Hm(U), 

~ E L2 (0, T; Hm-k(U)) (k = 0, ... , m). 

Suppose also that the following mth_order compatibility conditions hold: 

(62) 92l := ~:~~~{ (·, 0) - Lg2l-2 E HJ(U) (if m = 2l) { 

90 := g E HJ(U), h1 := h E HJ(U), ... , 

h2l+1 := ft~~~f (·,O)-Lh2l-1 E HJ(U) (if m = 2l + 1). 

Then 

(63) ~:~ E L00 (0, T; JI"'+l-k(U)) (k = 0, ... , m + 1), 

and we have the estimate 

(64) 

Remark. In view of Theorem 2 in §5.9.2, we see that 

(65) f(O) E Hm-1(U), f'(O) E Hm-2(U), ... , f(m-2>(0) E H 1(U), 

and consequently 

(66) 
90 E Hm+1(U), h1 E Hm(U), 92 E Hm-1(U), h3 E Hm-2(U), 

... , 92l E H 1(U) (if m = 2l), h2l+1 E H 1(U) (if m = 2l + 1). 

The compatibility conditions are consequently the requirements that, in 
addition, each of these functions equals 0 on au, in the trace sense. 
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Proof. 1. The proof is by an induction, the case m = 0 following from 
Theorem 5(i) above. 

2. Assume next the theorem is valid for some nonnegative integer m, 
and suppose 

{ 
g E Hm+2 (U), h E Hm+1 (U), 

(67) k 
~ E L2(0, T; Hm+l-k(U)) (k = 0, ... , m + 1). 

Suppose also the (m + l)th_order compatibility conditions obtain. Now set 
ii := u'. Differentiating the PDE with respect tot, we check that ii is the 
unique, weak solution of 

(68) 

for 

(69) 

{ 
Utt + Lu = f in UT 

u = 0 on 8U x [O, T] 
u = g, Ut = h on U x { t = 0}, 

- -
f :=ft, g := h, h := f(·,O) - Lg. 

In particular, for m = 0 we rely upon Theorem 5(ii) to be sure that ii E 

L2 (0, T; HJ(U)), ii' E_!}(O, T; L2 (U)), ii" E L2 (0, T; H- 1(U)). 

Since f, g and h satisfy the (m + l)th_order compatibility conditions, 
J,g and h satisfy the mth_order compatibility conditions. Thus applying 
the induction assumption, we see 

dk-
dt~ E L00 (0, T; Hm+l-k(U)) (k = 0, ... , m + 1), 

with the estimate 

m+l dkii 
esssup L -k 
0$t$T k=O dt Hm+l-k(U) 

( 
m dkf _ ) 

< C L dtk + llgllHm+l(U) + llhllHm(U) · 
k=O £2(0,T;Hm-k(U)) 

Since ii = u', we can rewrite: 

m+2 dku 
(70) ess sup L -k 

0$t$T k=l dt Hm+2-k (U) 

(
m+l dkf ) 

< C L dtk + llhllHm+l(U) + llLYllHm(U) + llf(O)llHm(U) 
k=l £2(0,T;Hm+l-k(U)) 
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Here we used the inequality 

which follows from Theorem 2 in §5.9.2. 

3. Now write for a.e. 0 < t < T that Lu = f - u" =: h. We have 

llu11Hm+2(U) < C(llhllHm(U) + llullL2(u)) 

< C(llfllHm(U) + llu"llHm(u) + llullL2(u))· 

Taking the essential supremum with respect to t, adding this inequality to 
(70) and making standard estimates, we deduce 

This is the assertion of the theorem for m + 1. D 

THEOREM 7 (Infinite differentiability). Assume 

and the mth_order compatibility conditions hold form= 0, 1, .... 

Then the hyperbolic initial/boundary-value problem (1) has a unique so
lution 

Proof. Apply Theorem 6 form= 0, 1, .... D 

7.2.4. Propagation of disturbances. 

Our study of second-order hyperbolic equations has thus far pretty much 
paralleled our treatment of second-order parabolic PDE, in §7 .1. In the 
corresponding earlier section §7.1.4, we discussed maximum principles for 
second-order parabolic equations and noted in particular that the strong 
maximum principle implies an "infinite propagation speed" of initial distur
bances for such PDE. Now strong maximum principles are false for second
order hyperbolic partial differential equations, and we will instead address 
here the opposite phenomenon, namely the "finite propagation speed" of 
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Domain of dependence 

initial disturbances. This study extends some ideas already introduced in 
§2.4.3. 

For simplicity we will consider in this subsection the case that U = !Rn 
and L has the simple nondivergence form 

n 

(71} L - ~ ij u - - ~ a Uxix;, 

i,j=l 

where the coefficients are smooth, independent of time, and there are no 
lower-order terms. We as usual require the uniform hyperbolicity condition. 

Let us assume now u is a smooth solution of the PDE 

(72} Utt+ Lu= 0 in !Rn x (O,oo}. 

We wish to prove a uniqueness/finite propagation speed assertion analogous 
to that obtained for the wave equation in §2.4.3. For this, we fix a point 
(xo, to) E !Rn x (0, oo) and then try to find some sort of a curved "cone-like" 
region C, with vertex ( x 0, to), such that u = 0 within C if u - Ut = 0 on 
Co= en {t = o}. 

Motivated by the geometric optics computation in Example 3 of §4.5.3, 
let us guess that the boundary of such a region C is given as a level set 
{p = O}, where p solves the Hamilton-Jacobi PDE 

(73} in !Rn x (0, oo). 

We will simplify (73) by separating variables, to write 

(74) p(x, t) = q(x) + t - to (x E !Rn, 0 < t < to}, 
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where q solves 

(75) { L:~j=l aiJqXiqXj = 1, q > 0 
q(xo) = 0. 

in Rn - {xo} 

We henceforth assume that q is a smooth solution of (75) on Rn - {xo}. 
(In fact q( x) is the distance of x to x0 , in the Riemannian metric determined 
by ((aii)).) We introduce the "curved" backwards wave cone 

K := {(x, t) I p(x, t) < O} = {(x, t) I q(x) <to - t}. 

For each t > 0, we further define 

(76) Kt := {x I q(x) <to - t} =cross section of Kat time t. 

Since (75) implies Dq =/:- 0 in Rn-{xo}, 8Kt is a smooth, (n-1)-dimensional 
surface for 0 < t < to. 

THEOREM 8 (Finite propagation speed). Assume u is a smooth solution 
of the hyperbolic equation (72). If u = Ut = 0 on Ko, then u = 0 within K. 

We see in particular that if u is a solution of (72) with the initial condi
tions 

(77) u = g, Ut = h on Rn x {t = O}, 

then u(xo, to) depends only upon the values of g and h within Ko. 

Proof. 1. We modify a proof from §2.4.3 and so define the energy 

2. In order to compute e( t), we first note that if f is a continuous 
function of x, then 

! (l, f dx) = - laK, l~ql dS 

according to the coarea formula from §C.3. Thus 

n 

e(t) = l utUtt + L aiiux;Ux;t dx 
Kt i,j=l 

(78) 
( n ) 1 2 . . 1 

- 2 [ Ut + L a"3uxiUx3 -ID I dS k~ .. 1 q i,3= 
=:A- B. 
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Integrating by parts, we calculate 

(79) 

with v = (v1, ... , vn) being as usual the outer unit normal to 8Kt. But 
according to the generalized Cauchy-Schwarz inequality (§B.2) 

(80) .t aijv.x,,) < (.t aijV.x;V.x;) 1/2 (.t aii,i,)) 1/2. 

i,J=l i,3=1 i,J=l 

In addition, since q =to - ton 8Kt, we have v = 1g:1 on 8Kt. Hence 

(81) 

Then returning to (79), we estimate using (81) and Cauchy's inequality: 

( n ) 1 2 . . 1 
< Ce(t) + 2 { Ut + L a"1uxiUxi -,D I dS 

lact .. 1 q 
i,J= 

= Ce(t) + B. 

3. Therefore inequality (78) gives 

e(t) < Ce(t). 

Since hypothesis (76) implies e(O) = 0, we deduce using Gronwall's inequal
ity that 

e( t) = 0 for all 0 < t < to. 

Hence Ut = Du = 0 in K, and consequently u = 0 in K. 

D 
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7 .2.5. Equations in two variables. 

In this subsection we briefly consider second-order hyperbolic partial 
differential equations involving only two variables and demonstrate that in 
this setting rather more precise information can be obtained. The very 
rough idea is that since a function of two variables has "only" three second 
partial derivatives, algebraic and analytic simplifications in the structure of 
the PDE may be possible, which are unavailable for more than two variables. 

We begin by considering a general linear second-order PDE in two vari
ables 

2 2 

(82) L aij Uxixi + L biuxi + cu = 0, 
i,j=l i=l 

where the coefficients aii,bi,c (i,j = 1,2), with aii = aii, and the unknown 
u are functions of the two variables x1 and x2 in some region U c R2. Note 
that for the moment, and in contrast to the theory developed above, we do 
not identify either x1 or x2 with the variable t denoting time. 

We now pose the following basic question: is it possible to simplify the 
structure of the PDE (82) by introducing new independent variables? In 
other words, can we expect to convert the PDE into some "nicer" form by 
rewriting in terms of new variables y = ~(x)? 

More precisely, let us set 

(83) { 
Y1 = <P1(xi, x2) 

Y2 = <P2(xi, x2) 

for some appropriate function ~ = (<P1 , <P2 ). To investigate this possibility 
let us now write 

(84) u(x) = v(~(x)). 

That is, we define v(y) := u(w(y)), where w = ~-1 . 

From (84), we compute 

- "'2 iF..k 
{ 

Uxi - L.,,k=l Vyk '.l.'xi 

UxiXj = E~,l=l VYkYl<P~i <P~i + E~=l Vyk <P~iXj 
for i, j = 1, 2. Substituting into (82), we discover that v solves the PDE 

n 

(85) ~ -kl 0 L...J a VYkYl + ... = ' 
k,l=l 
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for 

2 

(86) a,kl == L aij<P~i <P~j (k, z = 1, 2), 
i,j=l 

where the dots in ( 85) represent terms of lower order. 

We examine the first term in the PDE (85) in the hope we can perhaps 
choose the transformation ~ = ( <P1, <P2) so this expression is particularly 
simple. Let us try to achieve 

(87) a,11 - a,22 = 0. 

In view of formula (86) this will be possible provided we can choose both 
<P1 and <P2 to solve the nonlinear first-order PDE 

(88) 

Observe this is the characteristic equation associated with the partial differ
ential equation (82), as discussed in §4.6.2. 

To proceed further, let us suppose 

(89) <let A= a11a 22 - (a12)2 < 0 in U, 

in which case we say the PDE (82) is hyperbolic. 

Utilizing condition (89), we can then factor equation (88) as follows: 

( auvx1 + [a12 + ((a12)2 - aua22)1/2] Vx2) 

(90) . ( a11Vx1 + [ al2 - ( (a12)2 - alla22) 1/2] Vx2) 

= a11 (a11 (vx1 ) 2 +2a12vx1 Vx2 + a 22 (vx2 ) 2) = 0. 

Now the left-hand side of (90) is the product of two linear first-order 
PDE: 

and 
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We now assume that we can choose ~1 to be a smooth solution of the 
PDE (911), with D~1 =f. 0 in U. Then ~1 is constant along trajectories 
x = (x1 , x2 ) of the ODE 

(92) { :: r::2 + ((a12)2 - a11a22)1/2] . 

Similarly, suppose ~2 is a smooth solution of (912 ), with D~2 =f. 0 
then ~2 is constant along trajectories x = (x1, x2 ) of the ODE 

{ xl =all 

(93) x2 = [a12 - ((a12)2 - a11a22)1/2]. 

in U· , 

Curves which are trajectories of either the ODE (92) or (93) are called 
characteristics of the original partial differential equation (82). Returning 
now to (83), we see that trajectories of solutions of the characteristic ODE 
(92) and (93) provide our new coordinate lines. 

Additionally we can verify using (89) that 

2 

(94) a12 = L aij~;i ~;j =1 o in u. 
i,j=l 

Combining then (85), (86), (87) and (94), we see that our PDE (82) 
becomes in the y coordinates 

(95) Vy1y2 + ... = 0, 

the dots as before denoting terms of lower order. Let us call equation (95) 
the first canonical form for the hyperbolic PDE (82). 

If we change variables again by setting z1 = Y1 + Y2, z2 = Y1 - Y2, then 
( 95) becomes 

(96) 

If we then further rename the variables t = z1, x = z2, then (96) reads 

(97) Wtt - Wxx + · · · = 0, 

the second-order term of which is the one-dimensional wave operator. Equa
tion (97) is the second canonical form. 

Hence any hyperbolic PDE in two variables of the form (82) can be 
converted by a change of variables into the wave equation plus a lower-order 
term, assuming we can find the mapping 4.> as above. 
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7.3. HYPERBOLIC SYSTEMS OF FIRST-ORDER 
EQUATIONS 

We next broaden our study of hyperbolic PDE (which we may informally 
interpret as equations supporting "wave-like" solutions) to the case of first
order systems. We continue in the manner of §§7.1 and 7.2 by first employing 
energy bounds to construct weak solutions for symmetric hyperbolic sys
tems. For nonsymmetric, constant coefficient hyperbolic systems, however, 
we will instead employ Fourier transform methods. 

7.3.1. Definitions. 

We investigate in this section systems of linear first-order partial differ
ential equations having the form 

(1) 
n 

Ut + L Bj Uzi = f in !Rn X ( 0, oo), 
j=l 

subject to the initial condition 

(2) u = g on !Rn x { t = O}. 

The unknown is u: !Rn x [O, oo)---+ !Rm, u = (u1, ... , um), and the functions 
Bj : !Rn X [O, oo) ---+ Mmxm (j = 1, ... , n), f: !Rn X [O, oo) ---+!Rm, g: !Rn---+ 
!Rm are given. 

NOTATION. For each y E !Rn, set 

n 

B(x, t; y) := LYjBj(X, t) (x E !Rn, t > 0). 
j=l 

DEFINITION. The system of PDE (1) is called hyperbolic if them x m 
matrix B(x, t; y) is diagonalizable for each x, y E !Rn, t > 0. 

In other words, ( 1) is hyperbolic provided for each x, y, t, the matrix 
B(x, t, y) has m real eigenvalues 

A1(x, t; y) < A2(x, t; y) < · · · < Am(x, t; y) 

and corresponding eigenvectors {rk(x, t; y)}/:'=1 that form a basis of !Rm. 

There are two important special cases: 
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DEFINITIONS. (i) We say (1) is a symmetric hyperbolic system if 
Bj(x, t) is a symmetric m x m matrix for each x E !Rn, t > 0 (j = 1, ... , m). 

(ii) The system (1) is strictly hyperbolic if for each x, y E !Rn, y f:. 0, 
and each t > 0, the matrix B(x, t; y) has m distinct real eigenvalues: 

A1(x, t; y) < A2(x, t; y) < · · · < Am(x, t; y). 

Motivation for the definition of hyperbolicity. We justify the hyper
bolicity condition as follows. Assume f = 0 and, further, the matrices Bj 
are constant (j = 1, ... , n). Thus 

(3) 
n 

LyjBj = B(y) 
j=l 

depends only on y E !Rn. 

As in §4.2 let us look for a plane wave solution of (1), (2). That is, we 
seek a solution u having the form 

(4) u(x, t) = v(y · x - at) (x E !Rn, t > 0) 

for some direction y E !Rn, velocity l~I (a E IR), and profile v : IR ~ !Rm. 
Plugging (4) into (1), we compute 

( -ul + ty;B;) v' = 0. 
J=l 

This equality asserts v' is an eigenvector of the matrix B(y) corresponding 
to the eigenvalue a. 

The hyperbolicity condition requires that there are m distinct plane wave 
solutions of (1) for each direction y. These are 

(y · x - Ak(y)t)rk(Y) (k = 1, ... , m), 

where 

are the eigenvalues of B(y) and {rk(Y)}k::1 the corresponding eigenvectors. 
The eigenvalues for IYI = 1 are the wave speeds. 
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7.3.2. Symmetric hyperbolic systems. 

In this section we apply energy methods and the vanishing viscosity 
technique to bu_ild a solution to the hyperbolic initial-value problem 

(5) { llt + "f:,j_1 Bjllx; = f in IRn X (0, T] 
u = g on IRn x { t = 0}, 

where T > 0, under the fundamental assumption that 

(6) the matrices Bj(x, t) are symmetric (j = 1, ... , n), 

for x E IRn, 0 < t < T. We will further assume Bj E C2 (1Rn x [O, T]; Mmxm), 
with 

(7) sup (IBil, IDx,tBjl, ID;,tBil) < oo (j = 1, ... , n) 
JR.n x[O,T] 

and 

(8) 

Remark. More general systems having the form 

(9) 
n 

Bout+ LBjllx; = f 
j=l 

are also called symmetric, provided the matrices Bj are symmetric for j = 
0, ... , n. The theory set forth below easily extends to such systems, provided 
Bo is positive definite. 

Symmetric hyperbolic systems of the type (9) generalize the second
order hyperbolic PDE studied in §7.2. For suppose v is a smooth solution 
of the scalar equation 

(10) 
n 

Vtt - L aiivxix; = 0, 
i,j=l 

where without loss of generality we may take aii = aii (i,j = 1, ... , n). 
Writing 

_ ( 1 n+ 1) . _ ( ) U - U , ... , U .- Vx1 , ••• , Vxn, Vt , 
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we discover u solves a system of the form (9), form= n + 1, f = 0, 

0 0 -a1i 

Bi= 
0 0 -anj 

(j=l, ... ,n), 

-ali -anj 0 ( n+ 1) x ( n+ 1) 

au aln 0 

Bo= aln ann 0 

0 0 1 (n+l)x(n+l) 

Observe that the uniform hyperbolicity condition for (10) implies that the 
matrix Bo is positive definite. 

a. Weak solutions. To ease notation, let us define the bilinear form 
n 

B[u, v;t) := 1n 2:,{B;(·,t)ux;) · vdx 
JR j=l 

for 0 < t < T, u, v E H 1 (IRn; IRm). 

DEFINITION. We say 

u E L2(0, T; H 1(1Rn; IRm)), with u' E L2 (0, T; L2(IRn; IRm)), 

is a weak solution of the initial-value problem (5) for the symmetric hyper
bolic system provided 

(i) (u', v) + B[u, v; t] = (f, v) 

for each v E H 1 (IRn;IRm) and a.e. 0 < t < T and 

(ii) u(O) = g. 

Here and afterwards ( , ) denotes the inner product in L2 (IRn; IRm). 

Remark. According to Theorem 2 in §5.9.2, u E C([O, T]; L2 (IRn; IRm)) and 
so the initial condition (ii) makes sense. 

b. Vanishing viscosity method. We will approximate problem (5) by 
the parabolic initial-value problem 

(ll) { u~ - fllu€ + L:j=1 Bini; = f in IRn x (0, T] 
u€ = g€ on IRn x { t = O} 

for 0 < f < 1, g€ := T/€ * g. The idea is that for each f > 0, problem (11) 
has a unique smooth solution u€, which converges to zero as lxl ---+ oo. The 
plan is to show that as f ---+ 0, the u€ converge to a limit function u, which 
is a weak solution of ( 5). 
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THEOREM 1 (Existence of approximate solutions). For each E > 0, there 
exists a unique solution u«: of (11), with 

(12) u«: E L2(0, T; H 3 (1Rn; IRm)), u«:' E L2(0, T; Hi(IRn; IRm)). 

Proof. 1. Set X = £ 00 ((0,T);Hi(IRn;IRm)). For each v EX, consider the 
linear system 

{ Ut - ELlu = f - L:j=i BjVx; in IRn x (0, T] 
u = ge on IRn x {t = O}. 

As the right-hand side is bounded in L 2 , there exists a unique solution 
u E L2(0, T; H 2 (1Rn; IRm)), u' E L2 (0, T; L2 (1Rn; IRm)). Indeed, we can utilize 
the fundamental solution cl> of the heat equation (§2.3.1) to represent ue in 
terms of ge and f - L:j=i BjVx;· 

Similarly, take v E X and let ii solve 

{ iit - ELlii = f - L:j=i Biv x; in IRn x (0, T] 
ii = ge on IRn x { t = O}. 

2. Subtracting, we find u := u - ii satisfies 

(13) { U.t - ELlu = - E.i=i BfY. x; 

u=O 
in IRn x (0, T] 
on IRn x { t = O}, 

for v := v - v. From the representation formula of u in terms of the 
fundamental solution cl> and L:j=i Bjv x;, we obtain the estimate 

n 

eoss s<up llU.(t)llHl(JRn;JRm) < C(E)ll L BjVx; llL2(0,T;L2(JRn;JRm)) 
$t_T j=i 

(14) < C(E)llvllL2(0,T;Hl(JRn;JRm)) 

< C(E)Ti/2ess sup llv(t)llH1(JRn-JRm)· 
0$t$T ' 

Thus 

(15) 

3. If Tis so small that 

(16) C( E)Ti/2 < 1/2, 

then (15) reads llu - iill < !llv - vii· According to Banach's Fixed Point 
Theorem (§9.2.1) the mapping vi--+ u has a unique fixed point. Then u = u«: 
solves (11), provided (16) holds. 

1 

If (16) fails, we choose 0 <Ti <Tso that CTl' = 1/2 and repeat the 
above argument on the time intervals [O, Ti], [Ti, 2Ti], etc. 

Assertion (12) follows from parabolic regularity theory (cf. §7.1.3). D 
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c. Energy estimates. We want to send c ---+ 0 in (11), and for this as 
usual need some uniform estimates. 

THEOREM 2 (Energy estimates). There exists a constant C, depending 
only on n and the coefficients, such that 

(17) 
O~t~T(llu«:(t)llHl(JRn;JRm) + llu«:' (t)11£2(JRn;JRm)) 

< C(llYllHl(JRn;JRm) + llfll£2(0,T;Hl(JRn;JRm)) + llf'll£2(0,T;£2(JRn;JRm))) 

for each 0 < e < 1. 

Proof. 1. We compute 

Now 

(19) 

and 

(20) 

2. Suppose v E Cgc>(R.n; R.m). Then 

the last equality following from the symmetry assumption (6). As v has 
compact support, we deduce using (7) that 

By approximation therefore 

n 

(u€, LBjU~j) < c11u€lli2cJRn;JRm)• 
j=l 
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Utilizing this bound, (19) and (20) in (18), we obtain the estimate 

:t (llu«:lll2(JRn;JRm)) < C(llu«:lll2(JRn;JRm) + llflll2(JRn;JRm)) · 

We next apply Gronwall's inequality, to deduce 

(21) O~t~T llu«:(t) lll2(JRn;JRm) < C (llglll2(JRn;JRm) + llflll2(0,T;L2(JRn;JRm))) ' 

since llg€11£2(JRn;JRm) < llgll£2(JRn;JRm)· 

3. Fix k E {1, ... , n} and write vk := u~k· Differentiating (11) with 
respect to x k, we find 

{ 
vf - f.dvk + L:j=l Bjv;i = fxk - L:j=l Bj,xk u~i in IRn x (0, T] 

vk = g~k on IRn x {t = O}. 
Reasoning as above, we find 

(22) :t (llvklll2(JRn;JRm)) < C(llDu«:lll2(JRn;Mlmxn) + llDflll2(JRn;M1mxn)) · 

Sum the previous inequalities fork= 1, ... , n, to deduce 

:t (llDu«:lll2(JRn;M[mXn)) < C(llDu«:lll2(JRn;Mlmxn) + llDflll2(JRn;Mlmxn)) · 

Gronwall's inequality now provides the bound 

max llDu«:(t) lll2(JRn-M[mxn) 
O~t~T ' 

< C(llDglll2(JRn;Mlmxn) + llflll2(0,T;Hl(JRn;JRm))), 
(23) 

since llDg«:ll£2(JRn;Mlmxn) < llDgll£2(JRn;Mimxn)· 

4. Next set v := ul and differentiate (11) with respect tot, to discover 

(24) { Vt - f.dV + L:j 1 BjVxi = ~ - ~j:1 Bj,tU~i«: in IR: x (0, T] 
v - f - L:i=l B1 gxi + f.dg on IR x {t - O}. 

Reasoning as before, we compute 

max llul (t)lli2(JRn-JRm) < C(llDglli2(JRn·M[mXn) + f.2 llLlg€lli2cJRn-JRm) 
O~t~T • • , 

(25) + llf(O)lll2(JRn;JRm) + llflll2(0,T;Hl(JRn;JRm)) + llf'lll2(0,T;L2(JRn;JRm))). 

Now 

(26) 

since g«: = 'f/«: * g. Furthermore 

(27) llf(O)lll2(JRn;JRm) < C(llflll2(0,T;L2(JRn;JRm)) + llf'lll2(0,T;L2(JRn;JRm))). 

This bound, together with (21) and (23), completes the proof. D 
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d. Existence and uniqueness. 

THEOREM 3 (Existence of weak solution). There exists a weak solution 
of the initial value problem (5). 

Proof. 1. According to the energy estimates (17) there exists a subse
quence Ek ---+ 0 and a function u E L2(0, T; H 1 (1Rn; IRm)), such that u' E 

L2(0, T; L2 (IRn; IRm)), with 

(28) { 
u«:k ~ u weakly in L2(0, T; H 1(1Rn; IRm)) 

u«:~ ~ u' weakly in L2(0, T; L2 (1Rn; IRm) ). 

2. Choose a function v E C1([0, T]; H 1 (1Rn; IRm)). Then from (11) we 
deduce 

(29) foT (u", v) + EDu' : Dv + B[u', v; t] dt = foT (f, v) dt. 

Let E = Ek ---+ 0: 

(30) foT (u', v) + B[u, v; t] dt = foT (f, v) dt. 

This identity is valid for all v E C([O, T]; H 1(1Rn; IRm)), and so 

(u', v) + B[u, v; t] = (f, v) 

for a.e. t and each v E H 1 (IRn; IRm). 

3. Assume now v(T) = 0. Then (29) implies 

foT -(u', v') + EDu': Dv + B[u', v; t] dt = foT (f, v) dt + (g', v(O)). 

Upon sending E =Ek---+ 0, we obtain 

foT -(u, v) + B[u, v; t] dt = foT (f, v) dt + (g, v(O)). 

Integrating by parts in (30) gives us the identity 

foT -(u, v) + B[u, v; t] dt = foT (f, v) dt + (u(O), v(O)). 

Consequently u(O) = g, as v(O) is arbitrary. D 
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THEOREM 4 (Uniqueness of weak solution). A weak solution of (5) is 
unique. 

Proof. It suffices to show the only weak solution of (5) with f = g = 0 is 
u = 0. 

To verify this, note 

(31) (u', u) + B[u, u; t] = 0 for a.e. 0 < t < T. 

Since IB[u, u; t] I < Cllulli2cJRn;JR=), we as usual compute from (31) that 

whence Gronwall's inequality forces llu(t)lli2(JRn;JR=) = 0 (0 < t < T), since 

u(O). 0. D 

7 .3.3. Systems with constant coefficients. 

In this subsection we apply the Fourier transform (§4.3) to solve the 
constant coefficient system 

(32) 
n 

Ut + L Bjllx; = 0 in Rn x (0, oo), 
j=l 

with the initial condition 

(33) u = g on Rn x { t = O}. 

We assume that the {Bj}J=l are constant m x m matrices and that the 
m x m matrix 

(34) 
n 

B(y) := LYjBj 
j=l 

has for each y E Rn m real eigenvalues 

(35) 

There is no hypothesis concerning the eigenvectors, and so we are supposing 
only a very weak sort of hyperbolicity here. We also make no assumption 
of symmetry for the matrices { Bj }j 1 . Consequently the foregoing energy 
estimates do not apply. We need a new tool, which we discover in the Fourier 
transform. 
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THEOREM 5 (Existence of solution). Assume 

g E H 8 (Rn;Rm) (s >; +m). 
Then there is a unique solution u E C 1 ( [O, oo); Rm) of the initial-value prob
lem (32), (33). 

See §5.8.4 for the definition of the fractional Sobolev spaces H 8 • 

Proof. 1. We apply the Fourier transform (§4.3.1), as follows. First, tem
porarily assume u = (u1, ... , um) is a smooth solution. Then set 

... ("1 "m) U= U, •.• ,U , 

where ... denotes the Fourier transform in the variable x: we do riot transform 
with respect to the time variable t. Equation (32) becomes 

that is, 

(36) 

In addition 

(37) 

n 

Ut + iLyjBjU = O; 
j=l 

ilt + iB(y)u = 0 in Rn x (0, oo). 

u = g on Rn x { t = 0}. 

For each fixed y E Rn we solve (36), (37) by integrating in time, to find 

(38) u(y, t) = e-itB(y)g(y) (y E Rn, t > 0). 

Consequently u = (e-itB(y)g)v, so that 

(39) u(x, t) = 1 J. eix·ye-itB(y)g(y) dy (x E Rn, t > 0). 
(27r )n/2 JRn 

2. We have derived formula (39) assuming u to be a smooth solution of 
(32), (33). We now verify that the function u defined by (39) is in truth a 
solution, and so must first check that the integral in (39) converges. 

Since g E H 8 (Rn; Rm), we know according to §5.8.4 that there exists 
f E L2(Rn; Rm) such that 

(40) 
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So in order to investigate the convergence of the integral ( 39), we must 
estimate lle-itB(y) II· 

3. For a fixed y, let r denote the path 8B(O, r) in the complex plane, 
traversed counterclockwise, the radius r selected so large that the eigenvalues 
..\1(y), ... , Am(Y) lie within r. 

We have the formula 

(41) e-itB(y) = ~ [ e-itz(zl - B(y))-1 dz. 
27ri lr 

To verify this, let A( t, y) denote the right-hand side of ( 41) and fix x E Rm. 
Then 

B(y)A(t,y)x = -2
1 . [ e-itzB(y)(zl - B(y))-1xdz 
7ri lr 

= 2
1 . [ e-itz(z(zl - B(y))-1x - x) dz 
7ri lr 
1 d 

= ---A(t y)x 
i dt ' ' 

since fr e-itz dz= 0. Consequently 

(42) 

In addition 

(43) 

Now set 

(44) 

( :t + iB(y)) A(t, y) = 0. 

A(O,y)x = 2
1 . f (zl - B(y))-1xdz 
7ri lr 

= _1_ [ x + B(y)(zl - B(y))-1x dz 
27ri lr z 

_ _1 1 B(y)(zl - B(y))-1x d 
- x + 2 . z. 

7ri r z 

w := (zl - B(y))-1x, 

so that zw - B(y)w = x. Taking the product with ii.J, we deduce lwl < l~I 
for some constant C. Using this estimate and letting r go to infinity, we 
conclude from (43) that A(O, y)x = x. This equality and (42) verify the 
representation formula ( 41). 

4. Define a new path Ll in the complex plane as follows. For fixed y, 
draw circles Bk = B(,\k(y), 1) of radius 1, centered at ,\k(Y) (k = 1, ... , m). 
Then take~ to be the boundary of LJ;;i=l Bk, traversed counterclockwise. 
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Deforming the path r into A, we deduce from ( 41) that 

(45) 

Now 

(46) 

Furthermore 

whence 

(47) 

Now 

e-itB(y) = ~ { e-itz(zl _ B(y))-1 dz. 
27ri J fl 

m 

det(z/ - B(y)) = IJ (z - Ak(Y)), 
k=l 

I det(z/ - B(y))I > 1 if z EA. 

(zl _ B( ))_1 = cof(zl - B(y))T, 
y det(zl - B(y)) 

where "cof" denotes the cofactor matrix (see §8.1.4). We deduce 

ll(z/ - B(y))-1 11 < II cof(z/ - B(y))ll 

(48) < C(l + lzlm-l + llB(y)llm-l) 

< C(l + IYlm-l) if ZEA. 

We have utilized in this calculation the elementary inequality 

l.Ak(Y)I < Clyl (k = 1, ... , m). 

Combining (45)-(48), we derive the estimate 

(49) 

5. Return now to (37). We deduce using (40), (49) that 

{ leix·ye-itB(y)g(y)I dy < C { lle-itB(y)ll(l + 1Yls)-1 lf(y)I dy 
}Rn }Rn 

<Get { lf(y)l(l + IYlm-l)(l + IYls)-1 dy }Rn 

< C (Ln lfl2 dy) 1/2 (kn 1 + IYl~r.-m+l)) 1/2 
< oo, 
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since s > ~ + m - 1. Hence the integral in (39) converges, and it follows 
easily that the function 

u(x, t) = 1 { eix·ye-itB(y)g(y) dy 
(27r)n/2 JRn 

is continuous on Rn x [O, oo ). 

6. To show u is C1, observe for 0 < lhl < 1 that 

u(x, t + h) - u(x, t) _ 1 l ix·y( -i(t+h)B(y) _ -itB(y)),. ( ) d 
h - ( ) 12 e e e g y y. 27r n h ]Rn 

Since l t+h 
e-i(t+h)B(y) _ e-itB(y) = -i t B(y)e-isB(y) ds, 

we can estimate as above that 

Therefore 

and the integrand is summable since s > ~ + m. Thus Ut exists and is 
continuous on Rn x [O, oo). A similar argument shows Uxi exists and is con
tinuous ( i = 1, ... , n). According to the Dominated Convergence Theorem, 
we can furthermore differentiate under the integral sign in ( 39), to confirm 
that u solves the system Ut + L:j=1 Bjuxi = 0. D 

In Chapter 11 we will encounter nonlinear first-order systems of hyper
bolic equations. 

7.4. SEMIGROUP THEORY 

Semigroup theory is the abstract study of first-order ordinary differential 
equations with values in Banach spaces, driven by linear, but possibly un
bounded, operators. In this section we outline the basics of the theory and 
present as well two applications to linear PDE. This approach provides an 
elegant alternative to some of the existence theory for evolution equations 
set forth in §§7.1-7.3. 
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7.4.1. Definitions, elementary properties. 

We begin in an abstract setting. Let X denote a real Banach space, and 
consider then the ordinary differential equation 

(l) { u'(t) = Au(t) (t > 0) 
u(O) = u, 

where ' = 1t, u E X is given, and A is a linear operator. More precisely, 
suppose D(A), the domain of A, is a linear subspace of X and we are given 
a possibly unbounded linear operator 

(2) A: D(A)---+ X. 

We investigate the existence and uniqueness of a solution 

u : [O, oo) ---+ X 

of the ODE (1). The key problem is to ascertain reasonable conditions on 
the operator A so that (a) the ODE has a unique solution u for each initial 
point u E X and (b) many interesting PDE can be cast into the abstract 
form ( 1). (We have in mind the situation that X is an V' space of functions 
and A is a linear partial differential operator involving variables other than 
t. In this case A is necessarily an unbounded operator.) 

a. Semigroups. Let us for the moment informally assume u : [O, oo) ---+ X 
is a solution of the differential equation (1) and that (1) in fact has a unique 
solution for each initial point u EX. 

NOTATION. We will write 

(3) u(t) := S(t)u (t > 0) 

to display explicitly the dependence of u(t) on the initial value u EX. For 
each time t > 0 we may therefore regard S(t) as a mapping from X into X. 

What properties does the family of operators {S(t)}t2:'.:o satisfy? Clearly 
S ( t) : X ---+ X is linear. Furthermore 

(4) S(O)u = u ( u E X) 

and 

(5) S(t + s)u = S(t)S(s)u = S(s)S(t)u (t, s > 0, u EX). 

Condition (5) is simply our assumption that the ODE (1) has a unique 
solution for each initial point. Finally, it seems reasonable to suppose that 
for each u EX 

(6) the mapping t f4 S(t)u is continuous from [O, oo) into X. 
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DEFINITIONS. (i) A family {S(t)}t~o of bounded linear operators map
ping X into X is called a semigroup if conditions ( 4 )-( 6) are satisfied. 

(ii) We say {S(t)}t~o is a contraction semigroup if in addition 

(7) llS(t) 11 < 1 (t > o), 

II II here denoting the operator norm. Thus 

llS(t)ull < llull (t > 0, u E X). 

The notion of contraction semigroup captures many properties of a nice 
flow on X generated by the ODE (1). 

b. Elementary properties, generators. The real problem now is to de
termine which operators A generate contraction semigroups. We will answer 
this in §7.4.2, after recording in this section some further general facts. 

Henceforth assume { S ( t) h~o is a contraction semigroup on X. 

DEFINITIONS. Write 

(8) D(A) := {u Ex I lim S(t)u - u exists in x} 
t-+0+ t 

and 

(9) Au:= lim S(t)u - u (u E D(A)). 
t-+0+ t 

We call A : D(A) ---+ X the (infinitesimal) generator of the semigroup 
{S(t)}t~o; D(A) is the domain of A. 

THEOREM 1 (Differential properties of semigroups). Assume u E D(A). 
Then 

(i) S(t)u E D(A) for each t > 0. 

(ii) AS(t)u = S(t)Au for each t > 0. 

(iii) The mapping t 1--+ S(t)u is differentiable for each t > 0. 

(iv) 1tS(t)u = AS(t)u (t > 0). 

Proof. 1. Let u E D(A). Then 

1. S(s)S(t)u - S(t)u 
Im 

s-+0+ S 

= lim S(t)S(s)u - S(t)u by the semigroup property (5) 
s-o+ s 

= S(t) lim S(s)u - u = S(t)Au. 
s-o+ s 
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Thus S(t)u E D(A) and AS(t)u = S(t)Au. Assertions (i) and (ii) are 
proved. 

2. Let u E D(A), h > 0. Then if t > 0, 

lim { S(t)u - ~(t - h)u - S(t)Au} 
h-+O+ 

= h~+ {s(t-h) (S(h):-u)-s(t)Au} 

= h~+ { S(t - h) ( S(h):- u - Au) + (S(t - h) - S(t))Au} = 0, 

since S(h~-u ---+Au and llS(t - h)ll < 1. Consequently 

1. S(t)u - S(t - h)u = S( )A 
Im h t U. 

h-+0+ 

Similarly 

1. S(t + h)u - S(t)u _ S( ) 1. S(h)u - u _ S( )A 
im h - t im h - t u. 

h-+0+ h-+0+ 

Thus !S(t)u exists for each time t > 0 and equals S(t)Au = AS(t)u. D 

Remark. Since t i-+ AS(t)u = S(t)Au is continuous, the mapping t i-+ 

S(t)u is C1 in (0, oo), if u E D(A). 

THEOREM 2 (Properties of generators). 
(i) The domain D(A) is dense in X 

and 
(ii) A is a closed operator. 

Remark. To say A is closed means that whenever Uk E D(A) (k = 1, ... ) 
and Uk ---+ u, Auk ---+ v as k ---+ oo, then 

u E D(A), v =Au. 

Proof. 1. Fix any u EX and define then ut := J~ S(s)uds. In view of (6), 
ut . X 0 T---+ u in , as t---+ +. 

2. We claim 

(10) ut E D(A) (t > 0). 
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Indeed if r > 0, we have 

S(r)~ - ut = ~ [s(r) (l S(s)uds) - (l S(s)uds)] 

= ! ft S(r + s)u - S(s)uds, 
r lo 

where we used the semigroup property (5). Thus 

S(r)ut - ut 1 J.t+r 11r 
---- = - S(s)uds - - S(s)uds 

r r t r 0 

---+ S(t)u - u, as r---+ 0 +. 
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Hence ut E D(A), with Aut = S(t)u - u. This proves (10) and completes 
the proof of assertion (i). 

3. To prove A is closed, let Uk E D(A) (k = 1, ... ) and suppose 

(11) Uk ---+ u, Auk ---+ v in X. 

We must prove u E D(A), v = Au. According to Theorem 1 

S(t)uk - Uk= Lt S(s)Auk ds. 

Let k ---+ oo and recall (11): 

S(t)u - u =Lt S(s)v ds. 

Hence we have 

lim S(t)u - u = lim ! ft S(s)v ds = v. 
t-+0+ t t-+0+ t J 0 

But then by definition u E D(A), v = Au. D 

c. Resolvents. Let A be a closed linear operator on X, with domain D(A). 

DEFINITIONS. (i) We say a real number A belongs to p(A), the resolvent 
set of A, provided the operator 

Al - A : D(A) ---+ X 

is one-to-one and onto. 

(ii) If A E p(A), the resolvent operator R>. : X ---+ X is defined by 

R>.u := (Al - A)-1u. 

According to the Closed Graph Theorem (§D.3), R>. : X ---+ D(A) C X 
is a bounded linear operator. Furthermore, 

AR>.u = R>.Au if u E D(A). 
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THEOREM 3 (Properties of resolvent operators). 
(i) If A,µ E p(A), we have 

(12) R>. - Rµ = (µ - A)R>.Rµ {resolvent identity) 

and 

(13) 

(ii) If A> 0, then A· E p(A), 

(14) R>.u = l"' e->.ts(t)udt (u EX), 

Thus the resolvent operator is the Laplace transform of the semigroup 
(cf. Example 8 in §4.3.3). 

Proof. 1. Verification of the identities (12), (13) is left to the reader (Prob
lem 12). 

2. Note first that since A> 0 and llS(t)ll < 1, the integral on the right
hand side of (14) is defined. Let R>.u denote this integral. Then for h > 0 
and u EX, 

S(h)R>.:- R>.u = ~ {f" e->.t[S(t + h)u - S(t)u] dt} 

11h = -- e->.(t-h} S(t)u dt 
h 0 

+ - ( e->.(t-h} - e->.t)S(t)u dt 1100 

h 0 

11h = -e>.h_ e->.ts(t)udt 
h 0 

( e>.h 1) [00 

+ h- lo e->.t S(t)u dt. 

Hence 

1. S(h)R>.U - R>.U 'R-
im h = -u + "' >. u. 

h-o+ 

Thus AR>. u = -u + AR>. u; that is, 

(15) (Al - A)R>.u = u (u EX). 
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On the other hand if u E D(A), 

AR~u =A lo"° e-~ts(t)udt =lo"° e-~tAS(t)udt 

=lo"° e-Ats(t)Audt = R~Au. 
(16) 

Our passing A under the integral sign is justified since A is a closed operator: 
see Problem 13. Thus 

R.x(Al - A)u = u (u E D(A)). 

In view of (15) and the formula above;\/ - A is one-to-one and onto. Con
sequently ;\ E p(A), R.x = (Al - A)-1 = R_x. D 

7.4.2. Generating contraction semigroups. 

We now characterize the generators of contraction semigroups: 

THEOREM 4 (Hille-Yosida Theorem). Let A be a closed, densely-defined 
linear operator on X. Then A is the generator of a contraction semigroup 
{S(t)}t~o if and only if 

1 
(17) (0, oo) C p(A) and llR.xll ~ ;\ for;\ > 0. 

Proof. 1. If A is a generator, then from Theorem 3(ii) we immediately 
deduce (17). 

2. Conversely, suppose A is closed, densely-defined, and satisfies (17). 
We must build a contraction semigroup with A as its generator. For this, 
fix ;\ > 0 and define 

(18) 

The operator A.x is a kind of regularized approximation to A. 

3. We first claim 

(19) A_xu-+ Au as;\-+ oo (u E D(A)). 

Indeed, since AR_xu - u = AR.xu = R_xAu, llAR_xu - ull < llR.xll llAull < 
tllAull -+ 0. Thus AR>.u-+ u as;\-+ oo if u E D(A). But since llAR.xll < 1 
and D(A) is dense, we deduce then as well 

(20) AR.xu-+ u as ;\-+ oo, for all u EX. 
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Now if u E D(A), then 

A.xu = AAR.xu = AR_xAu. 

In view of (20), our claim (19) is proved. 

4. Next, define 

S>.(t) := etA, = e->.te>.2tR, = e->.t f: (>·:~)k R~. 
k=O 

Observe that since II R.x II < A - l, 

Consequently {S.x(t)h>o is a contraction semigroup, and it is easy to check 
that its generator is A.x, with D(A.x) = X. 

5. Let A,µ > 0. Since R_xRµ = RµR_x, we see A_xAµ = AµA.x, and so 

AµS.x(t) = S.x(t)Aµ for each t > 0. 

Thus we can compute 

S>.(t)u - S,,(t)u = l ! [S,,(t - s)S>.(s)u] ds 

= l S,,(t - s)S>.(s)(A>.u - A,,u) ds, 

because 1tS.x(t)u = A.xS.x(t)u = S.x(t)A_xu. Consequently (19) implies that 
if u E D(A), then llS.x(t)u - Sµ(t)ull < tllA.xu - Aµull ---+ 0 as A,µ ---+ oo. 
Hence 

(21) S(t)u := lim S.x(t)u exists for each t > 0, u E D(A). 
.X-+oo 

As llS.x(t)ll < 1, the limit (21) in fact exists for all u EX, uniformly fort in 
compact subsets of [O, oo). It is now straightforward to verify {S(t)}t~o is a 
contraction semigroup on X. 

6. It remains to show A is the generator of {S(t)}t~o· Write B to denote 
this generator. Now 

(22) 
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In addition 

llS.x(s)A.xu - S(s)Aull < llS.x(s)ll llA.xu - Aull+ ll(S.x(s) - S(s))Aull ~ 0 

as .X ~ oo, if u E D(A). Passing therefore to limits in (22), we deduce 

S(t)u - u = l S(s)Auds 

if u E D(A). Thus D(A) c D(B) and 

Bu= lim S(t)u - u =Au (u E D(A)). 
t--+O+ t 

Now if .X > 0, .XE p(A)np(B). Also (.XI-B)(D(A)) = (.XI-A)(D(A)) = X, 
according to (17). Hence (.XI - B)lv(A) is one-to-one and onto, whence 
D(A) = D(B). Therefore A = B, and so A is indeed the generator of 
{S(t)}t~o- D 

Remark. Let w E IR. A semigroup {S(t)}t~o is called w-contractive if 
llS(t)ll < ewt (t > 0). An easy variant of Theorem 4 asserts that a closed, 
densely defined linear operator A generates an w-contractive semigroup if 
and only if 

(23) 
1 

(w, oo) C p(A) and llR.xll < A_ w for all A> w. 

This version of the Hille--Yosida Theorem will be required for our first ex
ample below. 

7.4.3. Applications. 

We demonstrate in this section that certain second-order parabolic and 
hyperbolic PDE can be realized within the semigroup framework. 

a. Second-order parabolic PDE. We consider the initial/boundary
value problem 

(24) { 
Ut + Lu = 0 in Ur 

u = 0 on 8U x [O, T] 
u = g on U x { t = 0}, 

a special case (corresponding to f - 0) of (1) in §7.1.1. We assume L has 
the divergence structure (2) from §7.1.1, satisfies the usual strong elliptic
ity condition, and has smooth coefficients, which do not depend on t. We 
additionally suppose that the bounded open set U has a smooth boundary. 
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We propose to reinterpret (24) as the flow determined by a semigroup 
on X = L2(U). For this, we set 

(25) D(A) := HJ(U) n H 2 (U) 

and define 

(26) Au:= -Lu if u E D(A). 

Clearly then A is an unbounded linear operator on X. Recall from §6.2.2 
the energy estimate 

(27) 

for constants {3 > 0, 'Y > 0, where B[, ] is the bilinear form associated with 
L. 

THEOREM 5 (Second-order parabolic PDE as semigroups). The operator 
A generates a 1-contraction semigroup {S(t)}t~o on L2 (U). 

Proof. 1. We must verify the hypotheses of the variant of the Hille--Yosida 
Theorem mentioned in the concluding Remark in §7.4.2, with 'Y replacing w. 

First, D(A) given by (25) is clearly dense in L 2 (U). 

2. We claim now that the operator A is closed. Indeed, let { uk}k::1 c 
D(A) with 

(28) 

According to the regularity Theorem 4 in §6.3.2, 

lluk - ulllH2(u) < C(llAuk - AudlL2(u) + lluk - udlL2(u)) 

for all k and l. Thus (28) implies { uk}k::1 is a Cauchy sequence in H 2 (U) 
and so 

(29) 

Therefore u E D(A). Furthe!more (29) implies Auk ---+ Au in L 2 (U), and 
consequently f = Au. 

3. Next we check the resolvent conditions (23), with 'Y replacing w. Ac
cording to Theorem 3 in §6.2.2, for each A> 'Y the boundary-value problem 

(30) { 
Lu + AU = f in U 

u = 0 in au 
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has a unique weak solution u E HJ(U) for each f E L 2 (U). Owing to elliptic 
regularity theory, in fact u E H 2 (U) n HJ(U). Thus u E D(A). We may 
now rewrite (30), using (26), and find 

(31) .Xu-Au= f. 

Thus (.XI - A) : D(A)---+ Xis one-to-one and onto, provided .X > r· Hence 
p(A) ~ [r, oo ). 

4. Consider the weak form of the boundary-value problem (30): 

B[u, v] + .X(u, v) = (f, v) 

for each v E HJ(U), where ( , ) is the inner product in L2 (U). Set v = u 
and recall (27) to compute for A> r 

Hence, since u = R>.J, we have the estimate 

1 
llR>.fllL2(U) < A llfllL2(U)· 

-1 

This bound is valid for all f E L 2 (U) and so 

(32) llR~ll < A~ 'Y (A> 'Y), 

as required. D 

Semigroup theory provides an elegant method for constructing a solution 
to the initial/boundary-value problem (24). It is worth noting however that 
this technique requires that the coefficients a ij, bi, c ( i, j = 1, ... , n) of L be 
independent oft. The Galerkin method in §7.1 works without this restric
tion. On the other hand, semigroup theory constructs at the outset a more 
regular solution than the weak solution produced by the Galerkin technique. 
But we can also apply the regularity theory in §7.1.3 to demonstrate that 
this weak solution is in fact more regular. 

b. Second-order hyperbolic PDE. We turn our attention next to the 
hyperbolic initial/boundary-value problem 

(33) { 

Utt + Lu = 0 in Ur 
u = 0 on 8U x [O, T] 

u = g, Ut = h on U x { t = 0}, 
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for the operator Land open set U as above. We recast (33) as a first-order 
system by setting v := Ut. Then the foregoing reads 

{ 

Ut = v, Vt+ Lu = 0 in Ur 
u = 0 on 8U x [O, T] 

u = g, v = h on U x { t = 0}. 

We will further assume L has the symmetric form 

where , 

(34) 

n 

Lu= - L (aiiuxJxi +cu, 
i,j=l 

C > 0 aii = aii (,; J. 1 n) - , ,,, = , ... , . 

Thus for some constant {3 > 0 

(35) f311ull~J(U) < B[u, u] for all u E HJ(U). 

Now take 

with the norm 

(36) ll(u, v)ll := (B[u, u] + llvlli2cu))112 . 

Define 
D(A) := [H2(U) n HJ(U)] x HJ(U) 

and set 

(37) A(u, v) := (v, -Lu) for (u, v) E D(A). 

We will show A verifies the hypothesis of the Hille-Yosida Theorem. 

THEOREM 6 (Second-order hyperbolic PDE as semigroups). The oper
ator A generates a contraction semigroup {S(t)}t~O on HJ(U) x L2(U). 

Proof. 1. The domain of A is clearly dense in HJ(U) x L2 (U). 

2. To see A is closed, let { ( uk, vk)}~1 C D(A), with 

(Uk, vk) -+ ( u, v ), A( uk, vk) -+ (/, g) in HJ(U) x L2(U). 

Since A(uk, vk) = (vk, -Luk), we conclude f = v and Luk -+ -gin L2(U). 
As in the previous proof, it follows that Uk -+ u in H 2 (U) and g = -Lu. 
Thus (u, v) E D(A), A(u, v) = (v, -Lu) = (/, g). 
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3. Now let ,\ > 0, (J,g) E X := HJ(U) x L2(U) and consider the 
operator equation 

(38) ,\(u,v)-A(u,v) = (J,g). 

This is equivalent to the two scalar equations 

(39) { 
,\u - v = f (u E H 2 (U) n HJ(U)) 

,\v +Lu= g (v E HJ(U)). 

But (39) implies 

(40) ..\2u +Lu= ,\f + g (u E H 2 (U) n HJ(U)). 

Since ,\2 > 0, estimate (35) and the regularity theory imply there exists 
a unique solution u of (40). Defining then v := ,\u - f E HJ(U), we have 
shown that (38) has a unique solution (u, v). Consequently p(A) ~ (0, oo). 

4. Whenever (39) holds, we write (u,v) = R>..(f,g). Now from the 
second equation in (39), we deduce 

..\llvlli2 + B[u, v] = (g, v)L2· 

Substituting v = ,\u - f, we obtain 

,\ (llvlli2 + B[u, u]) = (g, v)L2 + B[u, J] 

< (llglli2 + B[f, f]) 112(llvlli2 + B[u, u]) 112 . 

Here we used the generalized Cauchy-Schwarz inequality (§B.2), which holds 
owing to the symmetry condition ( 34). In light of our definition ( 36), ' 

1 ll(u,v)ll < ,\ll(f,g)ll; 

and so 

as required. D 

See Friedman [Frl] or Yosida [Y] for the theory of analytic semigroups. 
Aspects of nonlinear semigroup theory will be developed later, in §9.6. 
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7.5. PROBLEMS 

In the following exercises we assume Uc IRn is an open, bounded set, with 
smooth boundary, and T > 0. 

1. Prove there is at most one smooth solution of this initial/boundary
value problem for the heat equation with Neumann boundary condi-
tions 

{ 

Ut - Au = f in Ur 
g~ = 0 on au x [O, T] 
u = g on U x { t = 0}. 

2. Assume u is a smooth solution of 

{ 

Ut - Au= 0 in U x (0, oo) 
u = 0 on au x [O, oo) 
u = g on U x { t = O}. 

Prove the exponential decay estimate: 

where .X1 > 0 is the principal eigenvalue of -A (with zero boundary 
conditions) on U. 

3. (Adjoint dynamics) Suppose that u is a smooth solution of 

{ 

Ut + Lu = 0 in Ur 
u = 0 on au x [O, T] 
u = g on U x { t = 0}, 

where L denotes a second-order elliptic operator, and that v is a 
smooth solution of the adjoint problem 

{
Vt - L*v = 0 in Ur 

u = 0 on au x [O, T] 
v = h on U x { t = T}. 

Show 

fu g(x)v(x, 0) dx = fu u(x, T)h(x) dx. 

4. (Galerkin's method for Poisson's equation) Suppose f E L 2 (U) and 
assume that Um = :Ezi=l d~wk solves 
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5. 

for k = 1, ... , m. Show that a subsequence of { um}~=l converges 
weakly in HJ (U) to the weak solution u of 

Assume 

{ -~u = f in U 
u = 0 on au. 

{ 
Uk ___lo. U 

u' ___lo. v k 

in £ 2 (0, T; HJ(U)) 

in £ 2 (0, T; H-1(U)). 

Prove that v = u'. (Hint: Let¢ E CJ(o, T), w E HJ(U). Then 

6. Suppose H is a Hilbert space and Uk ___lo. u in £ 2 (0, T; H). Assume 
further we have the uniform bounds 

esssup lluk(t)ll < C (k = 1, ... ) 
0:9~T 

for some constant C. Prove 

esssup llu(t)ll < C. 
O~t~T 

(Hint: We have J;(v, uk(t)) dt < Cllvlllb - al for 0 < a< b < T and 
v EH.) 

7. Suppose u is a smooth solution of 

{ 
Ut - ~u +cu = 0 in U x (0, oo) 

u = 0 on au x [O, oo) 
u = g on U x { t = 0} 

and the function c satisfies c > 1 > 0. 

Prove the exponential decay estimate 

I u ( x, t) I < Ce -'"'It ( ( x, t) E UT). 

8. Assume that u is a smooth solution of the PDE from Problem 7, that 
g > 0, and that c is bounded (but not necessarily nonnegative). Show 
u > 0. (Hint: What PDE does v := e->.tu solve?) 

9. Prove inequality (54) in §7.1.3, (59) in §7.2.3. 
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(Hints: Assume u is smooth, u = 0 on au. Transform the term 
(Lu, -~u) by integrating by parts twice, and then estimate the bound
ary terms. After changing variables locally and using cutoff functions, 
you may assume the boundary is flat. This problem is difficult.) 

10. Show there exists at most one smooth solution of this initial/boundary-
valu~ problem for the telegraph equation 

{
Utt+ dut - Uxx = f in (0, 1) X (0, T) 

u = 0 on ({O} x [O,T]) U ({1} x [O,T]) 
u = g, Ut = h on (0, 1) x {t = 0}. 

Here dis a constant. 

11. Prove there exists at most one smooth solution u of this problem for 
the beam equation 

{
Utt+ Uxxxx = 0 in (0, 1) X (0, T) 

u = Ux = 0 on ( { 0} x [O, T]) U ( { 1} x [O, T]) 
u=g,ut=h on[O,l]x{t=O}. 

12. Prove the resolvent identities (12) and {13) in §7.4.1. 

13. Justify the equality 

A 100 e~>.ts(t)udt = 100 e~>.t AS(t)udt 

used in (16) of §7.4.1. (Hint: Approximate the integral by a Riemann 
sum and recall A is a closed operator.) 

14. Define fort> 0 

[S(t)g](x) = { cI>(x - y, t)g(y) dy (x E Rn), lntn 
where g : Rn ~ R and cl> is the fundamental solution of the heat 
equation. Also set S(O)g = g. 

(a) Prove {S(t)}t~o is a contraction semigroup on L2 (Rn). 

(b) Show { S ( t) }t~o is not a contraction semigroup on L 00 (Rn). 

15. Let {S(t)}t~0 be a contraction semigroup on X, with generator A. 
Inductively define D(Ak) := { u E D(Ak-l) I Ak-lu E D(A)} (k = 
2, ... ). Show that if u E D(Ak) for some k, then S(t)u E D(Ak) for 
each t > 0. 

16. Use Problem 15 to prove that if u is the semigroup solution in X = 
L2 (U) of 

{ 

Ut - ~u = 0 in UT 
u = 0 on au x [O, T] 
u = g on U x { t = 0}, 
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with g E Cgo(U), then u(·, t) E C 00 (U) for each 0 < t < T. 

7.6. REFERENCES 

Section 7.1 

Section 7.2 

Section 7.3 

Section 7.4 

Section 7.5 

See Ladyzhenskaya [L, Chapter 3], J.-L. Lions [Ll], Lions
Magenes [L-M], Wloka [Wl]. W. Schlag helped me with 
the proof of Theorems 5, 6. The proof of the parabolic 
Harnack inequality is similar to calculations found in Davies 
[Da]. For more on regularity theory, see the books of Krylov 
[Krl], [Kr2], Ladyzhenskaya-Solonnikov-Uraltseva [L-S-U] 
and Lieberman [Lb]. 
See Ladyzhenskaya [L, Chapter 4], J.-L. Lions [Ll], Lions
Magenes [L-M] and Wloka [Wl]. 

The Fourier transform argument is taken from John [J2]; cf. 
also Treves [T, §15]. D. Serre has shown me a much more 
precise version of Theorem 5, under the further assumption 
of strict hyperbolicity. 

See Friedman [Frl, Part 2, §1] and Yosida [Y, Chapter IX]. 

Problem 9: see Brezis-Evans (Arch. Rational Mech. Analysis 
71 (1979), 1-13) and also Ladyzhenskaya-Uraltseva [L-U, p. 
182]. 
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Chapter 8 

THE CALCULUS OF 
VARIATIONS 

8.1 Introduction 

8.2 Existence of minimizers 

8.3 Regularity 

8.4 Constraints 

8.5 Critical points 

8.6 Invariance, Noether's Theorem 

8.7 Problems 

8.8 References 

8.1. INTRODUCTION 

8.1.1. Basic ideas. 

We introduce some new ideas by supposing that we wish to solve a 
particular partial differential equation, which for simplicity we write in the 
abstract form 

(1) A[u] = 0. 

In this formula A[·] denotes a given, possibly nonlinear partial differential 
operator and u is the unknown. There is, of course, no general theory for 
solving all such PDE. 

The calculus of variations identifies an important class of such nonlinear 
problems that can be solved using relatively simple techniques from non
linear functional analysis. This is the class of variational problems, that is, 

-453 
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PDE of the form (1), where the nonlinear operator A[·] is the "derivative" 
of an appropriate "energy" functional I[ · ] . Symbolically we write 

(2) A[·] = I'[·]. 

Then problem ( 1) reads 

(3) I'[u] = 0. 

The advantage of this new formulation is that we now can recognize solutions 
of (1) as being critical points of I[·]. These in certain circumstances may be 
relatively easy to find: if, for instance, the functional I[·] has a minimum 
at u, then presumably (3) is valid and thus u is a solution of the original 
PDE (1). The point is that whereas it is usually extremely difficult to solve 
(1) directly, it may be much easier to discover minimum (or maximum or 
other critical) points of the functional I[·]. 

In addition of course, many of the laws of physics and other scientific 
disciplines arise directly as variational principles. 

8.1.2. First variation, Euler-Lagrange equation. 

Suppose now U c Rn is a bounded, open set with smooth boundary au 
and we are given a smooth function 

L : Rn x R x U --+ R. 

We call L the Lagrangian. 

NOTATION. We will write 

L = L(p, z, x) = L(pi, ... , Pn, z, xi, ... , Xn) 

for p E Rn, z E R, and x E U. Thus "p" is the name of the variable for which 
we substitute Dw(x) below, and "z" is the variable for which we substitute 
w(x). We also set 

{ 
DpL = ( Lp1 , ••• , LPn) 

DzL = Lz 

DxL = (Lx 1 , •• ·, Lxn). 

This notation will clarify the theory to follow. 

We make 'the vague ideas in §8.1.1 more precise by now assuming I[·] 
to have the explicit form 

(4) I[w] := fu L(Dw(x), w(x), x) dx, 
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for smooth functions w : U --+ R satisfying, say, the boundary condition 

(5) w=g onau. 

Let us now additionally suppose some particular smooth function u, 
satisfying the requisite boundary condition u = g on au, happens to be a 
minimizer of I[·] among all functions w satisfying (5). We will demon
strate that u is then automatically a solution of a certain nonlinear partial 
differential equation. 

To confirm this, first choose any smooth function v E C~(U) and con
sider the real-valued function 

(6) i(T) := I[u + Tv] (TE R). 

Since u is a minimizer of I[.] and u +TV= u = g on au, we observe that 
i(·) has a minimum at T = 0. Therefore 

(7) i'(O) = 0. 

We explicitly compute this derivative (called the first variation) by writ
ing out 

(8) i(r) = fu L(Du+rDv,u+rv,x)dx. 

Thus 

n 

i'(r) = 1 L:;Lp,(Du + rDv,u +TV, x)vx, + L.(Du + rDv, u + rv,x)vdx. 
u i=l 

Let T = 0, to deduce from (7) that 

n 

0=i'(O)=1 L:;Lp,(Du,u,x)vx, + Lz(Du, u,x)vdx. 
u i=l 

Finally, since v has compact support, we can integrate by parts and obtain 

0 = 1 [-t (Lp;(Du, u, x))x, + L.(Du, u, x)] v dx. 
U i=I 

As this equality holds for all test functions v, we conclude u solves the 
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nonlinear PDE 

n 

(9) -L (LPi (Du, u, x))xi + Lz(Du, u, x) = 0 in U. 
i=l 

This is the Euler-Lagrange equation associated with the energy functional 
I[·] defined by (4). Observe that (9) is a quasilinear, second-order PDE in 
divergence form. 

In summary, any smooth minimizer of I[·] is a solution of the Euler
Lagrange partial differential equation (9), and thus-conversely-we can try 
to find a solution of (9) by searching for minimizers of (4). 

Example 1 (Dirichlet's principle). Take 

L(p, z, x) = !IPl2 . 

Then LPi =Pi (i = 1, ... , n), Lz = O; and so the Euler-Lagrange equation 
associated with the functional 

J[w] := ! [ 1Dwl2 dx 

is 
~u = 0 in U. 

This fact is Dirichlet's principle, previously introduced in §2.2.5. D 

Example 2 (Generalized Dirichlet's principle). Write 

n 

L(p, z, x) = ! L aii (x )PiPi - zf (x ), 
i,j=l 

h ii - ii ( . . - 1 ) Th L - ~n ii ( ) · ( . - 1 ) w ere a - a i, J - , ... , n . en Pi - L.Jj=l a x p1 i - , ... , n , 
Lz = - f ( x). Hence the Euler-Lagrange equation associated with the func
tional 

is the divergence structure linear equation 

n 

- L (aiiux;)xi = f in U. 
i,j=l 
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We will see later (in §8.1.3 and §8.2) that the uniform ellipticity condi
tion on the aii (i,j = 1, ... , n) is a natural further assumption, required to 
prove the existence of a minimizer. Consequently from the nonlinear view
point of the calculus of variations, the divergence structure form of a linear 
second-order elliptic PDE is completely natural. This observation provides 
some much belated motivation for the bilinear form techniques utilized in 
Chapter 6. D 

Example 3 (Nonlinear Poisson equation). Assume we are given a smooth 
function f : IR ---+ IR, and define its antiderivative F(z) = J0z f (y) dy. Then 
the Euler-Lagrange equation associated with the functional 

I[w] := fu ~1Dwl2 - F(w) dx 

is the nonlinear Poisson equation 

-Dau= f(u) in U. D 

Example 4 (Minimal surfaces). Let 

so that 

I[w] = fu (1+1Dwl2)112 dx 

is the area of the graph of the function w : U ---+ IR. The associated Euler
Lagrange equation is 

(10) t ( (1+1':;'~12)1/2) x; = 0 in U. 

This partial differential equation is the minimal surface equation. The 

expression div ( (l+lg:i2 ) 172 ) on the left side of (10) is n times the mean cur
vature of the graph of u. Thus a minimal surface has zero mean curvature. 

D 
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A minimal surface 

8.1.3. Second variation. 

We continue in the spirit of the calculations from §8.1.2 by computing 
now the second variation of/[·] at the function u. This we find by observing 
that since u gives a minimum for I[·], we must have 

i"(O) > 0, 

i(·) defined as above by (6). In view of (8) we can calculate 

n 

i" ( T) = 1 L Lp;p; (Du + T Dv, u + TV, x )vx, Vx; 
u iJ=l 

n 

+ 2 L Lpiz(Du + TDv, u +TV, x)vxiV 
i=l 

+ Lzz(Du + T Dv, u +TV, x )v2 dx. 

Setting T = 0, we derive the inequality 

(11) 

n 

0<i"(O)=1 L Lp,p;(Du,u,x)vx,Vx; 
u i,j=l 

n 

+ 2 L Lpiz(Du, u, x)vxiV + Lzz(Du, u, x)v2 dx, 
i=l 

holding for all test functions v E C~ ( U). 

We can extract useful information from inequality (11), as follows. First, 
note after a routine approximation argument that estimate (11) is valid for 
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any Lipschitz continuous function v vanishing on 8U. We then fix~ E Rn 
and define 

(12) ( X·~) v(x) := fP -f- ((x) (x EU), 

where ( E Cgc'(U) and p: R--+ R is the periodic "zig-zag" function defined 
by 

{
x if O<x<! 

p( x) = 1 - x if ! < x < 1 p(x + 1) = p(x) (x ER). 

Thus 

(13) IP'I = 1 a.e. 

Observe further that Vxi(x) = p'( ¥) ~i( + O(f) as f --+ 0, and so our 

substituting (12) into (11) yields 

n 

0<1 L Lp,p; (Du, u, x){p')2{;{;(2 dx + 0(•). 
u i,j=l 

We recall (13) and send f--+ 0, thereby obtaining the inequality 

n 

0<1 L LPiP; (Du, u, x){;{;(2 dx. 
u i,j=l 

Since this estimate holds for all ( E Cgc'(U), we deduce 

n 

(14) L LPiP;(Du,u,x)~i~j > 0 (~ E Rn, x EU). 
i,j=l 

We will see later in §8.2 that this necessary condition contains a clue as 
to the basic convexity assumption on the Lagrangian L required for the 
existence theory. 

8.1.4. Systems. 

a. Euler-Lagrange equations. The foregoing considerations generalize 
quite easily to the case of systems, the only new complications being largely 
notational. Recall from §A.1 that Mm x n denotes the space of real m x n 
matrices, and assume the smooth Lagrangian function 

is given. 
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NOTATION. We will write 

L = L(P, z, x) = L(pL ... ,pr;:, z1, ... , zm, x1, ... , Xn) 

for PE Mmxn, z E IRm, and x EU, where 

( p~ p~) 
P= 

PT P":/: mxn 

(We are now employing superscripts to denote rows, since this notational 
convention simplifies the following formulas.) 

As in §8.1.2 we associate with L the functional 

(15) I(w] := fu L(Dw(x), w(x),x) dx, 

defined for smooth functions w: [J---+ IRm, w = (w1, ... , wm), satisfying the 
boundary condition w = g on au, g : au ---+ IRm being given. Here 

(
wi1 

Dw(x) = m 

WXl 

wl ) Xn 

W~ mxn 

is the gradient matrix of w at x. 

Let us now show that any smooth minimizer u = (u1, ... , um) of I[·], 
taken among functions equal to g on au, must solve a certain system of 
nonlinear partial differential equations. We therefore fix v = (v1, ... , vm) E 

Cgo(U; IRm) and write 
i(r) := J[u + rv]. 

As before, 
i'(O) = 0. 

From this we readily deduce as above the equality 
n m m 

0=i'(O)=1 LLL!>l'(Du, u,x)v~, + LL •• (Du, u,x)vk dx. 
u i=l k=l k=l 

As this identity is valid for all choices of v1 , ... , vm, we conclude after inte
grating by parts that 

This coupled, quasilinear system of PDE comprises the Euler-Lagrange equa
tions for the functional J[ ·] defined by (15). 
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b. Null Lagrangians. Surprisingly, it turns out to be interesting to study 
certain systems of nonlinear partial differential equations for which every 
smooth function is a solution. 

DEFINITION. The function L is called a null Lagrangian if the system 
of Euler-Lagrange equations 

n 

(17) - L (Lp~(Du, u,x))x· + Lzk(Du, u,x) = 0 in U (k = 1, ... ,m) 
i=l i 

is automatically solved by all smooth functions u : U ---+ Rm. 

The importance of null Lagrangians is that the corresponding energy 

I[w] = fu L(Dw, w, x) dx 

depends only on the boundary conditions: 

THEOREM 1 (Null Lagrangians and boundary conditions). Let L be a 
null Lagrangian. Assume u, ii are two functions in C 2 (U, Rm) such that 

(18) u =ii on au. 

Then 

(19) J[u] =/[ii]. 

Proof. Define 

Then 

n m 

i'(r) = 1 LL Lv!'(rDu + (1- r)Dii, ru + (1 - r)ii, x)(u~, - ii.~.) 
u i=l k=l 

m 

+ L Lzk(TDU + (1 - r)Dii, TU+ (1 - r)ii, x)(uk - uk) dx 
k=l 

m [ n 
= "'{;. fu -t;(Lv!'(rDu + (1- r)Dii, TU+ (1 - r)ii, x)t, 

+ L,.( r Du+ (1 - r)Dii, TU+ (1 - r)ii, x)] ( uk - uk) dx 

= 0, 
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the last equality holding since the Euler-Lagrange system of PDE is satisfied 
by ru + (1 - r)ii. The identity (19) follows. D 

In the scalar case that m = 1 the only null Lagrangians are the boring 
examples where L is linear in the variable p. For the case of systems ( m > 1), 
however, there are certain nontrivial examples, which will turn out to be 
important for us later. 

NOTATION. If A is an n x n matrix, we denote by 

cofA 

the cofactor matrix, whose (k, i)th entry is (cof A)f = (-l)i+kd(A)f, where 
d(A)f is the determinant of the (n-1) x (n-1) matrix obtained by deleting 
the kth row and ith column from A. 

LEMMA (Divergence-free rows). Let u: Rn-+ Rn be a smooth function. 
Then 

n 

(20) E(cof Du)f.xi = 0 (k = 1, ... , n). 
i=l 

Proof. 1. From linear algebra we recall the identity 

(21) (detP)/ = PT(cof P) (PE Mnxn); 

that is, 

n 

(22) (det P)8ij = Epf (cof P)j (i,j = 1, ... , n). 
k=l 

Thus in particular 

(23) 8detP = ( f P)k 
{) k CO m 

Pm 
(k,m=l, ... ,n). 

2. Now set P = Du in (22), differentiate with respect to Xj, and sum 
j = 1, ... , n, to find 

n n 

E 8ij(cof Du)~u~mxj = E u~ix/cof Du)j + u~i(cof Du)j,xj 
j,k,m=l k,j=l 
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for i = 1, ... , n. This identity simplifies to read 

(24) t u~i (t(cof Du)J,xi) = 0 (i = 1, ... , n). 
k=l j=l 

3. Now if det Du(xo) =I- 0, we deduce from (24) that 

n 

L(cof Du)J,xi = 0 (k = 1, ... , n) 
j=l 
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at xo. If instead det Du(xo) = 0, we choose a number f > 0 so small that 
det(Du(xo) +El) =I- 0, apply steps 1-2 to ii:= u+c-x, and send f--+ 0. D 

THEOREM 2 (Determinants as null Lagrangians). The determinant func
tion 

L(P) = detP (PE Mnxn) 

is a null Lagrangian. 

Proof. We must show that for any smooth function u : U --+ Rn, 

n 

L(Lp~(Du))x.=0 (k=l, ... ,n). 
i=l i 

According to (23) we have L~ = (cof P)~ (i, k = 1, ... , n). But then em
ploying the notation and conclusion of the lemma, we see 

n n 

L ( Lp~(Du)) . = L(cof Du)f.xi = 0 (k = 1, ... ,n). D 
. 1 Xi . 1 
i= i= 

Some other interesting null Lagrangians are introduced in the exercises. 

c. Application. A nice application is a quick analytic proof of a topological 
fixed point theorem. 

THEOREM 3 (Brouwer's Fixed Point Theorem). Assume 

u: B(O, 1)--+ B(O, 1) 

is continuous, where B(O, 1) denotes the closed unit ball in Rn. Then u has 
a fixed point; that is, there exists a point x E B(O, 1) with 

u(x) = x. 



464 8. CALCULUS OF VARIATIONS 

Proof. 1. Write B = B(O, 1). We first of all claim that there does not exist 
a smooth function 

(25) w: B---+ {)B 

such that 

(26) w(x) = x for all x E 8B. 

2. Suppose to the contrary that such a function w exists. Let us tem
porarily write w for the identity function, so that w(x) = x for all x E B. 
In view of (26), w _ w on 8B. Since the determinant is a null Lagrangian, 
Theorem 1 implies 

(27) L detDwdx = L detDWdx = IBI f- 0. 

On the other hand, (25) implies lwl2 _ 1; and so differentiating, we find 

(28) (Dw)Tw = 0. 

Since lwl = 1, (28) says 0 is an eigenvalue of DwT for each x E B. 
Therefore det Dw = 0 in B. This contradicts (27) and thereby proves no 
smooth function w satisfying (25), (26) can exist. 

3. Next we show there does not exist any continuous function w verifying 
(25), (26). Indeed if w were such a function, we continuously extend w by 
setting w(x) = x if x E Rn -B. Observe that w(x) =I- 0 (x E Rn). Fix f > 0 
so small that w1 := 'f/f.*W satisfies w1(x) =I- 0 (x E Rn). Note also that since 
'f/f. is radial, we have w1(x) = x if x E Rn - B(0,2), for E > 0 sufficiently 
small. Then 

2w1 
w2 := lw1I 

would be a smooth mapping satisfying (25), (26) (with the ball B(O, 2) 
replacing B = B(O, 1)), in contradiction to step 1. 

4. Finally suppose u : B ---+ B is continuous but has no fixed point. 
Define now the mapping w : B ---+ {)B by setting w(x) to be the point 
on {)B hit by the ray emanating from u(x) and passing through x. This 
mapping is well defined since u(x) =I- x for all x E B. In addition w is 
continuous and satisfies (25), (26). 

But this in turn is a contradiction to step 2. D 

We will employ Brouwer's Fixed Point Theorem several times in Chapter 
9. 
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8.2. EXISTENCE OF MINIMIZERS 

In this section we will identify some conditions on the Lagrangian L which 
ensure that the functional/[·] does indeed have a minimizer, at least within 
an appropriate Sobolev space. 

8.2.1. Coercivity, lower semicontinuity. 

Let us start with some largely heuristic insights as to when the functional 

(1) I[w] := fu L(Dw(x), w(x), x) dx, 

defined for appropriate functions w : U ---+ JR satisfying 

(2) w = g on au, 

should have a minimizer. 

a. Coercivity. We first of all note that even a smooth function f mapping 
JR to JR and bounded below need not attain its infimum. Consider, for 
instance, f =ex or (1 + x 2)-1. These examples suggest that we in general 
will need some hypothesis controlling J[w] for "large" functions w. Certainly 
the most effective way to ensure this would be to hypothesize that J[w] 
"grows rapidly as lwl ---+ oo". 

More specifically, let us assume 

(3) l<q<oo 

is fixed. We will then suppose 

(4) 

Therefore 

(5) 

{ 
there exist constants a> 0, f3 > 0 such that 

L(p, z, x) > alplq - f3 

for all p E Rn, z E JR, x E U. 

for r := /3IUI and some constant 8 > 0. Thus J[w] ---+ oo as llDwllLq ---+ oo. 
It is customary to call (5) a coercivity condition on I[·]. 

Turning once more to our basic task of finding minimizers for the func
tional/[·], we observe from inequality (5) that it seems reasonable to define 
I[w] not only for smooth functions w, but also for functions win the Sobolev 
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space W 1•q(U) that satisfy the boundary condition (2) in the trace sense. 
After all, the wider the class of functions w for which J[w] is defined, the 
more candidates we will have for a minimizer. 

We will henceforth write 

A := { w E W 1·q (U) I w = g on au in the trace sense} 

to denote this class of admissible functions w. Note in view of ( 4) that I [ w] 
is defined (but may equal +oo) for each w E A. 

b. Lower semicontinuity. Next, let us observe that although a continu
ous function f : JR ~ JR satisfying a coercivity condition does indeed attain 
its infimum, our integral functional /[ ·] in general will not. To understand 
the problem, set 

(6) m := inf J[w] 
wEA 

and choose functions Uk EA (k = 1, ... ) so that 

(7) I[uk] ~ m as k ~ oo. 

We call { uk}~1 a minimizing sequence. 

We would now like to show that some subsequence of {Uk} ~1 converges 
to an actual minimizer. For this, however, we need some kind of compact
ness, and this is definitely a problem since the space W 1•q(U) is infinite 
dimensional. Indeed, if we utilize the coercivity inequality (5), it turns out 
(cf. §8.2.2) that we can only conclude that the minimizing sequence lies in a 
bounded subset of W 1•q(U). But this does not imply that there exists any 
subsequence which converges in W 1·q(U). 

We therefore turn our attention to the weak topology (cf. §D .4). Since 
we are assuming 1 < q < oo, so that Lq(U) is reflexive, we conclude that 
there exists a subsequence {uki}~1 c {uk}~1 and a function u E W 1·q(U) 
so that 

(8) { 
Uki ~ u weakly in Lq(U) 
Duki ~Du weakly in Lq(U; Rn). 

We will hereafter abbreviate (8) by saying 

(9) Ukj ~ u weakly in W 1·q(U). 

Furthermore, it will be true that u = g on au in the trace sense, and so 
u EA. 
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Consequently by shifting to the weak topology we have recovered enough 
compactness from the coercivity inequality (5) to deduce (9) for an appro
priate subsequence. But now another difficulty arises, for in essentially all 
cases of interest the functional I[·] is not continuous with respect to weak 
convergence. In other words, we cannot deduce from (7) and (9) that 

(10) I[u] = _lim I[uk.], 
J--+OO J 

and thus u is a minimizer. The problem is that Duk; ~ Du does not imply 
Duk. ---+ Du a.e.: it is quite possible for instance that the gradients Duk., 

J J 

although bounded in Lq, are oscillating more and more wildly as kj ---+ oo. 

What saves us is the final, key observation that we do not really need 
the full strength of (10). It would suffice instead to know only 

(11) I[u] < li~inf I[uk.]· 
J--+00 J 

Then from (7) we could deduce /[u] < m. But owing to (6), m < I[u]. 
Consequently u is indeed a minimizer. 

DEFINITION. We say that a function I[·] is (sequentially) weakly lower 
semicontinuous on W 1·q(U), provided 

I[u] < lim inf I[uk] 
k--+oo 

whenever 
Uk~ u weakly in W 1•q(U). 

Our goal therefore is now to identify reasonable conditions on the non
linear term L that ensure/[·] is weakly lower semicontinuous. 

8.2.2. Convexity. 

We next look back to our second variation analysis in §8.1.3 and recall 
we derived there the inequality 

n 

L LPiP;(Du(x),u(x),x)eiei > o (e E IRn,x EU) 
i,j=l 

holding as a necessary condition, whenever u is a smooth minimizer. This 
inequality strongly suggests that it is reasonable to assume that L is convex 
in its first argument. 
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THEOREM 1 (Weak lower semicontinuity). Assume that L is smooth, 
bounded below and in addition 

the mapping p 1-+ L(p, z, x) is convex, 

for each z E JR, x EU. Then 

I[·] is weakly lower semicontinuous on W 1•q(U). 

Proof. 1. Choose any sequence { uk}~1 with 

(12) Uk~ u weakly in W 1·q(U), 

and set l := liminfk-+oo I[uk]· We must show 

(13) I[u] < l. 

2. Note first from (12) and §D.4 that 

(14) 

Upon passing to a subsequence if necessary, we may as well also suppose 

(15) l = lim I[uk]· 
k-+oo 

Furthermore we see from the compactness theorem in §5. 7 that uk --+ u 
strongly in Lq(U); and thus, passing if necessary to yet another subsequence, 
we have 

(16) uk --+ u a.e. in U. 

3. Fix t > 0. Then (16) and Egoroff's Theorem (§E.2) assert 

(17) Uk--+ u uniformly on Ef, 

where Ef is a measurable set with 

(18) 

We may assume Ef C Ef' for 0 < t' < t. Now write 

(19) F, := { x EU I lu(x)I + IDu(x)I < ~}. 
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Then 

(20) I U - FE I ---+ 0 as f ---+ 0. 

We finally set 

(21) 

and notice from (18), (20) that IU - GEi ---+ 0 as f---+ 0. 

4. Now let us observe that since L is bounded below, we may as well 
assume 

(22) 

(for otherwise we could apply the following arguments to L = L + f3 > 0 for 
some appropriate constant (3). Consequently 

(23) 

I[uk] = { L(Duk, Uk, x) dx > { L(Duk, Uk, x) dx lu JGE 

> f L(Du, uk, x) dx + f DpL(Du, Uk, x) ·(Duk - Du) dx, 
}GE }GE 

the last inequality following from the convexity of L in its first argument; 
see §B.l. Now in view of (17), (19) and (21) 

(24) lim f L(Du, uk, x) dx = f L(Du, u, x) dx. 
k-+oo J GE j GE 

In addition, since DpL(Du, uk, x) ---+ DpL(Du, u, x) uniformly on GE and 
Duk~ Du weakly in Lq(U; Rn), we have 

(25) lim { DpL(Du, Uk, x) ·(Duk - Du) dx = 0. 
k-+oo }GE 

Owing now to ( 24), ( 25), we deduce from ( 23) that 

l = lim I[uk] > f L(Du, u, x) dx. 
k-+oo }GE 

This inequality holds for each f > 0. We now let f tend to zero and recall 
(22) and the Monotone Convergence Theorem (§E.3) to conclude 

I> fu L(Du, u, x) dx = I[u], 

as required. D 
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Remark. It is very important to understand how the foregoing proof deals 
with the weak convergence Duk ~ Du. The key is the convexity inequality 
(23), on the right-hand side of which Duk appears linearly. Weak conver
gence is, by its very definition, compatible with linear expressions; and so 
the limit (25) holds. Remember that it is not in general true that Duk---+ Du 
a.e., even if we pass to a subsequence. 

The convergence of Uk to u in Lq is much stronger, and so we do not 
need any convexity assumption concerning z 1--+ L(p, z, x). 

We can at last establish that I[·] has a minimizer among the functions 
in A. 

THEOREM 2 (Existence of minimizer). Assume that L satisfies the co
ercivity inequality (4) and is convex in the variable p. Suppose also the 
admissible set A is nonempty. 

Then there exists at least one function u E A solving 

I[u] =min I[w] . 
wEA 

Proof. 1. Set m := infwEA I[w]. If m = +oo, we are done, and so we 
henceforth assume m is finite. Select a minimizing sequence { uk}k::1. Then 

(26) 

2. We may as well take {3 = 0 in inequality ( 4), since we could otherwise 
just as well consider L := L + {3. Thus L > alplq, and so 

(27) J[w] > a L IDwlq dx. 

Since mis finite, we conclude from (26) and (27) that 

(28) 

3. Now fix any function w EA. Since Uk and w both equal g on au in 
the trace sense, we have Uk - w E wJ,q(U). Therefore Poincare's inequality 
implies 

lluk llLq(U) < lluk - wllLq(U) + llwllLq(U) 

< CllDuk - DwllLq(U) + C < C, 
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by (28). Hence supk llukllLq(U) < oo. This estimate and (28) imply { uk}k::1 
is bounded in W 1·q(U). 

4. Consequently there exist a subsequence {Uk; }~1 C { uk}k::1 and a 
function u E W 1•q(U) such that 

Uk; ~ u weakly in W 1·q(U). 

We assert next that u EA. To see this, note that for w EA as above, 
Uk-WE w~·q(U). Now w~·q(U) is a closed, linear subspace of W 1·q(U) and 
so, by Mazur's Theorem (§D.4), is weakly closed. Hence u - w E W~,q (U). 
Consequently the trace of u on 8U is g. 

In view of Theorem 1 then, I[u] < liminfj--+oo I[uk;] = m. But since 
u E A, it follows that 

I[u] = m =min I[w]. 
wEA 

D 

We turn next to the problem of uniqueness. In general there can be many 
minimizers, and so to ensure uniqueness we require further assumptions. 
Suppose for instance 

(29) L = L(p, x) does not depend on z 

and 

(30) { 
there exists () > 0 such that 

L~j=l LPiPj (p, x)eiej > 01e1 2 (p, e E Rn; x E U). 

Condition (30) says the mapping p 1-4 L(p, x) is uniformly convex for each 
x. 

THEOREM 3 (Uniqueness of minimizer). Suppose (29), (30) hold. Then 
a minimizer u E A of I[·] is unique. 

Proof. 1. Assume u, u E A are both minimizers of I[·] over A. Then 
v := u!ii EA. We claim 

(31) I[v] < I[u] ~ I[ii]' 

with a strict inequality, unless u = u a.e. 

2. To see this, note from the uniform convexity assumption that we have 

() 
(32) L(p, x) > L(q, x) + DpL(q, x) · (p- q) + 2IP- ql 2 (x EU, p, q E Rn). 
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Set q = Du1Du, p =Du, and integrate over U: 

(33) 
I[v] + fu DpL( Du~ DU,x). (Du; DU) dx 

+ ~ fu IDu - DUl2 dx < I[u]. 

Similarly, set q = Du1Du, p =Du in (32) and integrate: 

(34) 
I[v] + fu DpL (Du ~ DU, x) . (DU ; Du) dx 

+ ~ fu IDu - DUl2 dx < I[U]. 

Add and divide by 2, to deduce 

I[v] + ~ fu IDu - DUl 2 dx < I[u] ~ I[U]. 

This proves ( 31). 

3. As I[u] = I[u] = minwEA I[w] < I[v], we deduce Du= Du a.e. in U. 
Since u = u = g on au in the trace sense, it follows that u = u a.e. D 

8.2.3. Weak solutions of Euler-Lagrange equation. 

We wish next to demonstrate that any minimizer u E A of I[·] solves the 
Euler-Lagrange equation in some suitable sense. This does not follow from 
the calculations in §8.l since we do not know u is smooth, only u E W 1•q(U). 
And in fact we will need some growth conditions on L and its derivatives. 
Let us hereafter suppose 

(35) 

and also 

(36) 

IL(p, z,x)I < C(IPlq + lzlq + 1) 

{ IDpL(p, z, x) I < C(IPlq-l + lzlq-l + 1) 

IDzL(p, z, x) I < C(IPlq-l + lzlq-l + 1) 

for some constant C and all p E IRn, z E IR, x E U. 

Motivation for definition of weak solution. We now turn our attention 
to the boundary-value problem for the Euler-Lagrange PDE associated with 
our functional L, which for a smooth minimizer u reads 

(37) { - L:~1 (Lpi (Du, u, x) )xi + Lz(Du, u, x) = 0 
u=g 

in U 
on au. 
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If we multiply (37) by a test function v E C~(U) and integrate by parts, 
we arrive at the equality 

n 

(38) 1 L Lp; (Du, u, x)vx, + L,(Du, u, x)v dx = 0. 
u i=l 

Of course this is the identity we first obtained in our derivation of (37) in 
§8.1.2. 

Now assume u E W 1•q(U). Then using (36) we see 

IDpL(Du, u, x)I < C(IDulq-l + lulq-l + 1) E Lq' (U), 

where q' = _!L_ ! + .1 = 1. Similarly q-1' q q' 

(39) IDzL(Du, u, x)I < C(IDulq-l + lulq-l + 1) E Lq' (U). 

Consequently we see using a standard approximation argument that the 
equality (38) is valid for any v E WJ•q(U). This motivates the following 

DEFINITION. We say u E A is a weak solution of the boundary-value 
problem (37) for the Euler-Lagrange equation provided 

n 1 LLp;(Du,u,x)vx, + L,(Du,u,x)vdx = 0 
u i=l 

for all v E WJ•q(U). 

THEOREM 4 (Solution of Euler-Lagrange equation). Assume L verifies 
the growth conditions (35), (36) and u EA satisfies 

I[u] =min I[w]. 
wEA 

Then u is a weak solution of (37). 

Proof. We proceed as in §8.1.2, taking care about differentiating inside the 
integrals. Fix any v E WJ•q(U) and set 

i(T) := I[u + Tv] (TE IR). 

In view of (35) we see that i(T) is finite for all T. 

Let T =I- 0 and write the difference quotient 

i(T) - i(O) = { L(Du + TDv, u +TV, x) - L(Du, u, x) dx 
T lu T 

= fu L"'(x) dx, 
(40) 
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where 

1 
Lr(x) := -[L(Du(x) + TDv(x), u(x) + Tv(x), x) - L(Du(x), u(x), x)] 

T 

for a.e. x E U. Clearly 

n 

(41) Lr(x) ---+ E LPi (Du, u, x)vxi + Lz(Du, u, x)v a.e. 
i=l 

as T---+ 0. Furthermore 

11T d Lr(x) = - -d L(Du + sDv, u + sv, x) ds 
T 0 S 

1 {T n 
= 7 Jn LLPi(Du+sDv,u+sv,x)vxi 

0 i=l 

+ Lz(Du + sDv, u + sv, x)v ds. 

I 

Next recall from §B.2 Young's inequality: ab < aqq + b;, , where * + :, = 1. 

Then since u, v E W 1•q(U), inequalities (36) and Young's inequality imply 
after some elementary calculations that 

for each T =I- 0. Consequently we may invoke the Dominated Convergence 
Theorem to conclude from (40), (41) that i'(O) exists and equals 

n 1 E Lp, (Du, u, x)v,,, + Lz(Du, u, x)v dx. 
u i=l 

But then since i(·) has a minimum for T = 0, we know i'(O) = O; and thus u 
is a weak solution. D 

Remark. In general, the Euler-Lagrange equation (37) will have other so
lutions which do not correspond to minima of I[·]; see §8.2.5 and §8.5. 
However, in the special case that the joint mapping (p, z) 1-4 L(p, z, x) is 
convex for each x, then each weak solution is in fact a minimizer. 

To see this, suppose u EA solves 

(42) { - L::=1(Lpi(Du,u,x))xi + Lz(Du,u,x) = 0 
u=g 

in U 
onfJU 
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in the weak sense and select any w E A. Utilizing the convexity of the 
mapping (p, z) 1-+ L(p, z, x), we have 

L(p, z, x) + DpL(p, z, x) · (q - p) + DzL(p, z, x) · (w - z) < L(q, w, x). 

Let p = Du(x), q = Dw(x), z = u(x), w = w(x) and integrate over U: 

I[u] + fu DpL(Du, u,x) · (Dw - Du)+ D.L(Du, u, x)(w - u) dx < I[w]. 

In view of (42) the second term on the left is zero, and therefore J[u] < I[w] 
for each w E A. 

8.2.4. Systems. 

a. Convexity. We now adopt again the notation for systems set forth in 
§8.1.4 and consider the existence question for minimizers of the functional 

I[w] := fu L(Dw(x), w(x),x) dx, 

defined for appropriate functions w : U ---+ IRm, where now L : Mmxn x IRm x 
U ---+ IR is given. 

It turns out the theory developed in §8.2.2 extends with no difficulty to 
the case at hand. Let us therefore assume the coercivity inequality 

(43) L(P, z, x) > alPlq - (3 (PE Mmxn, z E IRm, x EU) 

for constants a > 0, f3 > 0 and set also 

A:= {w E W 1·q(U;1Rm) I w = g on au in the trace sense}, 

where g : au ---+ JRffi is given. 

THEOREM 5 (Existence of minimizer). Assume that L satisfies the co
ercivity inequality (43) and is convex in the variable P. Suppose also the 
admissible set A is nonempty. 

Then there exists u E A solving 

J[u] = min J[w]. 
wEA 

The proof follows almost exactly the proofs of Theorems 1 and 2 in 
§8.2.2. Similarly to Theorem 3 above we have 
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THEOREM 6 (Uniqueness of minimizer). Assume L does not depend on 
z and the mapping P 1--+ L(P, x) is uniformly convex. Then a minimizer 
u E A of I[·] is unique. 

Now suppose additionally 

(44) { 
IL(P, z, x)I < C(IPlq + lzlq + 1) 
IDpL(P, z, x)I < C(IPlq-l + lzlq-l + 1) 

IDzL(P, z, x)I < C(IPlq-l + lzlq-l + 1) 

for some constant C and all PE Mmxn, z E }Rm, x E U. 

We consider now the system of Euler-Lagrange equations 

(45) {
- L:~=l (LP~ (Du, u, x))xi + Lzk (Du, u, x) = 0 

Uk =gk 

in U 

on au 
for k = 1, ... , m and define u E A to be a weak solution provided 

m n 

I:; 1 I:;Lp~(Du, u,x)w!, + L •• (Du, u,x)wk dx = O 
k=l u i=l 

for all w E W~'q(U;IRm), w = (w1, ... ,wm). 

THEOREM 7 (Solution of Euler-Lagrange system). Assume L verifies 
the growth conditions ( 44) and u E A satisfies 

J[u] = min J[w]. 
wEA 

Then u is a weak solution of (45). 

The proof is almost precisely like that of Theorem 4. 

b. Polyconvexity. It is rather surprising that there are some mathemat
ically and physically interesting systems that are not covered by Theorem 
5 above but can still be studied using the calculus of variations. These in
clude certain problems where the Lagrangian L is not convex in P, but J[ ·] 
is nonetheless weakly lower semicontinuous. 

LEMMA (Weak continuity of determinants). Assume n < q < oo and 

Uk~ u weakly in W 1·q(U;IRn). 

Then 
det Duk~ det Du weakly in Lqfn(U). 
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Proof. 1. First we recall the matrix identity ( det P) I = P ( cof P) T; conse
quently 

n 

det P = L p) ( cof P)) ( i = 1, ... , n). 
j=l 

2. Now let w E C00 (U;Rn), w = (w1, ... ,wn). Then 

(46) 
n 

det Dw = L w~; (cof Dw); (i = 1, ... , n). 
j=l 

But the lemma in §8.1.4 asserts LJ=l ( cof Dw )),x; = 0. Thus formula ( 46) 
says 

n 

detDw = L(wi(cof Dw)))x;
j=l 

Consequently the determinant of the gradient matrix can be written as a 
divergence. Therefore if v E C~ ( U), we have 

n 

{47) l v detDwdx = - L l Vx;wi(cof Dw)} dx (i = 1, ... , n). 
u j=l u 

3. We have established the identity (47) for a smooth function w, and 
so a standard approximation argument yields 

fork= 1, 2, .... Now since n < q < 00 and Uk --l. u in W 1·q(U; Rn), we know 
from Morrey's inequality that {uk}~1 is bounded in co,i-n/q(U;Rn). Thus 
using the Arzela-Ascoli compactness criterion, §C.7, we deduce Uk ---+ u 
uniformly in U. Returning then to identity (48), we see that we could 
conclude 

n 

(49) lim l v detDuk dx = - L r Vx;Ui(cof Du); dx = r vdetDudx, 
k-+oo u j=l Ju Ju 

i/we knew 

(50) lim { 1/J(cof Duk); dx = { 1/;(cof Du); dx k-+ooJu lu 
for i, j = 1, ... , n and each 1/J E C~ ( U). However ( cof Duk)~ is the determi
nant of an ( n - 1) x ( n - 1) matrix, which can be analyzed as above by being 
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written as a sum of determinants of appropriate (n - 2) x (n - 2) submatri
ces, times uniformly convergent factors. We continue and eventually must 
show only the obvious fact that the entries of the matrices Duk converge 
weakly to the corresponding entries of Du. In this way we verify ( 50) and 
thus (49). 

4. Finally, since { Uk}~l is bounded in W 1·q(U; IRn) and I det Duk I < 
CIDukln, we see that {detDuk}~1 is bounded in Lqfn(U). Hence any sub
sequence has a weakly convergent subsequence in Lqfn(U), which--owing to 
( 49 )-can only converge to det Du. D 

We next utilize this lemma to establish a weak lower semicontinuity 
assertion analogous to Theorem 1, except that we will not assume that the 
Lagrangian L is necessarily convex in P. Instead let us suppose that m = n 
and L has the form 

(51) L(P,z,x) = F(P,detP,z,x) (PE Mnxn,z E IRn,x EU) 

where F: Mnxn x IR x IRn x U---+ IR is smooth. We additionally hypothesize 
that 

(52) { 
for each fixed z E IRm, x E IRn, the joint mapping 

(P, r) 1-+ F(P, r, z, x) is convex. 

A Lagrangian L of the form (51) is called polyconvex provided (52) holds. 

THEOREM 8 (Lower semicontinuity of polyconvex functionals). Suppose 
n < q < oo. Assume also L is bounded below and is polyconvex. Then 

I[·] is weakly lower semicontinuous on W 1•q(U; IRn). 

Proof. Choose any sequence {Uk} ~1 with 

(53) 

According to the lemma, 

(54) det Duk ~ det Du weakly in Lqfn(U). 
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We can now argue almost exactly as in the proof of Theorem 1. Indeed, 
using the notation from that proof, we have 

I[uk] = j L(Duk, Uk, x) dx > f L(Duk, uk, x) dx 
U laE 

= f F(Duk, det Duk, Uk, x) dx 
laE 

> f F(Du, detDu, uk, x) dx 
laE 

+ f Fp(Du, det Du, Uk, x) · (Duk - Du) 
laE 

+ Fr(Du,detDu, Uk, x)(detDuk - det Du) dx, 

in view of (52). Reasoning as in the proof of Theorem 1, we deduce from 
(53), (54) that the limit of the last term is zero ask---+ oo. D 

As before, we immediately deduce 

THEOREM 9 (Existence of minimizers, polyconvex functionals). Assume 
that n < q < oo and that L satisfies the coercivity inequality ( 43) and is 
polyconvex. Suppose also the admissible set A is nonempty. 

Then there exists u E A solving 

J[u] =min J[w]. 
wEA 

Example: elasticity. Much of the interest in polyconvexity comes from 
nonlinear elasticity theory, where n = 3. We consider an elastic body, which 
initially has the reference configuration U. We then displace each point 
x E 8U to a new position g( x) and wish to determine the new displacement 
u( x) of each internal point x E U. 

If the material is hyperelastic, there exists by definition an associated en
ergy density L such that the physical displacement u minimizes the internal 
energy functional 

J[w] := fu L(Dw, x) dx 

over all admissible displacements w E A. Now it seems reasonable physi
cally that L, which represents the internal energy density from stretching 
and compression, may explicitly depend on the local change in volume, that 
is, on det Dw. In other words, it is physically appropriate to suppose that 
L has the form L(P,x) = F(P,detP,x). Then F describes in its first ar
gument changes in internal energy due to changes in line elements, and in 
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its second argument changes in internal energy due to changes in volume 
elements. See Ball (Arch. Rational Mech. Analysis 63 (1977), 337-403) for 
more explanation. 

8.2.5. Local minimizers. 

We pose in this subsection a basic question: under what circumstances 
is a critical point of an energy functional I[·] in fact a minimizer or a local 
minimizer'? To be specific, let us assume that u is a smooth solution of the 
Euler-Lagrange PDE 

{ - E~=l (LPi (Du, u, x) )xi + Lz(Du, u, x) = 0 in U 
( 55) u = g on au 
and is therefore a critical point of the functional 

I[w] = fu L(Dw, w, x) dx 

among functions w satisfying the boundary condition w = g on au. We as 
usual assume 

p ~ L(p, z, x) is convex. 

We will show that if the graph of x ~ u(x) lies within a region R 
generated by a one-parameter family of graphs x ~ u(x, A) corresponding 
to other critical points, then in fact u is a minimizer of I[·] as compared 
with admissible variations w taking values within R. More precisely, suppose 
that I C JR is an open interval containing 0 and { u ( ·, A) I A E I} is a smooth 
one-parameter family of solutions of the Euler-Lagrange PDE 

n 

(56) - L(LPi (Du(x, A), u(x, A), x))xi + Lz(Du(x, A), u(x, A), x) = 0 
i=l 

within U, such that 

(57) u(x) = u(x, 0) (x E U). 

We as follows construct an admissible function w taking values in the 
region R, the union of the graphs of the functions u(·, A) for A E /. Take 
0 : U ---+ I to be a smooth function satisfying 

(58) 0 = 0 on au. 
Define then 

(59) w(x) := u(x, O(x)), 

and note that w = u = g on au. 
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THEOREM 10 (Local minimizers). The function u is a local minimizer 
within the region R, in the sense that 

(60) I[u] < I[w] 

for any function w constructed as above. 

Thus if u is a solution of the Euler-Lagrange PDE and is embedded 
within a family of other solutions, then u is a minimizer of I[·] among 
functions w having the form (59). If say U,\ > 0 for ,\ small, we can write 
any w that is sufficiently close to u pointwise in this form. Notice that Dw 
need not be close to Du. 

Proof. 1. We first observe that 

Hence the convexity of Lin its first argument implies 

I[w] = fu L(Dw,w,x)dx 

(61) = fu L(Du+u11DO,w,x)dx 

> fu L(Du, w, x) + u11DpL(Du, w,x) · DOdx, 

where u is evaluated at (x, O(x)) and D = Dx. 

2. We now introduce the vector field b = (b1 , ... , bn), defined by 

{O(x) 
(62) bi :=Jo u,\(x, .\)LPi (Du(x, .\), u(x, .\), x) d.\ (i = 1, ... , n). 

Then 
n 

div b = :E Bxiu,\(x, O(x))LPi (Du(x, O(x)), u(x, O(x)), x) 
i=l 

n {O(x) 

+ :E Jn U,\xi (x, .\)LPi (Du(x, .\), u(x, .\), x) 
i=l 0 

+ U,\(x, .\)(LPi (Du(x, .\), u(x, .\), x))xid,\ 

= U,\(x, O)DpL(Du(x, O(x)), w(x), x) ·DO 
{O(x) n 

+Jn :E U,\xi (x, .\)LPi (Du(x, .\), u(x, .\), x) 
0 i=l 

+ U,\(x, .\)Lz(Du(x, .\), u(x, .\), x) d,\. 
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We invoked the Euler-Lagrange equations (56) for the last equality in this 
calculation. 0 bserve next that 

n 

(L(Du(x, A), u(x, A), x)),x = L LPi (Du, u, x)uxi.X + Lz(Du, u, x)u,x. 
i=l 

Hence the foregoing calculation implies 

{O(x) 
div b = u,x(x, B)DpL(Du, w, x) ·DB+ lo L(Du, u, x),x dA 

= u,x(x, B)DpL(Du, w, x) ·DB 

+ L(Du(x, B(x)), w, x) - L(Du, u, x), 

in view of (57). 

3. We employ this computation in (61), to deduce using the Gauss
Green Theorem that 

J[w] > fu L(Du,u,x)+divbdx 

= I[u] + { b · v dB lau 
= I[u], 

since B = 0 on au and consequently b = 0 on au. We have proved (60). D 

This calculation provides a glimpse into the deep classical theories as to 
when critical points are minimizers or local minimizers: see Morrey [Mo] 
and Giaquinta-Hildebrandt [G-H] for more. 

8.3. REGULARITY 

We discuss in this section the smoothness of minimizers to our energy func
tionals. This is generally a quite difficult topic, and so we will make a 
number of strong simplifying assumptions. Thus we henceforth suppose our 
functional I [ · ] to have the form 

(1) J[w] := fu L(Dw) - wf dx, 

for f E £ 2 ( U). We will also take q = 2 and suppose as well the growth 
condition 

(2) 
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Then any minimizer u EA is a weak solution of the Euler-Lagrange PDE 

n 

(3) - L(Lpi(Du))xi = f in U· , 
i=l 

that is, 

(4) 
n l LLp,(Du)vx,dx= l fvdx 

u i=l u 

for all v E HJ(U). 

8.3.1. Second derivative estimates. 

We now intend to show that if u E H 1(U) is a weak solution of the 
nonlinear PDE (3), then in fact u E H~c(U). But to establish this we will 
need to strengthen our growth conditions on L. Let us first of all suppose 

(5) 

In addition let us assume that L is uniformly convex, and so there exists 
a constant (} > 0 such that 

n 

(6) L LPiPj(P)eiej > 01e1 2 (p,e E Rn). 
i,j=l 

Clearly this is some sort of nonlinear analogue of our uniform ellipticity 
condition for linear PDE in Chapter 6. The idea will therefore be to try to 
utilize, or at least mimic, some of the calculations from that chapter. 

THEOREM 1 (Second derivatives for minimizers). 

(i) Let u E H 1(U) be a weak solution of the nonlinear partial differential 
equation (3), where L satisfies (5), (6). Then 

u E H1~c(U). 

(ii) If in addition u E HJ(U) and 8U is C2, then 

u E H 2(U), 

with the estimate 
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Proof. 1. We will largely follow the proof of Theorem 1 in §6.3.1, the 
corresponding assertion of local H 2 regularity for solutions of linear second
order elliptic PDE. 

Fix any open set V CC U and choose then an open set W so that 
V cc W cc U. Select a smooth cutoff function ( satisfying 

Let lhl > 0 be small, choose k E {1, ... , n }, and substitute 

into ( 4). We are employing here the notation from §5.8.2: 

Dh ( ) _ u(x + hek) - u(x) 
ku x -

h 
(x E W). 

Using the identity f u uD/;hv dx = - f u vD~u dx, we deduce 

Now 
(8) 

for 

n 

= L aij,h(x)D~ux; (x), 
j=l 

(9) aii,h(x) := fo 1 LPiP; (sDu(x+hek) + (1-s)Du(x)) ds (i,j = 1, ... , n). 
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We substitute (8) into (7) and perform simple calculations, to arrive at 
the identity: 

(10) 
n +'El aij,hD~ux;D~u2((x, dx 

i,j=l u 

= - fu!Dkh((2D~u)dx =: B. 

Now the uniform convexity condition (6) implies 

(11) 

Furthermore we see from ( 5) that 

(12) 
IA2I < G L (ID~DullD~ul dx 

< f { (2 ID~Dul2 dx + C { ID~ul2 dx. lw E lw 
Furthermore, as in the proof of Theorem 1 in §6.3.1, we have 

We select E = £ , to deduce from the foregoing bounds on A1 , A2 , B the 
estimate 

the last inequality valid according to Theorem 3(i) in §5.8.2. 

2. Since ( = 1 on V, we find 

for k = 1, ... , n and all sufficiently small lhl > 0. Consequently Theorem 3 
(ii) in §5.8.2 implies Du E H 1(V), and so u E H 2(V). This is true for each 
V cc U; thus u E H~c(U). 
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3. If u E HJ (U) is a weak solution of (3) and {)U is C2 , we can then 
mimic the proof of the boundary regularity Theorem 4 in §6.3.2 to prove 
u E H 2 (U), with estimate 

details are left to the reader. Now from (6) follows the inequality 

(DL(p) - DL(O)) · p > Olpl2 (p E Rn). 

If we then put v = u in ( 4), we can employ this estimate to derive the bound 

and so finish the proof. D 

8.3.2. Remarks on higher regularity. 

We would next like to show that if L is infinitely differentiable, then so is 
u. By analogy with the regularity theory developed for second-order linear 
elliptic PDE in §6.3, it may seem natural to try to extend the H~c estimate 
from the previous section to obtain further estimates in the higher Sobolev 
spaces H~c(U) for k = 3, 4, .... 

This method will not work for the nonlinear partial differential equa
tion (3) however. The reason is this. For linear equations we could, roughly 
speaking, differentiate the equation many times and still obtain a linear PDE 
of the same general form as that we began with. See for instance the proof 
of Theorem 2 in §6.3.1. But if we differentiate a nonlinear differential equa
tion many times, the resulting increasingly complicated expressions quickly 
become impossible to handle. Much deeper ideas are called for, the full de
velopment of which is beyond the scope of this book. We will nevertheless 
at least outline the basic plan. 

To start with, choose a test function w E Cgo(U), select k E {1, ... , n }, 
and set v = -wxk in the identity (4), where for simplicity we now take 
f = 0. Since we now know u E H~c(U), we can integrate by parts to find 

(13) 

Next write 

(14) 
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and 

(15) aij := LPiPi(Du) (i,j = 1, ... ,n). 

Fix also any V CCU. Then after an approximation we find from (13)-(15) 
that 

(16) 

for all w E HJ (V). This is to say that u E H 1 (V) is a weak solution of the 
linear, second-order elliptic PDE 

n 

(17) - "'""'"' (a ij Ux . ) = 0 in V. ~ 1 Xi 

i,j=l 

But we cannot just apply our regularity theory from §6.3 to conclude 
from (17) that u is smooth, the reason being that we can deduce from (5) 
and (15) only that 

aij E L 00 (V) (i,j = 1, ... , n). 

However a deep theorem, due independently to DeGiorgi and to Nash, as
serts that any weak solution of (17) must in fact be locally Holder continuous 
for some exponent 1 > 0. (See Gilbarg-Trudinger [G-T, Chapter 8].) Thus 
if W cc V, we have u E C0·"(W), and so 

u E C1~J(U). 

Return to the definition (15). If Lis smooth, we now know aij E C~J (U) 
(i, j = 1, ... , n). Then (3) and an older theorem of Schauder [G-T, Chapters 
4 and 6] assert that in fact 

u E C!J(U). 

But then aij E C1~J (U), and so another version of Schauder's estimate im
plies 

u E C~J(U). 

We can continue this so-called "bootstrap" argument, eventually to deduce 
u is C~~ (U) for k = 1, ... , and sou E C00 (U). 

See Giaquinta [Gi] for much more about regularity theory in the calculus 
of variations. 
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8.4. CONSTRAINTS 

In this section we consider applications of the calculus of variations to cer
tain constrained minimization problems and in particular discuss the role of 
Lagrange multipliers in the corresponding Euler-Lagrange PDE. 

8.4.1. Nonlinear eigenvalue problems. 

We investigate first problems with integral constraints. To be specific, 
let us look at the problem of minimizing the energy functional 

(1) J[w] := ! fu 1Dwl2 dx 

over all functions w with, say, w = 0 on au but subject now also to the side 
condition that 

(2) J[w] := fu G(w) dx = 0, 

where G : JR --+ JR is a given, smooth function. 

We will henceforth write g = G'. Assume now 

(3) lg(z)I < C(lzl + 1), 

and so 

(4) IG(z)I < C(lzl2 + 1) (z E JR) 

for some constant C. 

Let us introduce as well the appropriate admissible class 

A:= {w E HJ(U) I J[w] = O}. 

We suppose also that the open set U is bounded, connected and has a smooth 
boundary. 

THEOREM 1 (Existence of constrained minimizer). Assume the admis
sible set A is nonempty. Then there exists u E A satisfying 

I[u] =min J[w]. 
wEA 
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Proof. Choose, as usual, a minimizing sequence { uk}~1 c A with 

I[uk] --+ m = inf I[w]. 
wEA 

Then as above we can extract a subsequence 

(5) Uki __.l. u weakly in HJ(U), 

with J[u] < m. We will be done once we show 

(6) J[u] = 0, 

489 

so that u EA. Utilizing the compactness theory from §5.7, we deduce from 
(5) that 

(7) Uki --+ u in L2 (U). 

Consequently 

(8) 

IJ(u)I = IJ(u) - J(uk)I < fu 1G(u) - G(uk)I dx 

< C fu iu - uki(l + iul + iukl) dx by (3) 

--+ 0 as k --+ oo. D 

Far more interesting than the mere existence of constrained minimizers 
is an examination of the corresponding Euler-Lagrange equation. 

THEOREM 2 (Lagrange multiplier). Let u EA satisfy 

(9) I[u] = min I[w]. 
wEA 

Then there exists a real number A such that 

(10) l Du· Dvdx =A lg(u)vdx 

for all v E HJ(U). 

Remark. Thus u is a weak solution of the nonlinear boundary-value prob
lem 

(11) { -~u = .Xg(u) in U 
u = 0 on au, 

where .X is the Lagrange multiplier corresponding to the integral constraint 

(12) J[u] = 0. 

A problem of the form (11) for the unknowns (u, .X), with u ~ 0, is a non
linear eigenvalue problem. 
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Proof. 1. Fix any function v E HJ(U). Assume first 

(13) g(u) is not equal to zero a.e. within U. 

Choose then any function w E HJ (U) with 

(14) Lg(u)wdx i- O; 

this is possible because of (13). Now write 

j(T, u) := J[u +TV+ uw] 
(15) 

= fuc(u+rv+uw)dx (r,uEIR). 

Clearly 

(16) j(O, 0) = L G(u) dx = 0. 

In addition, j is C 1 and 

(17) 

(18) 
a· f a~(T,u) = lug(u+Tv+uw)wdx. 

Consequently (14) implies 

(19) 
8j 
au (0, 0) =I- 0. 

According to the Implicit Function Theorem (§C. 7), there exists a C1 

function </> : JR ---+ JR such that 

(20) ¢(0) = 0 

and 

(21) 

for all sufficiently small T, say ITI <To. Differentiating, we discover 
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whence (17) and (18) yield 

(22) '( ) fu g(u)v dx 
</> O = - -J u_g_(_u )_w_d_x · 

2. Now set 

and write 

i(T) := I[u + w(T)]. 

Since (21) implies J[u + w(T)] = 0, we see that u + w(T) E A. So the C1 

function i( ·) has a minimum at 0. Thus 

(23) 
0 = i'(O) = L (Du+ rDv + t/>(r)Dw) · (Dv + tf>'(r)Dw) dxl-..~o 

= L Du· (Dv + tf>'(O)Dw) dx. 

Recall now (22) and define 

A ·- ---'J u"--D_u_· _D_w_d_x 
.- fug(u)wdx ' 

to deduce from (23) the desired equality 

L Du· Dvdx =A Lg(u)vdx 

for all v E HJ (U). 

3. Suppose now instead of (13) that 

g(u) = 0 a.e. in U. 

Approximating g by bounded functions, we deduce DG(u) = g(u)Du = 0 
a.e. Hence, since U is connected, G(u) is constant a.e. It follows that 
G(u) = 0 a.e., because J[u] = fu G(u) dx = 0. As u = 0 on 8U in the trace 
sense, it follows that G(O) = 0. 

But then u = 0 a.e., as otherwise I[u] > J[O] = 0. Since g(u) = 0 a.e., 
the identity (10) is trivially valid in this case, for any A. D 
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8.4.2. Unilateral constraints, variational inequalities. 

We study now calculus of variation problems with certain pointwise, 
one-sided constraints on the values of u(x) for each x E U. For definiteness 
let us consider the problem of minimizing, say, the energy functional 

(24) J[w] := L !1Dwl2 - fwdx, 

among all functions w belonging to the set 

(25) A:= {w E HJ(U) I w > h a.e. in U}, 

where h : [J ---+ JR is a given smooth function, called the obstacle. The convex 
admissible set A thus comprises those functions w E HJ (U) satisfying the 
one-sided, or unilateral, constraint that w > h. We suppose as well that f 
is a given, smooth function. 

THEOREM 3 (Existence of minimizer). Assume the admissible set A is 
nonempty. Then there exists a unique function u E A satisfying 

I[u] =min I[w]. 
wEA 

Proof. 1. The existence of a minimizer follows very easily from the general 
ideas discussed before. We need only note explicitly that if {Uk; } ,;:1 c A is 
a minimizing sequence with Uk; ~ u weakly in HJ (U), then by compactness 
we have Uki ---+ u strongly in L 2 (U). Since Uki > h a.e., it follows that u > h 
a.e. Therefore u E A. 

2. We now prove uniqueness. Assume u and u E A are two minimizers, 
with u =/:- u. Then w := u!u EA, and 

J[w] = L rn Dutn;')l2 - f (ut") dx 

= L i{IDul2 + 2Du ·DU+ IDiil2) - f ("1"} dx. 

Now 2a · b = lal 2 + lbl 2 - la - bl 2 • Thus 

J[w] = L i(21Dul2 + 2IDiil2 - IDu- Diil2) - f (ut"} dx 

< ! L !1Dul2 - fudx + ! L !IDiil2 - fUdx 

= !I[u] + !I[u], 
the strict inequality holding since u ~ u. This is a contradiction, since u 
and u are minimizers. D 

We next compute the analogue of the Euler-Lagrange equation, which 
for the case at hand turns out to be an inequality. 
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THEOREM 4 (Variational characterization of minimizer). Let u EA be 
the unique solution of 

I[u] =min I[w]. 
wEA 

Then 

(26) funu-D(w-u)dx> fut(w-u)dx /oral! wEA. 

We call (26) a variational inequality. 

Proof. 1. Fix any element w E A. Then for each 0 < r < 1, 

u + r(w - u) = (1- r)u + rw EA, 

since A is convex. Thus if we set 

we see that i(O) < i(r) for all 0 < T < 1. Hence 

(27) i'(O) > 0. 

2. Now if 0 < T < 1, 

i(r) - i(O) = .!_ [ IDu + rD(w - u)l2 -1Dul 2 _ f(u + r(w _ u) _ u) dx 
T T lu 2 

{ rlD(w - u)l2 
= Ju Du · D( w - u) + 2 - f ( w - u) dx. 

Thus (27) implies 

0 < i'(O) = fu Du· D(w - u) - f(w - u) dx. D 

Notice that we obtain the inequality (27), since we can in effect take 
only "one-sided" variations, away from the constraint. 

Interpretation of the variational inequality. To gain some insight 
into the variational inequality (26), let us quote without proof a regularity 
assertion (see Kinderlehrer-Stampacchia [K-S]), which states u E W 2•00 (U), 
provided au is smooth. Hence the set 

0 := {x EU I u(x) > h(x)} 
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free boundary 

j;tiu~f:! HH 
HHu~b: HH ...................... 
················ ······ 

-Au=f 
U>h 
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The free boundary for the obstacle problem 

is open, and 
C := {x EU I u(x) = h(x)} 

is (relatively) closed. 

We claim that in fact u E C 00 (0) and 

(28) -Llu = f in 0. 

To see this, fix any test function v E Cgo(O). Then if lrl is sufficiently small, 
w := u+rv > h, and sow EA. Thus (26) implies r J0 Du·Dv-fvdx > 0. 
This inequality is valid for all sufficiently small r, both positive and negative, 
and so in fact L Du·Dv-fvdx=O 

for all v E Cgo(O). Hence u is a weak solution of (28), whence linear 
regularity theory (§6.3) shows u E C00 (0). 

Now if v E cgo(U) satisfies v > 0 and if 0 < T < 1, then w := u+rv EA, 
whence fu Du· Dv - fvdx > 0. But since u E W2•00 (U), we can integrate 
by parts to deduce f u(-Llu - f)v dx > 0 for all nonnegative functions 
v E Cgo(U). Thus 

(29) -Llu > f a.e. in U. 

We summarize our conclusions by observing from (28), (29) that 

(30) { u > h, -Llu > f a.e. in U 
-Llu = f on U n { u > h}. 



8.4. CONSTRAINTS 495 

A harmonic map into a sphere 

Free boundaries. The set 

F := aon u 

is called the free boundary. Many interesting problems in applied mathemat
ics involve partial differential equations with free boundaries. Such of these 
problems as can be recast as variational inequalities become relatively easy 
to study, especially since there is no explicit mention of the free boundary 
in the inequalities ( 30). Applications arise in stopping time optimal con
trol problems for Brownian motion, in groundwater hydrology, in plasticity 
theory, etc. See Kinderlehrer-Stampacchia [K-S]. 

8.4.3. Harmonic maps. 

We consider next the case of pointwise constraints as exemplified by 
harmonic maps into spheres. We are interested now in the problem of min
imizing the energy 

(31) I[w] := ! L 1Dwl2 dx 

over all functions belonging to the admissible class 

(32) A:= {w E H 1(U;Rm) I w = g on au, lwl = 1 a.e.}. 

The idea is that we are trying to minimize the energy over all appropriate 
maps from Uc R" into the unit sphere sm-l = 8B(O, 1) c Rm. This prob
lem and its variants arise for instance as simplified models for the behavior 
of liquid crystals. 

It is straightforward to verify that there exists at least one minimizer in 
A, provided Ai= 0. 
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THEOREM 5 (Euler-Lagrange equation for harmonic maps). Let u EA 
satisfy 

J[u] =min J[w]. 
wEA 

Then 

(33) L Du: Dvdx = L IDul2u. vdx 

for each v E HJ(U;Rm) n L00 (U;Rm). 

We interpret (33) as saying that u = (u1, ... , um) is a weak solution of 
the boundary-value problem 

(34) { -Llu = 1Dul2u in U 
u = g on au. 

The function A = IDul 2 is the Lagrange multiplier corresponding to the 
pointwise constraint lul = 1. Note carefully that for a single, integral con
straint (§8.4.1) the Lagrange multiplier is a number, but for a pointwise 
constraint it is a function. 

Proof. 1. Fix v E HJ(U; Rm) n L00 (U; Rm). Then since lul = 1 a.e., we 
have 

lu + Tvl =/:- 0 a.e. 

for each sufficiently small T. Consequently 

(35) 
u+Tv 

v( T) := I I E A. u+Tv 

Thus 

has a minimum at T = 0, and so, as usual, 

(36) i'(O) = 0. 

2. Now 

(37) '( ) { '( ) (' -- ddT) . i 0 = Ju Du : Dv O dx 

But we compute directly from (35) that 

v'(T)- __ v_ 
- lu+ Tvl 

[(u +TV). v](u +TV) 
lu+ Tvl3 
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whence v'(O) = v - (u · v)u. Inserting this equality into (36), (37), we find 

(38) 0 = fu Du: Dv- Du: D((u · v)u) dx. 

However since I ul 2 = 1, we have 

(Du)T u = 0. 

Using this fact, we then verify 

Du: D((u · v)u) = IDul 2 (u · v) a.e. in U. 

This identity employed in ( 38) gives ( 33). D 

8.4.4. Incompressibility. 

a. Stokes' problem. Suppose U c IR3 is open, bounded, simply con
nected, and set 

I[w] := fu !1Dwl2 - f · wdx, 

for w belonging to 

A:= {w E HJ(U;IR3 ) I divw = 0 in U}. 

Here f E L2 (U; IR3 ) is given. 

There is no problem in showing by customary methods that there exists 
a unique minimizer u E A. We interpret u as representing the velocity field 
of a steady fluid flow within the region U, subject to the external force f. 
The constraint that div u = 0 ensures that the flow is incompressible: see 
the Remark at the end of this subsection. 

How does the constraint manifest itself in the Euler-Lagrange equation? 

THEOREM 6 (Pressure as Lagrange multiplier). There exists a scalar 
function p E L~oc ( U) such that 

(39) fuDu:Dvdx= ipdivv+f·vdx 

for all v E H 1(U;IR3 ) with compact support within U. 

We interpret (39) as saying that (u,p) form a weak solution of Stokes' 
problem 

(40) { -~u = f - Dp in U 
divu = 0 in U 

u = 0 on au. 
The function p is the pressure and arises as a Lagrange multiplier cor

responding to the incompressibility condition div u = 0. 
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Proof. 1. Assume first v E A. Then for each T E IR, u + TV E A. Thus 

(41) 0 = i' (0) = L Du : Dv - f · v dx. 

2. Fix now V CCU, V smooth and simply connected, and select w E 

HJ (V; IR3) with div w = 0. Choose 0 < E < dist(V, au) and set v = vf := 

'f/f * w in ( 41), 'f/f denoting the usual mollifier and w defined to be zero in 
U - V. Then 

(42) 0= fuvu:Dv'-f·v'dx= LDu':Dw-f'-wdx 

for 

(43) 

As uf is smooth, (42) implies 

(44) Iv (-du' - f') · wdx = 0 

for each w E HJ(V;IR3 ) with divw = 0. 

3. Fix any smooth vector field ( E C~(V; IR3 ) and put w = curl ( in 
(44). This is legitimate since divw = div(curl() = 0. Then, temporarily 
writing h := iluf +ff, we find 

0 =Iv h ·curl( dx =Iv h1((!2 - (;3 ) + h2((;3 - (!,) + h3 ((;, - (;2 ) dx, 

for h = (h1,h2 ,h3 ), ( = ((1,(2,(3). An integration by parts reveals 

0 =Iv (1(h;, - h;3 ) + (2(h!3 - h;,) + (3(h;, - h!2 ) dx. 

As ( 1 , ( 2 , ( 3 E C~(V) are arbitrary, we deduce curl h = 0 in V. Since V is 
simply connected, there consequently exists a smooth function pf in V such 
that 

(45) 

4. If necessary we can add a constant to pf to ensure fv pf dx = 0. 

In view of this normalization, there exists a smooth vector field vf : V ---+ 

IR3 solving 

(46) 
in V 
on av. 
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In addition we have the estimate 

(47) 

the constant C depending only on V. (We omit the proof of the exis
tence of the vector field vf. The construction both is intricate and requires 
knowledge of certain estimates for Laplace's equation with Neumann-type 
boundary conditions beyond the scope of this book. See Dacorogna-Moser 
(Ann. Inst. H Poincare 7 (1990), 1-26) for details.) 

Now compute 

iv (p')2 dx = iv p' div v' dx by ( 46) 

= - iv Dp' · v' dx 
=iv (-ll.u' - f') · v' dx by (45) 

= iv Du' : Dv' - f' · v' dx 
< llvfl1Hl(V;JR3)(11ufl1Hl(V) + llffll£2(V)) 

< CllPfllL2(v)(llullH1(u) + llfllL2(u)) by (47). 

Thus 

(48) 

5. In view of estimate ( 48) there exists a subsequence f.j ---+ 0 so that 

( 49) pfi __.l. p weakly in L 2 (V) 

for some p E L2(V). Now (45) implies 

iv Du': Dvdx = ivp'divv + f'. vdx 
for all v E HJ(V;IR3 ). Sending f. = f.j---+ 0, we find 

(50) iv Du: Dvdx = ivp divv + f · vdx 
as well. 

6. Finally choose a sequence of sets Vk cc U (k = 1, ... ) as above, 
with V1 c V2 c V3 c ... and u = U~1 vk. Utilizing steps 2-5, we find 
Pk E L2 (Vk) (k = 1, ... ) so that 

(51) f Du: Dvdx = f Pkdivv + f · vdx 
lvk lvk 

for each v E HJ(Vk; IR3). Adding constants as necessary to each Pk, we 
deduce from (51) that if 1 < l < k, then Pk =Pl on l/i. We finally define 
p =Pk on Vk (k = 1, ... ). D 
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b. Incompressible nonlinear elasticity. We return now to the model 
of nonlinear elasticity discussed before in §8.2.4. Suppose that u represents 
the displacement of an elastic body which has the rest configuration U. Let 
us suppose now that the elastic body is incompressible, which now means 

detDu = 1. 

We therefore suppose the energy density function L: M 3 x 3 x U---+ R is given 
and consider the problem of minimizing the elastic energy 

J[w] := fu L(Dw, x) dx 

over all win the admissible set 

A:= {w E W 1·q(U;R3 ) I w = g on au,detDw = 1 a.e.} 

for some q > 3. 

THEOREM 7 (Minimizers with determinant constraint). Assume the map
ping 

Pf-+ L(P, x) 

is convex and L satisfies the coercivity condition 

L(P, x) > alPlq - {3 (PE M3 x 3 , x EU) 

for some a > 0, f3 > 0. Suppose finally A =/= 0. 
Then there exists u E A satisfying 

J[u] =min J[w]. 
wEA 

Proof. We as usual select a minimizing sequence, with 

Since 
J[u] < li~inf I [uk.] , 

J-+00 J 

we must only show that u EA. However, since in view of the lemma in §8.2.4 
we have det Duk; ~ det Du weakly in Lqfn(U), we see that det Du= 1 a.e., 
as required. D 
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Remark on incompressibility. It may seem odd that the incompressibil
ity condition for Stokes' problem is 

(52) divu = 0 

and for the nonlinear elasticity problem is 

(53) detDu = 1. 

The explanation is that u represents a velocity in (52) and a displacement 
in (53). More generally if b is a velocity field, say of a fluid, we compute 
the motion of a particle initially at a point x by solving the ODE 

{ 
x(t) = b(x(t), t) 

x(O) = x. 

(t E JR) 

Write x(t) = x(t, x) to display the dependence on the initial position x. 
Then for each t > 0, the mapping x ~ x( t, x) is volume preserving if 

J(x, t) = det Dxx(t, x) = 1 for all x. 

Clearly J(x, 0) = 1, and a calculation verifies Euler's formula: 

Jt =(div b)(x, t)J, 

the divergence taken with respect to the spatial variables. Hence if div b = 0, 
the flow is volume preserving. 

8.5. CRITICAL POINTS 

Thus far we have studied the problem of locating minimizers of various 
energy functionals, subject perhaps to constraints, and of discovering the 
appropriate nonlinear Euler-Lagrange equations they satisfy. For this sec
tion we turn our attention to the problem of finding additional solutions of 
the Euler-Lagrange PDE, by looking for other critical points. These critical 
points will not in general be minimizers, but rather "saddle points" of I[·]. 

8.5.1. Mountain Pass Theorem. 

We develop next some machinery that ensures that an abstract func
tional I[·] has a critical point. 
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a. Critical points, deformations. Hereafter H denotes a real Hilbert 
space, with norm II II and inner product ( , ). Let I : H ---+ R be a 
nonlinear functional on H. 

DEFINITION. We say I is differentiable at u EH if there exists v EH 
such that 

(1) I[w] = I[u] + (v, w - u) + o(llw - ull) (w EH). 

The element v, if it exists, is unique. We then write I'[u] = v. 

DEFINITION. We say I belongs to C1 (H; R) if I'[u] exists for each u E 

H and the mapping I' : H ---+ H is continuous. 

The theory we will develop below holds if I E C 1 ( H; R), but the proofs 
will be greatly streamlined provided we additionally assume 

(2) I': H---+ His Lipschitz continuous on bounded subsets of H. 

NOTATION. (i) We denote by C the collection of functions IE C 1(H; R) 
satisfying (2). 

(ii) If c E R, we write 

Ac : = { u E H I I [u] < c}, Kc : = { u E H I I [u] = c, I' [ u] = 0}. 

DEFINITIONS. (i) We say u E H is a critical point if I'[u] = 0. 

(ii) The real number c is a critical value if Kc =I- 0. 

We now want to prove that if c is not a critical value, we can nicely 
deform the set Ac+e into Ac-e for some f > 0. The idea will be to solve 
an appropriate ODE in H and to follow the resulting flow "downhill". As 
H is generally infinite dimensional, we will need some kind of compactness 
condition. 

DEFINITION. A functional I E C 1 ( H; R) satisfies the Palais-Smale com
pactness condition if each sequence { uk}~1 C H such that 

(i) {J[uk]}~1 is bounded 

and 

(ii) I'[uk] ---+ 0 in H 

is precompact in H. 
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THEOREM 1 (Deformation Theorem). Assume IE C satisfies the Palais
Smale condition. Suppose also 

(3) Kc=0. 

Then for each sufficiently small f > 0, there exists a constant 0 < 8 < f and 
a function 

11 E C([O, 1] x H; H) 

such that the mappings 

11t(u) = 11(t, u) (0 < t < 1, u EH) 

satisfy 
(i) 11o(u) = u (u EH), 

(ii) 111(u)=u (u¢J-1[c-E,c+E]), 

(iii) I [ 'T/t ( u)] < I [ u] ( u E H, 0 < t < 1) , 

(iv) 111(Ac+o) C Ac-o· 

Proof. 1. We first claim that there exist constants 0 < u, E < 1 such that 

(4) llJ'[u] II > u for each u E Ac+e - Ac-e· 

The proof is by contradiction. Were ( 4) false for all constants u, E > 0, there 
would exist sequences Uk ~ 0, Ek ~ 0 and elements 

(5) 

with 

(6) 

According to the Palais-Smale condition, there is a subsequence {Uk; }~1 
and an element u EH with Uk; ~ u in H. But then since IE C1(H; IR), (5) 
and (6) imply I[u] = c, I'[u] = 0. Consequently Kc =I- 0, a contradiction to 
our hypothesis ( 3). 

2. Now fix 8 to satisfy 

(7) 

Write 

0 < 8 < f, 

A := { u E H I J[u] < c - f or I[u] > c + f }, 
B := {u EH I c - 8 < I[u] < c + 8}. 
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Since I' is bounded on bounded sets, we verify that the mapping u 1---t 

dist(u, A) + dist(u, B) is bounded below by a positive constant on each 
bounded subset of H. Consequently, the function 

( ) dist(u, A) (u EH) 
9 u := dist(u, A)+ dist(u, B) 

is Lipschitz continuous on bounded sets and satisfies 

(8) 0 < g < 1, g = 0 on A, g = 1 on B. 

Set 

(9) ht ·- - -{ 
1, 0 < t < 1 

( ) .- 1/t, t > 1. 

Finally define the mapping V : H ---+ H by 

(10) V(u) := -g(u)h(llI'[u]ll)I'[u] (u EH). 

Observe that Vis bounded. 

3. Consider now for each u EH the ODE 

(11) { ~(t)= V(fl(t)) 
11(0)= u. 

(t > 0) 

As Vis bounded and Lipschitz continuous on bounded sets, there is a unique 
solution, existing for all times t > 0. We write 11=11(t, u) = flt(u) (t > 0, u E 

H) to display the dependence of the solution on both the time t and the 
initial position u E H. Restricting ourselves to times 0 < t < 1, we see that 
the mapping fl E C([O, 1] x H; H) so defined satisfies assertions (i) and (ii). 

4. We now compute 

(12) 

In particular 

! /[11t(u)] = ( I'[11t(u)], ! 11t(u)) 

= (I' [ 11t ( u)] , V (flt ( u))) 

= -g( flt( u) )h( III' [flt ( u )] II) llI'[flt( u )] 11 2 . 

d 
dt l[flt(u)] < 0 (u EH, 0 < t < 1), 

and so assertion (iii) is valid. 
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5. Now fix any point 

(13) 

We want to prove 

(14) 111(u) E Ac-d 

and thereby verify assertion (iv). If 1Jt(u) rt B for some 0 < t < 1, we are 
done; and so we may as well suppose instead Tit ( u) E B ( 0 < t < 1). Then 
g(11t(u)) = 1 (0 < t < 1). Consequently, calculation (12) yields 

(15) 
d 
dt I[11t( u )] = -h( llJ'[11t( u )] II) llJ'[11t( u )] 11 2 • 

Now if llI'[11t(u)]ll > 1, then (9) and (4) imply 

:tl[TJt(u)] = -llI'[11t(u)]ll 2 < -u2 . 

On the other hand, if llJ'[11t(u)]ll < 1, (9) and (4) yield 

d 2 
dt I[11t( u)] < -u . 

Both these inequalities, and (15), then imply 

I[111(u)] < I[u] - u2 < c+ 8 - u2 < c- 8 by (7). 

This estimate establishes ( 14) and completes the proof. D 

b. Mountain Pass Theorem. Next we employ an interesting "min-max" 
technique, using the deformation T/ built above to deduce the existence of a 
critical point. 

THEOREM 2 (Mountain Pass Theorem). Assume I E C satisfies the 
Palais-Smale condition. Suppose also 

(i) J[O] = 0, 
(ii) there exist constants r, a > 0 such that 

I[u] > a if llull = r, 

and 
(iii) there exists an element v E H with 

llvll > r, I[v] < 0. 
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Define 
r := {g E C([o, 1]; H) I g(O) = o, g(I) = v }. 

Then 

is a critical value of I. 

c = inf max J[g(t)] 
gEr 0$t$1 

Think of the graph of I[·] as a landscape with a low spot at 0, surrounded 
by a ring of mountains. Beyond these mountains lies another low spot at v. 
The idea is to look for a path g connecting 0 to v, which passes through a 
mountain pass, that is, a saddle point for I[·]. But note carefully: we are 
only asserting the existence of a critical point at the "energy level" c, which 
may not necessarily correspond to a true saddle point. 

Proof. Clearly 

(16) c >a. 

Assume that c is not a critical value of I, so that 

(17) Kc=0. 

Choose then any sufficiently small number 

(18) 
a 

0 < f < 2· 

According to the Deformation Theorem 1, there exist a constant 0 < 8 < f 

and a homeomorphism 11 : H ~ H with 

(19) 

and 

(20) 

Now select g E r satisfying 

(21) max J[g(t)] < c + 8. 
0$t$1 

Then g := 11 o g also belongs tor, since 11(g(O)) = 11(0) = 0 and 11(g(l)) = 
11(v) = v, according to (20). But then (21) implies maxo$t$1 J[g(t)] < c-8, 
whence c = infgEr maxo$t$1 J[g(t)] < c - 8, a contradiction. D 
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8.5.2. Application to semilinear elliptic PDE. 

To illustrate the utility of the Mountain Pass Theorem, let us investigate 
now the semilinear boundary-value problem: 

(22) {
-du= f(u) 

u =0 
in U 
on au. 

We assume f is smooth, and for some 

1 n+2 
<p<n-2 

we have 

(23) l/(z)I < C(l + lzlP), l/'(z)I < C(l + lzlP-1) (z ER), 

where C is a constant. We will suppose also 

(24) 0 < F(z) < 'Yf(z)z for some constant 'Y < ~' 

where F(z) := la' f(s)ds and z E JR. We hypothesize finally for constants 

0 <a< A that 

(25) alzlP+l < IF(z)I < AlzlP+l (z ER). 

Now (25) implies f (0) = 0, and so obviously u = 0 is a trivial solution 
of (22). We want to find another. 

Observe that the PDE 

falls under the hypotheses above. We will return to this particular nonlin
earity again in §9.4.2. 

THEOREM 3 (Existence). The boundary-value problem (22) has at least 
one weak solution u-;/:. 0. 

Proof. 1. Define 

(26) I[u] := L !IDul2 - F(u) dx 

for u E HJ(U). We intend to apply the Mountain Pass Theorem to I[·]. 
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We set H = HJ (U), with the norm llull = (Ju 1Dul2 dx) 112 and inner 
product (u, v) = fu Du· Dvdx. Then 

I[u] = ~llull 2 - L F(u) dx =: Ii[u] - I2[u]. 

2. We first claim 

(27) I belongs to the class C. 

To see this, note first that for each u, w E H, 

Ii[w] = !llwll 2 = !llu + w - ull2 = !llull 2 + (u, w - u) + !llw - ull 2 . 

Hence Ii is differentiable at u, with IHu] = u. Consequently, Ii EC. 

3. We must next examine the term / 2• Recall from the Lax-Milgram 
Theorem (§6.2.1) that for each element v* E H- 1(U), the problem 

{ -Llv = v* in U 
v=O onfJU 

has a unique solution v E HJ(U). We will write v = Kv*, so that 

(28) K: H- 1(U) --+ HJ(U) is an isometry. 

Note in particular that if w E L 2n/n+2(U), then the linear functional w* 
defined by 

(w*,u) := L wudx (u E HJ(U)) 

belongs to H- 1(U). (We will misuse notation and say "w E H- 1(U)" .) 
Observe next that p ( 2n ) < n+2 · 2n = 2* and so f(u) E L2n/n+2(U) 

n+2 n-2 n+2 ' 

c H- 1(U) if u E HJ(U). 

We now demonstrate that if u E HJ(U), then 

(29) I~[u] = K[f(u)]. 

To see this, note first that 

F(a + b) = F(a) + f(a)b + [ {1 - s)J'(a + sb) ds b2 . 

Thus for each w E HJ ( U), 

I2[w] = LF(w)dx= LF(u+w-u)dx 

{30) = L F(u) + f(u)(w- u) dx + R 

= I2(u) + L DK[f(u)] · D(w- u) dx + R, 
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where the remainder term R satisfies, according to (23), 

IRI <Cl (1 + lulP-1 + lw-ulP-1)lw - ul2 dx 

< C (fu 1w-ul2 + lw-ul1'+1 dx) 
J?.=.! _2 

+ C (fu iulP+l dx) P+• (fu 1w-ul1'+1 dx) PH . 

509 

Since p + 1 < 2*, the Sobolev inequalities show R = o(llw - ull). Thus we 
see from ( 28) that 

/2[w] = /2[u] + (K[f(u)], w - u) + o(llw - ull), 

as required. 

Finally we note that if u, u E HJ(U) with llull, llull < L, then 

But 

llJ~[u] - J~[u]ll = llK[f(u)] - K[f(u)]llnJ(U) 

= llf(u) - f(u)lln-1(u) 

< llf(u) - f(u)ll 2n . - LTin(U) 

llf(u) - f(u)llL~(U) 

( { 2n )~ < c lu ( (1 + lulp-l + lulp-l) lu - ul) n+2 dx 

2 

< C (l (1+lulp-1+1u1v-1)n2;'2"¥ dx) n llu - UllL"(U) 

< C(L)llu - ullL2*(U) < C(L)llu - ull, 

where we used (23). Thus/~ : HJ(U) ---+ HJ(U) is Lipschitz continuous on 
bounded sets. Consequently /2 EC, and we have established assertion (27). 

4. Now we verify the Palais-Smale condition. For this suppose { uk}k=l C 

HJ(U), with 

(31) 

and 

(32) I'[uk] ---+ 0 in HJ(U). 
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According to the foregoing 

(33) uk - K(f(uk))--+ 0 in HJ(U). 

Thus for each € > 0 we have 

for k large enough. Let v = Uk above to find 

for each € > 0 and for all k sufficiently large. For € = 1 in particular, we see 
that 

(34) 

for all k sufficiently large. But since (31) says 

for all k and some constant C, we deduce 

llukll2 < C + 2 fu F(uk) dx 

< C + 2-y (llukll 2 + llukll) by (34), (24). 

Since 2-y < 1, we discover that {uk}k::1 is bounded in HJ(U). Hence there 
exists a subsequence {Uk; }j;,1 and u E HJ(U), with Uk; ~ u weakly in 
HJ ( U) and Uk; --+ u in v+ 1 ( U)' the latter assertion holding since p + 1 < 2*. 
But then J(uk)--+ J(u) in H- 1(U), whence K[f(uk)]--+ K[f(u)] in HJ(U). 
Consequently (33) implies 

(35) Uk; --+ u in HJ(U). 

5. We finally verify the remaining hypotheses of the Mountain Pass 
Theorem. Clearly J[O] = 0. Suppose now that u E HJ(U), with llull = r, for 
r > 0 to be selected below. Then 

(36) 
r2 

I[u] = li[u] - I2[u] = 2 - I2[u]. 
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Now hypothesis (25) implies, since p + 1 < 2*, that 

In view of ( 36), then 

r2 r2 
I[u] > - - CrP+l > - = a > 0 

- 2 - 4 ' 

provided r > 0 is small enough, since p + 1 > 2. Now fix some element 
u EH, u t 0. Write v :=tu fort> 0 to be selected. Then 

I[v] = Ii [tu] - 12 [tu] 

= t2fi[u) - L F(tu)dx 

< t2 fi[u) - atP"+I L lulp-+1 dx by (25) 

<0 

for t > 0 large enough. 

6. We have at last checked all the hypotheses of the Mountain Pass 
Theorem. There must consequently exist a function u E HJ(U), u t 0, with 

I'[u] = u - K[f(u)] = 0. 

In particular for each v E HJ(U), we have 

funu-Dvdx= Lf(u)vdx, 

and sou is a weak solution of (22). D 

See §9.4.2 for further discussion about nonlinear Poisson equations and 
in particular the significance of the critical exponent ~:!:~ in hypothesis (23). 

8.6. INVARIANCE, NOETHER'S THEOREM 

Next we study variational integrands that are invariant under appropriate 
domain and function variations and show that solutions of the corresponding 
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Euler-Lagrange equations then automatically solve also certain divergence 
structure conservation laws. 

8.6.1. Invariant variational problems. 

We again turn our attention to the functional 

(1) J[w] := fu L(Dw, w, x) dx, 

where UC Rn and w: U--+ R. We as usual write L = L(p, z, x). 

NOTATION. (i) Let x: Rn x R--+ Rn, x = x(x, r), be a smooth family 
of vector fields satisfying x(x, 0) = x for all x E Rn. Then for small lrl, 
the mapping x 1-+ x( x, r) is a smooth diffeomorphism. We call the mapping 
x 1-+ x(x, r) a domain variation. Define also 

(2) v(x) := x-r(x, 0) 

and 

(3) U(r) := x(U,r). 

(ii) Next, given a smooth u : Rn --+ R, we consider a smooth family of 
function variations w: Rn x R-+ Rn, w = w(x, r), such that 

(4) w(x, 0) = u(x). 

Write 

(5) m(x) := w-r(x, 0). 

For reasons that will be clear shortly, we call m a multiplier. 

Given a functional /[ ·] of the form (1), we ask if we can find domain 
and function variations that are compatible with the Lagrangian L, in the 
sense that /[ ·] is unchanged under these variations. 

DEFINITION. We say that the functional I[·] is invariant under the 
domain variations x and the function variations w provided 

(6) f L(Dw(x, r), w(x, r), x) dx = f L(Du, u, x) dx 
k luw 

for all small lrl and all open sets U C Rn. 

Here we write Dw = Dxw. The idea behind this definition is that given a 
domain variation x and a function u, we will look for w as some expression 
involving u(x(x,r)). We will then try to check (6) by changing variables 
in the integral term on the left, after which the integration will be over the 
region U(r). 
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8.6.2. Noether's Theorem. 

We now show that invariance of the functional implies that the corre
sponding Euler-Lagrange equation can be transformed into divergence form: 

THEOREM 1 (Noether's Theorem). Suppose that the functional I[·) is 
invariant under the domain variation x and the function variation w corre
sponding to a smooth function u. 

(i) Then 

n 

L(mLPi (Du, u, x)-L(Du, u, x)vi)xi 

(7) i=l 

= m (t(Lp;(Du,u,x))x, - L,(Du,u,x)), 

where v = (v1 , ... , vn) is defined by (2) and the multiplier m by (5). 

(ii) In particular, if u a critical point of I[·] and so solves the Euler
Lagrange equation - div(DLp) + Lz = 0, we have the divergence identity 

n 

(8) L(mLPi (Du, u, x) - L(Du, u, x)vi)xi = 0. 
i=l 

So multiplying by m converts the Euler-Lagrange PDE into divergence 
form. 

Proof. Differentiating the invariance identity (6) with respect to T and then 
setting T = 0 yields the identity 

{ DpL·Dm+Lzmdx= { Lv·vdS. lu lau 
The term on the right appears owing to the formula in §C.4 for differentiating 
integrals over moving regions. Now an integration by parts and the Gauss
Green Theorem imply 

f (-div DpL + Lz)mdx = f (-mDpL + Lv) · vdS lu lau 
= l div( -mDpL + Lv) dx. 

This identity is valid for all regions U, and so the identity (7) follows. D 
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As noted earlier, we can sometimes first guess a domain variation x and 
then look for a corresponding function variation w as some formula involving 
u(x(x, r)). Then we will be able to compute the multiplier min terms of u 
and its partial derivatives. The following examples illustrate this procedure, 
in increasingly complicated circumstances. 

Example 1 (Lagrangians independent of x). If L = L(p, z) does not depend 
upon the independent variables x, then the integral ( 1) is invariant under 
translations in space. To be specific, select k E {1, ... , n} and define 

Then 

Consequently if u is a critical point, (8) becomes the identity 

n 

(9) E(LpiUxk - L8ik)xi = 0 (k = 1, ... , n). 
i=l 

It is a simple exercise to confirm that these formulas follow directly from the 
Euler-Lagrange equation. The point is that Noether's Theorem provides a 
systematic procedure for searching for such identities. D 

Example 2 (Scaling invariance). The functional 

J[w] = fu IDwlP dx, 

smooth minimizers u of which solve the p-Laplacian equation 

div(IDulP-2 Du)= 0, 

is invariant under the scaling transformation 

n-p 
x I-+ AX, u I-+ A p u (AX). 

To be consistent with previous notation, we put A= e,,. and define 

Then 

v = x, 
n-p 

m= Du·x+ u. 
p 
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The corresponding divergence identity (8) for a solution of the p-Laplacian 
equation is 

(10) 

It is again straightforward to check this identity directly. 

Application: monotonicity formulas. Assume that u is a smooth solu
tion of the p-Laplacian PDE within some region U and that the ball B(O, r) 
lies within U. If we integrate the divergence identity (10) over B(O, r) and 
simplify using the Gauss-Green Theorem, we discover that 

(n - p) f, IDulP dx = r { IDulP - plDulP-2u~ dS, 
B(O,r) j 8B(O,r) 

where Ur:= Du· fxr· Therefore 

!}_ (~ f, IDulP dx) 
dr rn P B(O,r) 

= p-n f IDulPdx+-1- { IDulPdS 
rn-p+l J B(O,r) rn-p J 8B(O,r) 

= P_ f IDulP-2u~ dS > 0. 
rn P J 8B(O,r) 

This is a monotonicity formula, implying 

rt-+~ f IDulP dx is nondecreasing. 
rn P JB(O,r) 

We discuss in Problem 20 an interesting consequence for p = 2. D 

In §9.4.2 we will learn the usefulness of the multiplier Du· x, suggested 
by Example 2, in studying certain semilinear elliptic equations. 

Time dependent problems. If one of the independent variables is iden
tified with time, then we can interpret (8) as a conservation law resulting 
from the invariance of our variational integral. 

Example 3 (Conservation of energy for nonlinear wave equations). Con
sider the integral expression 

(11) 
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defined for functions w = w(x, t) with, say, compact support. As usual, 
we write Dw = Dxw. We can interpret the Lagrangian as representing the 
kinetic energy minus the potential energy, by analogy with the ODE example 
in §3.3.1. The corresponding Euler-Lagrange equation is the semilinear 
wave equation 

(12) Utt - Llu+ f(u) = 0 

for f := F'. 

The integrand of ( 11) does not depend on the time variable t and is con
sequently invariant under shifts in this variable. Noether's Theorem implies 
that this invariance forces a conservation law, in this case conservation of 
energy. More precisely, we define 

x(x, t, T) := (x, t + T), w(x, t, T) := u(x, t + T), 

so that 
V = en+ 1, m = Ut. 

Then ( 8) reads 

This can be rewritten as 

(13) et - div(utDu) = 0 

for the energy density 

The divergence operator in ( 13) acts in the x variables only. If u has compact 
support in space at each time, it follows that the total energy is conserved 
in time: ! Ln ~('4+1Dul2) + F(u) dx = 0. 

In Chapter 12 we will systematically investigate the solvability of semilinear 
wave equations of the form (12) and will find this conservation law extremely 
u~ful. D 

Example 4 (Scaling invariance for the wave equation). The linear wave 
equation 

Du= Utt - Llu = 0 
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corresponds to the action functional 

(14) 

Similarly to Example 2 above, the functional (14) is invariant under the 
scaling transformation 

n-1 
(x, t) ...... (Ax, At), u ...... A-2 u(Ax, At). 

As before, we put A= er and define 

Then 
n-1 

v = (x, t), m = tut+ x · Du+ 2 u. 

The conservation law provided by (8) asserts 

Pt -divq = 0 

for 
t n-1 

p := 2 (u~ + IDul2) + x · Duut + 2 UUt, 

( n-1 ) 1 
q := tut + x · Du + 2 u Du + 2 ( u~ - I Dul2 )x. 

We will present in §12.4 an important application of a similar identity for a 
nonlinear wave equation. D 

Example 5 (Conformal energy for the wave equation). The following much 
more sophisticated example illustrates how Noether's Theorem, even when 
not directly applicable, can sometimes help us identify useful multipliers. 

The mapping 

(15) - ( x t ) 
(x, t) ...... (x, t) := lxl2 - t2' lxl2 - t2 ' 

where lxl2 =F t2 , is called hyperbolic inversion. Related is the hyperbolic 
Kelvin transform /Cu= u, defined by 

u(x, t) : = u(x, t)1 lxl2 - t21 n2l 

(16) 
( x t ) 1 

= u lxl2 - t2' lxl2 - t2 llxl2 - t21 n21. 
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An exercise for Chapter 12 shows that if Du= 0, then Du= 0. 

Our intention is to use hyperbolic inversion and the hyperbolic Kelvin 
transform to help us design variations in (x, t) and in u. For the first, let us 
map (x, t) to (x, t), then add ren+i, and lastly apply hyperbolic inversion 
again. A calculation shows that the result is the mapping 

(17) x(x, t, r) := 1(x, t + r(lxl 2 - t2 )), 

for 

(18) 

We next employ a similar procedure to build variations of u: we apply the 
Kelvin transform to compute Ku= u, then add ren+l within the argument 
of u, and lastly reapply the Kelvin transform. Another calculation reveals 
the resulting function variation to be 

(19) 
n-1 

w(x, t, r) := ,-2 u(x(x, t, r)). 

We next compute the multiplier corresponding to (17)-(19) by differen
tiating with respect to r and then putting r = 0: 

(20) v = (2xt, lxl 2 + t2 ), m = (lxl 2 + t2 )ut + 2tx ·Du+ (n - l)tu. 

Now we do not assert that the action functional (14) is invariant under 
these domain and function variations. Rather, we guess that since the hy
perbolic Kelvin transform preserves solutions of the wave equation, then it 
might be useful to multiply the wave equation Du= 0 by the multiplier m 
from (20). This turns out to be so, and after a longish calculation we derive 
Momwetz's identity 

(21) Ct - divr = 0, 

where 

1 n-1 
(22) c := 2(1xl 2 + t2 )(u~ + IDul2 ) + 2tx · Duut + (n - l)tuut - 2 u2 

is the density of the so-called conformal eneryy and 

(23) r := ((lxl 2 + t2 )ut + 2tx ·Du+ (n - l)tu)Du + t(u~ -1Dul2)x. 
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Morawetz's identity is important since the conformal energy density c can 
be written for n =F 2 as a sum of nonnegative terms plus a divergence in the 
x-variables: 

(t+lxl)2 ( n-1 ) 2 (t-1xl)2 ( n-1 ) 2 
c = 4 Ut + Ur + 2 lxl u + 4 Ut - Ur - 2 Ix I u + 

(24) lxl2 + t2 ~ID 12 _ 2 (n - 3)(n - 1) 2'\ _ n - 1 d. (lxl2 + t2 ~ 
2 ~ u Ur+ 4lxl2 u} 4 IV lxl2 ux}' 

for Ur := Du · l~I . 

Application: local energy decay. Suppose now that 0 c Rn denotes 
a bounded, smooth open set that is star-shaped with respect to the origin: 
see §9.4.2 for the definition and geometric meaning of this condition. Define 
the exterior region 

U :=Rn - O. 

Assume in addition that u is a smooth solution of this initial/boundary-value 
problem for the wave equation outside of the "obstacle" 0: 

{ 
Utt - ~ U = 0 in U X ( 0, 00) 

u = 0 on 8U x {t = O} 

u = g, Ut = h on U x { t = 0}, 

for which the initial data g, h have compact support. 

We assert that if n > 3 and if 0 C B(O, R), there exists a constant C 
such that 

(25) 1 2 2 c 
ut + I Dul dx < 2 , 

B(O,R)-0 t 

for times t > 2R. Consequently the energy within any bounded region decays 
to zero as t--+ oo, although the total energy is conserved. 

To prove (25), we first observe from the conservation law (21) that 

(26) dd f c dx = f div r dx = f r · v dS, 
t lu lu lao 

where v denotes the inward pointing unit normal to ao. Now u = Ut = 0 
on ao, and hence we can compute from (23) that 

r · v = 2t(x · Du)(Du · v) - t1Dul 2 (x · v) 
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along 80. Since u = 0 on 80, we have Du= (Du· v)v there. Using this in 
the formula above, we deduce that 

r · v = t I Dul2 ( x · v) < 0, 

since 0 is star-shaped with respect to the origin and v is the inward pointing 
normal. 

Then (26) and our formula (24) for c imply for each time t > 0 that 

/, (t+lxl)2 ( n-1 ) 2 
Ut+ur+ u 

B(O,R)-0 4 2lxl 

+ - u - u - - u + (IDul2 - u2) dx < C. (t lxl)2 ( n 1 ) 2 lxl2 + t2 
4 t r 2lxl 2 r -

Taking t > 2R and making some simple estimates, we derive from this the 
estimates 

(27) /, 1Dul2 - u~ dx < ~ 
B(O,R)-0 t 

and 

(28) /, 2 2 n - 1 (n - 1)2 2 C 
Ut + Ur + I I UUr + 41 12 U dx < 2. 

B(O,R)-0 X X t 

Now 
u ( u2 ) n - 2 u2 

j;"fur =div 2lxl2x - 2 lxl2. 

This identity shows that the integral of the last two terms in (28) is non
negative. The energy decay estimate (25) follows. D 

8.7. PROBLEMS 

In the exercises U always denotes a bounded, open subset of Rn, with smooth 
boundary. All given functions are assumed smooth, unless otherwise stated. 

1. This problem illustrates that a weakly convergent sequence can be 
rather badly behaved. 

(a) Prove uk(x) = sin(kx) ~ 0 as k--+ oo in L2(0, 1). 

(b) Fix a,b ER, 0 <A< 1. Define 

{ a if j/k<x< (j+A)/k 
uk(x) := b if (j + A)/k < x < (j + 1)/k (j = O, · · · 'k-l). 
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Prove Uk __.l. .Xa + (1 - .X)b in £ 2 (0, 1). 

2. Find L = L(p, z, x) so that the PDE 

-Llu + D</> ·Du= f in U 

is the Euler-Lagrange equation corresponding to the functional J[w] := 

fu L(Dw, w, x) dx. 

(Hint: Look for a Lagrangian with an exponential term.) 

3. The elliptic regularization of the heat equation is the PDE 

Ut - Llu - EUtt = 0 in Ur, 

where E > 0 and Ur = U x (0, T]. Show that ( *) is the Euler
Lagrange equation corresponding to an energy functional Je[w] := 

J f uT Le(Dw, Wt, w, x, t) dxdt. 

(Hint: Look for a Lagrangian with an exponential term involving t.) 

4. Assume 'f/ : Rn --+ R is C1. 

(a) Show L(P, z, x) = 17(z) det P (P E Mnxn, z E Rn) is a null 
Lagrangian. 

(b) Deduce that if u : Rn --+Rn is C2 , then 

fu 11( u) det Du dx 

depends only on ulau-
5. (Continuation) Fix xo ¢:. u(aU), and choose a function 77 as above so 

that fan 77 dz = 1, spt 77 C B(xo, r), r taken so small that B(xo, r) n 
u( au) = 0. Define 

deg(u,xo) = fu 11(u) detDudx, 

the degree of u relative to xo. Prove the degree is an integer. 

6. Let ~ c R3 denote the graph of the smooth function u : U --+ R, 
Uc R2 . Then 

represents the integral of the Gauss curvature over ~- Prove that 
this expression depends only upon Du restricted to au. (The Gauss
Bonnet Theorem in differential geometry computes ( *) in terms of the 
geodesic curvature of a~.) 
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7. Let m = n. Prove 

L(P) = tr(P2 ) - tr(P)2 (PE Mnxn) 

is a null Lagrangian. 

8. Explain why the methods in §8.2 will not work to prove the existence 
of a minimizer of the functional 

I[w] := fu (1 + 1Dwl2 ) 1/ 2 dx 

over A:= {w E W 1·q(U) I w = g on au}, for any 1 < q < 00. 

9. (Second variation for systems) Assume u : U --+ lRm is a smooth 
minimizer of the functional 

I[w] := fu L(Dw, w, x) dx. 

(a) Show 

for all x EU, e E lRn, 'f/ E lRm. 

(b) Provide an example of a nonconvex function L : Mmxn --+ JR 
satisfying 

for all PE Mmxn, e E lRn, 'T/ E lRm. 

10. Use the methods of §8.4.1 to show the existence of a nontrivial weak 
solution u E HJ(U), u ¢ 0, of 

{ -~u = lulq-Iu in U 
u=O on8U 

for 1 < q < n+2 n > 2. n-2' 

11. Assume {3 : JR --+ JR is smooth, with 

0<a<{3'(z)<b (zElR) 

for constants a, b. Let f E L2 (U). Formulate what it means for 
u E H1(U) to be a weak solution of the nonlinear boundary-value 
problem 

{ -~u =I 
~ + {3(u) = 0 

in U 
on au. 
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Prove there exists a unique weak solution. 

12. Assume u is a smooth minimizer of the area integral 

I[w] = l (1 + IDwl2) 1/ 2 dx, 

subject to given boundary conditions w = g on au and the constraint 

J[w] = l wdx = 1. 

Prove the graph of u is a surface of constant mean curvature. 

(Hint: Recall Example 4 in §8.1.2.) 

13. Assume f E L2 (U). Prove the dual variational principle that 

. 11 11 min -2 IDwl2 - fw dx = max --2 lel2 dx. 
wEHJ(U) U EEL2(U;Rn) U 

divE=/ 

14. (Multivalued PDE) Show that the variational inequality (26) for the 
obstacle problem in §8.4.2 can be rewritten as 

-flu+ {3(u - h) 3 f 

for the multivalued function 

{J(z) := { ~ -oo, OJ 

(See also Problem 3 in Chapter 9.) 

15. (Pointwise gradient constraint) 

if z > 0 

if z = 0 

if z < 0. 

(a) Show there exists a unique minimizer u E A of 

I[w] := l !1Dwl2 - fwdx, 

where f E L 2 (U) and 

A:= {w E HJ(U) I IDwl < 1 a.e.}. 

(b) Prove l Du· D(w-u)dx > fut(w-u)dx 
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for all w EA. 
16. Assume n > 3 and U is a bounded open set containing 0. Show that 

u := l~I belongs to H 1(U; IRn) and is a harmonic mapping into the 

sphere sn-1. That is, show u is a weak solution of 

{ -Llu = IDul2u 
in U. 

lul = 1 

17. Let u, u E HJ (U) both be positive minimizers of the Dirichlet energy 

J[w] := fu IDwl2. 

Suppose also that u, u > 0 within U. Follow the hints to give a new 
proof that 

u = u in U. 

( 2+ A2) 1/2 2 2+ A2 
(Hint: Define w := u 2 u , s := u2~u.2 and 'T/ := u 2 u ; and show 

that 
2 Du Du 2 

IDwl = 'f/ s- + (1 - s)-,.. 
u u 

Deduce 

( D 2 D" 2) 1 1 IDwl2 <,,, s uu + (1 - s) uu = 2IDul2 + 2IDul2 

and therefore ~u = °u,u. almost everywhere.) 

(Belloni-Kawohl, Manuscripta Math. 109 (2002), 229-231) 

18. Assume that a 1 , a2 are smooth, positive functions on [J such that 
al < a2. Let u1, u2 be smooth solutions of 

with Du2 =J. 0 a. e. Suppose finally that 

on au. 

Prove that 
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19. (Momentum conservation) Given a solution u of the nonlinear wave 
equation Ou+ f(u) = 0, apply Noether's Theorem to the transforma
tions x(x, t, r) = (x + rek, t), w(x, t, r) = u(x + rek, t) to calculate 
the momentum density Pk and the momentum flux jk satisfying the 
conservation laws 

(Pk)t - div(jk) = 0 (k = 1, ... , n). 

20. Let u be harmonic in some region UC Rn and assume B(O, R) c U, 
u(O) = 0, u ¢ 0. Define for 0 < r < R the functions 

a(r) := 1_1 f u2 dS, b(r) := 1_2 [ 1Dul2 dx. 
rn JaB(O,r) rn JB(O,r) 

We derived in §8.6.2 the monotonicity formula 

. 2 l 2 b= -- urdS. 
rn-2 8B(O,r) 

(a) Prove that 

a = 2_ 1 { UUr dS = ~b. 
rn JaB(O,r) r 

(b) Show 
b2 < '!..ab. -2 

( c) Define the frequency function 

b f := -
a 

and derive Almgren's monotonicity formula: f > 0. 

(d) Demonstrate next that ~ < i and consequently 

a( r) > 1rf3 ( 0 < r < R) 

2b(R) a(R) for f3 := a(R) and 'Y := RJT· This is an estimate from below 
on how fast a nonconstant harmonic function must grow near a 
point where it vanishes. 
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Chapter 9 

We gather in this chapter various techniques for proving the existence, 
nonexistence, uniqueness, and various other properties of solutions for non
linear elliptic and parabolic partial differential equations that are not nec
essarily of variational form. 

9.1. MONOTONICITY METHODS 

Let us look first at this boundary-value problem for a divergence structure 
quasilinear PDE: 

(1) { -diva(Du) = f in U 
u = 0 on au, 

where f E L 2 (U) is given, as is the smooth vector field a : IRn ---+ IRn, a= 
(a1 , ... , an). As usual the unknown is u : U ---+ IR, u = u(x), where U is a 

-527 
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bounded, open subset of Rn with smooth boundary. Now if there exists a 
function F : Rn --+ R such that a is the gradient of F, 

(2) a(p) = DF(p) (p E Rn), 

then (1) is the Euler-Lagrange equation corresponding to the Lagrangian 
L(p, z, x) = F(p) - f(x)z. However if there exists no such potential F, the 
variational methods from Chapter 8 simply do not apply to the problem (1). 

We inquire instead if there is rather some direct method of constructing 
a solution of (1) and in particular ask what are reasonable conditions to 
place upon the nonlinearity. For motivation let us note that if (2) were valid 
and if F were convex (the natural assumption for the variational theory, as 
we have seen in §8.2.2), then for each p, q E Rn 

n 

(a(p) - a(q)) · (p - q) = L(FPi (p) - FPi (q))(Pi - Qi) 
i=l 

1 n 

= 1 L Fp;p;(p + t(q - p))(pj - Qj)(p; - q;) dt > 0, 
0 i,j=l 

the last inequality following from the convexity of F. 

This calculation suggests the following 

DEFINITION. A vector field a: Rn--+ Rn is called monotone provided 

(3) (a(p) - a(q)) · (p - q) > 0 

for all p,q E Rn. 

We will show below that the quasilinear PDE does indeed possess a 
weak solution, under the primary structural assumption that the nonlinear
ity be monotone. Later we will realize that this condition in effect says that 
- div a(Du) = f is a nonlinear elliptic partial differential equation. So let 
us henceforth assume that the smooth vector field a is monotone and that 

(4) la(p)I < C(l + lpl), 

(5) a(p). p > alpl2 - (3 

for all p E Rn and appropriate constants C, a > 0, (3 > 0. We will see 
momentarily that (5) amounts to a coercivity condition on the nonlinearity. 
We intend now to build a solution of the boundary-value problem (1) as 
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the limit of certain finite-dimensional approximations, thereby extending 
Galerkin's method from Chapter 7 to a new class of nonlinear problems. 

More precisely, assume that the functions Wk = wk(x) (k = 1, ... ) are 
smooth and 

{wk}~1 is an orthonormal basis of HJ(U), 

taken with the inner product ( u, v) = f u Du· Dv dx. (We could for instance 
take {wk}~1 to be the set of appropriately normalized eigenfunctions for 
-~in HJ(U).) 

(6) 

We will look for a function Um E HJ(U) of the form 
m 

Um= Ld~wk, 
k=l 

where we hope to select the coefficients d~ so that 

(7) L a(Du,,.) · Dwk dx = L /wk dx (k = 1, ... , m). 

This amounts to our requiring that Um solves the "projection" of the problem 
( 1) onto the finite-dimensional subspace spanned by {wk} ~1 . 

We start with a technical assertion. 

LEMMA (Zeros of a vector field). Assume the continuous function v 
Rn --+ Rn satisfies 

(8) v( x) · x > 0 if Ix I = r, 

for some r > 0. Then there exists a point x E B(O, r) such that 

v(x) = 0. 

Proof. Suppose the assertion were false; then v(x) =f:. 0 for all x E B(O, r). 
Define the continuous mapping w: B(O, r)--+ 8B(O, r) by setting 

r 
w(x) := - lv(x)I v(x) (x E B(O, r)). 

According to Brouwer's fixed point theorem (§8.1.4), there exists a point 
z E B(O, r) with 

(9) w(z) = z. 

But then z E 8B(O, r), and so (8) and (9) imply the contradiction 

r 2 = z · z = w(z) · z = - lv~z)I v(z) · z < 0. D 
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THEOREM 1 (Construction of approximate solutions). For each integer 
m = 1, ... , there exists a function Um of the form (6) satisfying the identities 
(7). 

Proof. Define the continuous function v : Rm --+ Rm, v = ( v1, ... , vm), by 
setting 

for each point d = (di, ... , dm) E Rm. Now 

v(d) · d = L a(t. djDWj) · (t. djDWj) - f (t. diwi) dx 

>La t.diDwi 2 -/3-1(t.diwi) dx by (5) 

m 

= aldl2 - /31UI - :~:>i 1 fwj dx 
j=l u 

a 2 
> 2ldl -C. 

Hence v(d) · d > 0 if ldl = r, provided we select r > 0 sufficiently large. 

We apply the lemma, to conclude that v(d) = 0 for some point d E Rm. 
Then (10) implies Um, defined by (6), satisfies (7). D 

We want to take the limit as m --+ oo, and for this will require some 
uniform estimates. 

THEOREM 2 (Energy estimates). There exists a constant C, depending 
only on U and a, such that 

(11) 

form= 1, 2, .... 

Proof. Multiply equality (7) by d~ and sum fork= 1, ... , m: 

L a(Du,,.) · Dumdx = fu!u.ndx. 

In view of the coercivity inequality (5), we find 

a L IDu,,.12 dx < C + L f Um dx < C + l Lu~ dx + L L f 2dx. 
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We recall Poincare's inequality (Theorem 3 in §5.6.1) and then choose e > 0 
small enough to deduce (11). D 

We wish now to employ the L2 inequalities (11) to pass to limits as 
m--+ oo, obtaining thereby a weak solution of problem (1), which is to say, 
a function u E HJ (U) satisfying the identity 

(12) L a(Du) · Dv dx = L fv dx for all v E HJ (U). 

Employing estimate ( 11), we can extract a subsequence {Um;} ~1 that con
verges weakly in HJ(U) to a limit u, which we hope to show verifies (12). 
However, we encounter a major problem here: we cannot directly conclude 
that 

a(Dum;)--+ a(Du) 

in any sense whatsoever. Take note: nonlinearities are (usually) not contin
uous with respect to weak convergence. (See Problem 2.) 

What saves us is the monotonicity assumption on vector field a. 

THEOREM 3 (Existence of weak solution). There exists a weak solution 
of the nonlinear boundary-value problem ( 1). 

Proof. 1. As noted in the foregoing discussion, we can extract a subse
quence {um;}~1 C {um}~=l and a function u E HJ(U) such that 

(13) Um;~ u weakly in HJ(U) 

and 

(14) 

We must show u satisfies (12). 

2. In view of the growth condition (4), {a(Dum)}~=l is bounded in 
L2(U;Rn); and so we may as well suppose-upon passing to a further sub
sequence if necessary-that 

(15) 

for some ( E L2 (U; Rn). Using identity (7), we deduce 
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for each k = 1, .... And so 

(16) fu E · Dv dx = fu f v dx for each v E HJ (U). 

3. To proceed further, let us note from the monotonicity condition (3) 
that 

(17) fu (a(Du,,,)- a(Dw)) ·(Du,,, - Dw) dx > 0 

for m = 1, ... and all w E HJ (U). But as observed before, equation (7) 
yields the identity 

fu a(Dum) · Du,,, dx = fu /Um dx. 

Substitute into (17), to find 

fu fum - a(Dum) · Dw - a(Dw) · (Dum - Dw) dx > 0. 

Let m = mi --+ oo and recall (13)-(15), to deduce 

futu- E · Dw-a(Dw) ·(Du- Dw)dx > O. 

We simplify using identity (16) with v = u and discover 

(18) fu (E - a(Dw)) · D(u - w) dx > 0 for all w E HJ(U). 

4. Fix any v E HJ(U) and set w := u - .Xv (.X > 0) in (18). We obtain 
then 

fu (E - a(Du - >.Dv)) · Dv dx > O. 

Send A--+ 0: 

(19) fu (E - a(Du)) · Dv dx > 0 for all v E HJ(U). 

Replacing v by -v, we deduce that in fact equality holds above. Then (16) 
and ( 19) taken together yield 

fu a(Du) · Dv dx = fu fv dx for all v E HJ(U). 

Hence u is indeed a weak solution of (1). D 

This use of monotonicity is the method of Browder and Minty, a remark
able technique which employs the inequality condition (3) to justify passing 
to weak limits within a nonlinearity. 

Let us assume now the vector field a satisfies the condition of strict 
monotonicity; that is, 

(20) (a(p) - a(q)) · (p - q) >Olp - ql 2 

for all p, q E Rn and some constant 8 > 0. 
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THEOREM 4 (Uniqueness of weak solution). Assume the strict mono
tonicity property (20) holds. Then there exists only one weak solution of 
(1). 

Proof. Assume that u and u are two weak solutions. Consequently 

fua(Du)·Dvdx= fua(DU)·Dvdx= fu!vdx, 

and so 

fu[a(Du)-a(DU)] · Dvdx = O 

for each v E HJ(U). We set v := u - u and use (20) to deduce 

i IDu- DUl 2 dx = 0. 

Thus u = u a.e. in U. D 

H2 regularity. Under the strengthened monotonicity assumption (20) our 
weak solution u in fact belongs to H2(U) and so satisfies 

-div a(Du) = f a.e. in U. 

To demonstrate this, we select q, ~ E Rn and set p = q + h~, h =f:. 0, in (20). 
We obtain, after dividing by h2 , the inequality 

t [ai(q + ~ - ai(q)] ~i > 81~12· 
i=l 

Now send h-+ 0: 

n 

(21) L a~i ( q)~i~j > 81~1 2 ( q, ~ E Rn). 
i,j=l 

We can thus interpret the nonlinear PDE -div a(Du) = f as being uni
formly elliptic. The proof of H 2 regularity of the weak solution now follows 
almost precisely as in the proof of Theorem 1 in §6.3.1. 

9.2. FIXED POINT METHODS 

We study next the applicability of topological fixed point theorems to non
linear partial differential equations. There are at least three distinct classes 
of such abstract theorems that are useful. These are: 
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(a) fixed point theorems for strict contractions, 

(b) fixed point theorems for compact mappings, 

( c) fixed point theorems for order-preserving operators. 

We present below applications of types (a) and (b). The utility of order
preserving properties for nonlinear PDE will be explained later, in §9.3. 

9.2.1. Banach's Fixed Point Theorem. 

Hereafter X denotes a Banach space. The simplest fixed point theorem 
of all is 

THEOREM 1 (Banach's Fixed Point Theorem). Assume 

A:X-+X 

is a nonlinear mapping, and suppose that 

(1) llA[u] - A[u] II < 1llu - ull (u, u EX) 

for some constant 1' < 1. Then A has a unique fixed point. 

DEFINITION. We say that A is a strict contraction if (1) holds. 

Proof. Fix any point uo EX and thereafter iteratively define Uk+l = A[uk] 
for k = 0, 1, .. .. Then 

and so 

for k = 1, 2, .... Consequently if k > l, 

k-2 

lluk - u1ll = llA[uk-1] - A[u1-1]ll < L llA[uj+1] - A[uj]ll 

k-2 

< llA[uo] - uoll L 1'i · 
j=l-1 

j=l-1 

Hence { uk}~1 is a Cauchy sequence in X, and so there exists a point u E X 
with Uk --+ u in X. Clearly then A[u] = u. Hence u is a fixed point for A, 
and hypothesis ( 1) ensures uniqueness. D 
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Applications of Banach's Fixed Point Theorem to nonlinear PDE usually 
involve perturbation arguments of various sorts: given a well-behaved linear 
elliptic partial differential equation, it is often straightforward to cast a 
small nonlinear modification as a contraction mapping. The hallmark of 
such proofs is the occurrence of a parameter which must be taken small 
enough to ensure the strict contraction property. 

Sometimes however we can eliminate such a smallness hypothesis by an 
iteration, as now illustrated. 

Example 1 (Reaction-diffusion equations). Let us investigate the solvabil
ity of the initial/boundary-value problem for the reaction-diffusion system 

(2) u = 0 on aux [O, T] { 

Ut - Ll u = f ( u) in Ur 

u = g on U x { t = O}. 

Here u = (u1, ... , um), g = (g1, ... , gm), and as usual Ur = U x (0, T], 
where U E IRn is open and bounded, with smooth boundary. The time 
T > 0 is fixed. We assume that the initial function g belongs to HJ(U;IRm). 
Concerning the nonlinearity, let us suppose 

(3) f : IRm --+ IRm is Lipschitz continuous. 

This hypothesis in particular implies 

(4) lf(z)I < C(l + lzl) 

for each z E IRm and some constant C. 

Adapting the terminology from §7.1, we say that a function 

(5) u E L2 (0,T;HJ(U;IRm)), with u' E L2 (O,T;H- 1(U;1Rm)), 

is a weak solution of ( 2) provided 

(6) (u', v) + B[u, v] = (f(u), v) a.e. 0 < t < T 

for each v E HJ(U;IRm) and 

(7) u(O) = g. 

In (6) (, ) denotes the pairing of H-1(U;IRm) and HJ(U;IRm), B[, ] is the 
bilinear form associated with -Ll in HJ(U;IRm), and (, ) denotes the inner 
product in L2 (U;IRm). The norm in HJ(U;IRm) is taken to be 

1 2 )! llnllHJ(U;JRm) = ( U IDnl dx 2 • 

Recall from §5.9.2 that (5) implies u E C([O, T]; L 2 (U; IRm)), after possible 
redefinition of u on a set of measure zero. 
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THEOREM 2 (Existence). There exists a unique weak solution of (2). 

Proof. 1. We will apply Banach's Theorem in the space 

with the norm 
llvll := max llv(t)llL2(u·Rm)· 

0:9~T ' 

Let the operator A be defined as follows. Given a function u E X, set 
h(t) := f(u(t)) (0 < t < T). In light of the growth estimate (4), we see 
h E L2 (0, T; L2 (U; IRm)). Consequently the theory set forth in §7.1 ensures 
that the linear parabolic PDE 

(8) {
Wt - fl.w = h in Ur 

w = 0 on 8U x [O, T] 
w = g on U x { t = 0} 

has a unique weak solution 

Thus w E X satisfies 

(10) (w',v) +B[w,v] = (h,v) a.e. 0 < t < T 

for each v E HJ(U; IRm) and w(O) = g. 

Define A: X--+ X by setting A[u] = w. 

2. We now claim that 

(11) { 
if T > 0 is small enough, then 

A is a strict contraction. 

To prove this, choose u, fl EX, and define w = A[u], w = A[u] as above. 
Consequently w verifies (10) for h = f(u), and w satisfies a similar identity 
for ii := f(u). 

We calculate as in §7.1 

(12) 

! llw - wlli2(U;Rm) + 2llw - wll~J(U;Rm) 
= 2(w - w, h- ii) 

< fllw - wlli2(U;Rm) + ~llf(u) - f(fl)lli2(U;Rm) 

< ECllw - wll~J(U;Rm) + ~llf(u) - f(u)lli2cu;Rm)' 
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by Poincare's inequality. Selecting f > 0 sufficiently small, we deduce 

since f is Lipschitz. Consequently 

(13) 
llw(s) - W(s)lli•cu;R=) <Cl llu(t) - ii(t)lli2cu;R=) dt 

< CTllu - iill 2 

537 

for each 0 < s < T. Maximizing the left-hand side with respect to s, we 
discover 

Hence 

(14) llA[u] - A[ii]ll < (CT)1/ 2 llu - iill, 

and thus A is a strict contraction, provided T > 0 is so small that (CT) 112 = 

'Y < 1. 

3. Given any T > 0, we select T1 > 0 so small that (CT1)112 < 1. We can 
then apply Banach's Fixed Point Theorem to find a weak solution u of the 
problem (2) existing on the time interval [O, T1]. Since u(t) E HJ(U; Rm) 
for a.e. 0 < t < T1, we can upon redefining T1 if necessary assume u(T1) E 

HJ(U;Rm). 

Observe that the time T1 > 0 depends only upon the Lipschitz constant 
for f. We can therefore repeat the argument above, to extend our solution to 
the time interval [T1, 2T1]. Continuing, after finitely many steps we construct 
a weak solution existing on the full interval [O, T]. 

4. To demonstrate uniqueness, suppose both u and ii are two weak 
solutions of (2). Then we have w = u, w =ii in inequality (13), whence 

llu(s) - ii(s)lli•cu;R=) <Cl llu(t) - ii(t)lli2cu;R=) dt 

for 0 < s < T. According to Gronwall's inequality, u = ii. D 

Interpretation. In common applications problem (2) records the evolution 
of the densities u1 , ... , um of various chemicals, which both diffuse within a 
medium and interact with each other. The diffusion term is ~u (or more 
generally (a1~u1 , ... , am~um) where the constants ak > 0 characterize the 
diffusion of the kth chemical). The reaction term f(u) models the chemistry. 
In the foregoing example we made the unreasonable assumption that f is 
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globally Lipschitz. In more realistic models f is often a polynomial in u 
and there are interesting problems as to the global existence or blow-up of 
a solution. (A simple such example is treated in §9.4.1.) 

We will later employ Banach's Fixed Point Theorem to prove long and 
short time existence for solutions of certain quasilinear wave equations in 
§12.2. 

9.2.2. Schauder's, Schaefer's Fixed Point Theorems. 

Next we extend Brouwer's Fixed Point Theorem (§8.1.4) to Banach 
spaces. The key assumption is now compactness. Throughout this sub
section X continues to denote a real Banach space. 

THEOREM 3 (Schauder's Fixed Point Theorem). Suppose K c X is 
compact and convex, and assume also 

A:K--+K 

is continuous. Then A has a fixed point in K. 

Proof. 1. Fix f > 0 and choose finitely many points u1, ... , UNE E K, so 
that the open balls {B0(ui, £)}~1 cover K: 

NE 

(15) Kc LJ B 0 (ui, E). 
i=l 

This is possible since K is compact. Let Ke denote the closed convex hull 
of the points { ui, ... , UNE}: 

Then Ke CK, since K is convex. Now define Pe: K--+ Ke by writing 

(u EK). 

The denominator is never zero, because of (15). Now clearly Pe is continuous, 
and furthermore for each u E K, we have 

(16) 
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2. Consider next the operator Ae: Ke--+ Ke defined by 

Ae[u] := Pe[A[u]] (u E Ke)· 

Now Ke is homeomorphic to the closed unit ball in JRM£ for some Me <Ne. 
Brouwer's Fixed Point Theorem (§8.1.4) therefore ensures the existence of a 
point Ue E Ke with 

3. As K is compact, there exist a subsequence f.j --+ 0 and a point u E K, 
such that Ue. --+ u in X. We claim u is a fixed point of A. Indeed, using 

3 ' 

estimate (16), we deduce 

Consequently, since A is continuous, we conclude u = A[u]. D 

We next transform Schauder's Fixed Point Theorem into an alterna
tive form which is often more useful for applications to nonlinear partial 
differential equations. 

DEFINITION. A nonlinear mapping A : X --+ X is called compact pro
vided for each bounded sequence { uk}k::1 the sequence { A[uk]}k::1 is pre
compact; that is, there exists a subsequence { uki }~1 such that { A[uki]}~ 1 
converges in X. 

THEOREM 4 (Schaefer's Fixed Point Theorem). Suppose 

A:X-+X 

is a continuous and compact mapping. Assume further that the set 

{u EX I u = ,\A[u] for some 0 < ,\ < 1} 

is bounded. Then A has a fixed point. 

The assertion is that if we have a bound on any possible fixed points of 
any of the operators ,\A for 0 < ,\ < 1, then we have the existence of a fixed 
point for A. This is in accordance with the remarkable informal principle 
that "if we can prove appropriate estimates for solutions of a nonlinear PDE, 
under the assumption that such solutions exist, then in fact these solutions 
do exist". This is the method of a priori* estimates. 

The advantage of Schaefer's Theorem over Schauder's for applications is 
that we do not have to identify an explicit convex, compact set. 

*a priori= from before (Latin). 
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Proof. 1. Choose a constant M so large that 

(17) llull < M if u = .XA[u] for some 0 < .X < 1. 

Define then 

(18) 
_ { A[u] if llA[u]ll < M 

A[u] := i1!nl if llA[u]ll > M. 

Observe A B(O, M) -+ B(O, M). Now set K = closed convex hull of 
A(B(O, M)). Then since A and thus A a:e compact mappings, K is a com
pact, convex subset of X. Furthermore A: K-+ K. 

2. Invoking Schauder's Fixed Point Theorem, we infer the existence of 
a point u E K with 

(19) .A[u] = u. 

We now claim additionally that u is a fixed point of A. If not, then according 
to (18) and (19) we would have 

llA[u]ll > M 

and 

(20) u = .XA[u] 
M 

for .X = llA[u] II < 1. 

But llull = llA[u] II = M, a contradiction to (17) and (20). D 

A fixed point theorem for convex sets. For certain applications it is 
convenient to have available a variant of the previous theorem, asserting that 
if K is a convex subset of a Banach space X, with 0 E K, and if A : K -+ K 
is a continuous and compact mapping for which the set 

{u EK I u = .XA[u] for some 0 < .X < 1} 

is bounded, then A has a fixed point in K. 

The proof is a slight modification of the argument above. 

Application. Employing Schauder's and Schaefer's Fixed Point Theorems 
for PDE depends upon quite different considerations than applications of 
Banach's Theorem. The crucial assumption is now not that some parameter 
be small, but rather that we have some sort of compactness. As the inverses 
of linear elliptic operators are typically smoothing, compactness is indeed 
available for certain nonlinear elliptic equations. Following is a quick, albeit 
fairly crude, example: 
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Example 2 (A quasilinear elliptic PDE). We present now a simple ap
plication of Schaefer's Theorem by solving the semilinear boundary-value 
problem 

(21) { -~u + b(Du) + µu = 0 in U 
u = 0 on au, 

where U is bounded and au is smooth. We assume b : Rn ~ R is smooth, 
Lipschitz continuous and thus satisfies the growth condition 

(22) lb(p)I < C(IPI + 1) 

for some constant C and all p E Rn. 

THEOREM 5 (Existence). Ifµ > 0 is sufficiently large, there exists a 
function u E H 2 (U) n HJ(U) solving the boundary-value problem (21). 

Proof. 1. Given u E HJ(U), set 

(23) f := -b(Du). 

Owing to estimate (22), we see that f E L2 (U). Now let w E HJ(U) be the 
unique weak solution of the linear problem 

(24) { -~w + µw = f in U 
w = 0 on au. 

By the regularity theory proved in §6.3, we know additionally that w E 

H 2 ( U), with the estimate 

(25) 

for some constant C. 

Let us henceforth write A[u] = w whenever w is derived from u via (23), 
(24). In light of (22) and (25), we have the estimate 

(26) 

2. We now assert that A: HJ(U) ~ HJ(U) is continuous and compact. 
Indeed, if 

(27) Uk~ u in HJ(U), 

then in view of estimate (26) we have 

(28) 
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for Wk = A[uk] (k = 1, ... ). Thus there is a subsequence {wk; }~1 and a 
function w E HJ ( U) with 

(29) Wk; --+ w in HJ(U). 

Now L Dwk; · Dv + µwk;vdx = - L b(Duk;)vdx 

for each v E HJ(U). Consequently using (22), (27) and (29), we see 

L Dw · Dv + µwvdx = - L b(Du)vdx 

for each v E HJ(U). Thus w = A[u]. 

Hence (27) implies A[uk] --+ A[u] in HJ (U), and so A is continuous. A 
similar argument shows that A is compact, since if { uk}k::1 is bounded in 
HJ (U), estimate (22) asserts that { A[uk]}k-_1 is bounded in H 2 (U) and so 
possesses a strongly convergent subsequence in HJ ( U). 

3. Finally, we must show that ifµ is large enough, the set 

{u E HJ(U) I u = .XA[u] for some 0 < .X < 1} 

is bounded in HJ(U). So assume u E HJ(U), 

u = .XA[ u] for some 0 < .X < 1. 

Then x = A[u]; or, in other words, u E H 2 (U) n HJ(U) and 

-~u+ µu = .Xb(Du) a.e. in U. 

Multiply this identity by u and integrate over U, to compute 

L IDul2 + µlul2dx = - L >.b(Du)udx < L C(IDul + l)lul dx 

< ! f 1Dul2 dx + C f lul2 + ldx. 
2 lu lu 

Thus ifµ> 0 is sufficiently large, we have llullHJ(U) < C, for some constant 
C that does not depend on 0 < .X < 1. 

4. Applying Schaefer's Fixed Point Theorem in the space X = HJ(U), 
we conclude that A has a fixed point u E HJ(U) n H 2 (U), which in turn 
solves our semilinear PDE (21). D 
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Warning. A plausible plan for constructively solving (21) would be to se
lect some u0 and then iteratively solve the linear boundary-value problems 

{ -~uk+I + µuk+I = -b(Duk) in U 
uk+l = 0 on au (k = 0, 1, ... ). 

However, we cannot assert that {uk}~0 then converges to a solution of 
(21). Schauder's and Schaefer's Fixed Point Theorems do not say that any 
sequence converges to a fixed point. (But see the proof in §9.3 following.) 

See Gilbarg-Trudinger [G-T] for much more sophisticated applications 
of fixed point theorems to nonlinear elliptic PDE. 

9.3. METHOD OF SUBSOLUTIONS AND 
SUPERSOLUTIONS 

Our application of Schaefer's Theorem above in §9.2.2 depends upon the 
regularity estimates for solutions of elliptic equations. We turn our atten
tion now to another basic property of elliptic PDE, namely the maximum 
principle, and demonstrate how various resulting comparison arguments can 
be used to solve certain semilinear problems. The idea is to exploit ordering 
properties for solutions. More precisely, we will show that if we can find a 
subsolution u and a supersolution u of a particular boundary-value problem 
and if furthermore u < u, then there in fact exists a solution satisfying 

We will investigate this boundary-value problem for the nonlinear Pois
son equation: 

(1) { -~u = f(u) 
u=O 

in U 
on au, 

where f : JR -+ JR is smooth, with 

(2) If I I < c ( z E JR) 

for some constant C. 

DEFINITIONS. (i) We say that u E H 1(U) is a weak supersolution of 
problem (1) if 

(3) fu DU· Dvdx > fu f(U)vdx 
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for each v E HJ(U), v > 0 a.e. 

(ii) Similarly, u E H1(U) is a weak subsolution provided 

(4) L Du·Dvdx < fu!(u)vdx 

for each v E HJ(U), v > 0 a.e. 

(iii) We say u E HJ(U) is a weak solution of (1) if 

L Du·Dvdx= fuf(u)vdx 

for each v E HJ(U). 

Remark. If u, u E C2 (U), then from (3) and (4) it follows that 

-Llu > f(ft), -Llu < f (u) in U. 

THEOREM 1 (Existence of a solution between sub- and supersolutions). 
Assume there exist a weak supersolution ft and a weak subsolution u of (1), 
satisfying 

(5) u < 0, u > 0 on au in the trace sense, u < u a.e. in u. 

Then there exists a weak solution u of (1), such that 

u < u <ft a.e. in U. 

Proof. 1. Fix a number A > 0 so large that 

(6) the mapping z ~ f ( z) + AZ is nondecreasing; 

this is possible as a consequence of hypothesis (2). 

Now write uo = u, and then given Uk (k = 0, 1, 2, ... ), inductively define 
uk+I E HJ(U) to be the unique weak solution of the linear boundary-value 
problem 

(7) { -Lluk+I + AUk+I = f(uk) + AUk in U 
Uk+I = 0 On au. 

2. We claim 

(8) u = uo < u1 < · · · < Uk < · · · a.e. in U. 
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To confirm this, first note from (7) fork= 0 that 

(9) L Du1 · Dv + .>.u1vdx = L (f(ua) + .>.uo)vdx 

for each v E HJ ( U). Subtract ( 9) from ( 4), recall uo = u, and set 

v := (uo - u1)+ E HJ(U), v > 0 a.e. 

We find 

(10) 

But 
+ { D(uo - u1) a.e. on {uo > u1} 

D(uo - u1) = 
0 a.e. on { uo < u1}. 

(See Problem 18 in Chapter 5.) Consequently, 

so that uo < u1 a.e. in U. 

Now assume inductively that 

(11) Uk- I < Uk a.e. in U. 

From (7) we find 

(12) L Duk+! · Dv + .>.uk+I v dx = L (! ( uk) + .>.uk )v dx 

and 

L Duk· Dv + .>.ukvdx = L (f(uk-d + .>.uk-1)vdx 

for each v E HJ(U). Subtract and set v := (uk - uk+I)+. We deduce 

{ ID(uk - Uk+1)12 + ,\(uk - Uk+1) 2 dx 
J{uk?::.uk+1} 

= L[(f(uk-d + .>.uk-d - (f(uk) + .>.uk)J(uk - Uk+1)+ dx < 0, 

the last inequality holding in view of (11) and (6). Therefore Uk < Uk+I a.e. 
in U, as asserted. 
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3. Next we show 

(13) Uk < u a.e. in U (k = 0, 1, ... ). 

Statement (13) is valid fork= 0 by hypothesis (5). Assume now for induc
tion that 

(14) Uk < u a.e. in U. 

Then subtracting (3) from (12) and taking v := (uk+I - u)+, we find 

f ID(uk+l - u)l2 + .X(uk+l - u)2 dx 
J{uk+1~u} 

< L[(f(uk) +Auk) - (f(U) + AU)](uk+l - u)+ dx < 0, 

by (14) and (6). Thus uk+I < u a.e. in U. 

4. In light of (8) and (13), we have 

(15) u < · · · < Uk < uk+I < · · · < u a.e. in U. 

Therefore 
u(x) := lim uk(x) 

k-+oo 

exists for a.e. x. Furthermore we have 

(16) 

as guaranteed by the Dominated Convergence Theorem and (15). Finally, 
since we have llf(uk)llL2(u) < C(llukllL2(u) + 1), we deduce from (7) that 
supk llukllHJ(U) < oo. Hence there is a subsequence {uk;}fa=1 which converges 
weakly in HJ(U) to u E HJ(U). 

5. We at last verify that u is a weak solution of problem (1). For this, 
fix v E HJ(U). Then from (7) we find 

L Duk+l · Dv + Auk+iV dx = L (f (uk) + Auk)v dx. 

Let k--+ oo: 

L Du·Dv+Auvdx= L(f(u)+Au)vdx. 

Canceling the term involving .X, we at last confirm that 

LDu·Dvdx= fut(u)vdx, 

as desired. D 

This proof illustrates the use of integration by parts, rather than the 
maximum principle, to establish comparisons between sub- and supersolu
tions. 
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9.4. NONEXISTENCE OF SOLUTIONS 

We now complement the theory in §§9.1-9.3 with some nonexistence as
sertions for solutions of various nonlinear partial differential equations. The 
overall procedure will be to assume there exists a solution and then to obtain 
certain inequalities, which in turn force a contradiction. 

9.4.1. Blow-up. 

Blow-up for large enough initial data. We begin by considering an 
initial/boundary-value problem for a parabolic equation with a simple qua
dratic nonlinearity: 

(1) { 

Ut - Llu = u2 in Ur 
u = 0 on au x (0, T) 
u = g on U x { t = 0}. 

We will show that if T > 0 and g > 0 are large enough in an appropriate 
sense, then there does not exist a smooth solution u of (1). We can regard 
the nonlinear heat equation in ( 1) as a simple reaction-diffusion equation (cf. 
Example 1 in §9.2.1). The nonlinear term alone corresponds to the ODE 

it= u2 (· d) 
= dt ' 

which certainly blows up in finite time, provided u(O) > 0. The purely 
diffusive effects on the other hand yield the heat equation, which tends to 
smooth out irregularities. The following analysis must therefore untangle 
the competing effects of blow-up from the u2 term and smoothing from the 
Llu term. 

We proceed by choosing w1 to be an eigenfunction corresponding to the 
principal eigenvalue .\1 > 0 of -Ll in HJ(U). Then owing to the theory in 
§6.5.1, w1 is smooth, 

and we may furthermore assume 

in U 
on au, 

(2) W1 > 0 in U, fu W1 dx = 1. 

Suppose u is a smooth solution of ( 1), with g > 0, g t 0, so that u > 0 
within Ur by the strong maximum principle. 
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THEOREM 1 (Blow-up for large data). Assume that 

(3) Lgw1dx > A1. 

Then there cannot exist a smooth solution u of (1) existing for all times 
T > 0. 

Proof. Define 

71(t) := L u(x, t)w1 {x) dx (0 < t < T). 

Then 

(4) 
iJ = L UtW1 dx = L (tlu + u2)w1 dx 

= L u~w1 + u2w1 dx = -A171 + L u2w1 dx. 

Furthermore 

71 = L uw1 dx = L uw~l2w~12 dx 

< (L u2w1 dx )1'2 (L w1 dx )1'2 

= (L u2w1dx)
112 

by (2). 

Employing this inequality in (4), we find 

(5) 

Writing e(t) := e>-1t11(t) gives 

~ = e>-1tr, + ;x1e>.it11 > e>-1t112 = e->.1te2. 

Thus 

and therefore 

Rearranging, we deduce 
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provided the denominator is not zero. But now suppose ( 3) holds, so that 

17(0) = e(o) > A. Then e(t) --+ +oo as t --+ t*, for t* := ~~log ( 11<~{~)" 1 ) • D 

Our proof shows that either the solution is not smooth enough to justify 
the calculation above or else 

lim f u(x, t)w1(x) dx = oo 
t---.t. Ju 

for some time 0 < t. < t*. In this case we say u "blows up" at time t •. 

Blow-up for small initial data. We discuss next an interesting variant 
of the foregoing proof, now for this initial-value problem in all of space: 

(6) { 
Ut - Llu = uP in Rn x (0, T) 

u = g on Rn x { t = O}. 

We assume the nonnegative initial function gt 0 is smooth, with compact 
support. 

THEOREM 2 (Blow-up for small data). Assume 

(7) 1 n+2 
<p<-

n 

Then there cannot exist a nonnegative, integrable and smooth solution u of 
(6) existing for all times T > 0. 

Proof. Since we are working in all of Rn, we must replace the eigenfunc
tion used before. Instead, introduce the fundamental solution of the heat 
equation evaluated at a times> 0 (which we will select later): 

Recall that 

1 _l=f. 
<P(x,s) = (47rs)n/2 e 4s 

f <P(x,s)dx = 1. 
}JRn 

Furthermore, a calculation shows that 

(8) 

Define 

n 
Ll<P(x, s) + 28 <P(x, s) > 0. 

17(t) := [ u(x, t)<P(x, s) dx. 
}JRn 
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Then (8) implies 

i](t) = f UtiP dx = J. (~u + uP)iP dx 
}Rn Rn 

= J. u~iP + uPiP dx > _!!_TJ(t) + f uPiP dx 
p 2s ~n 

for iP = iP(x, s). As in the previous proof, 

Therefore 

(9) 

for 
n 

.X := 2s. 

We integrate (9) by setting e(t) := e>.tTJ(t). Then 

Integrating and rewriting, we discover that 

cp-1(0).X 
ep-1(t) > ---~----

- .X - ep-l(O){l - e->.(p-l)t). 

This differential inequality shows that e--+ oo in finite time if 

1 

TJ(O) = e(o) > _xp-1. 

Recalling the definitions of .X and 'P, we rewrite this condition as saying 

{10) ge- 4s dx > sn/2 - P = "'{S2 p-1, 1 J. ~ ( n ) :1 11 __ 1 

( 47r )n/2 Rn 2s 

where "Y > 0. But our condition (7) on p implies ~ - p_:l < 0, and hence for 
any initial function g ¢. 0 we can select s so large that (10) is valid. D 
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9.4.2. Derrick-Pohozaev identity. 

We investigate next a nonlinear elliptic PDE to which different differen
tial inequality methods apply, namely the nonlinear boundary-value problem 

{11) { -~u = lulP-lu in U 
u = 0 on au. 

Now the theory in §8.5.2 applies to {11) provided 

{12) 1 n+2 
<p < n-2 

and proves the existence of a nontrivial solution u ¢. 0. Let us now instead 
suppose 

{13) 
n+2 

2 < p < 00. 
n-

Our goal is to demonstrate under a certain geometric condition on U that 
(13) implies u = 0 is the only smooth solution of (11). We see therefore 
that the restriction to condition {12) in §8.5.2 was in some sense natural, 
and consequently say p = ~!~ is a critical exponent. 

DEFINITION. An open set U is called star-shaped with respect to 0 pro
vided for each x E [J, the line segment 

lies in [J. 

A star-shaped domain 
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Clearly if U is convex and 0 E U, then U is star-shaped with respect to 
0. But a general star-shaped region need not be convex. 

LEMMA (Normals to a star-shaped region). Assume au is 0 1 and U is 
star-shaped with respect to 0. Then 

x . II ( x) > 0 for all x E au, 

where 11 denotes the unit outward normal. 

Proof. Since au is 0 1, if x E au, then for each E > 0 there exists 8 > 0 

such that IY - xi < 8 and y EU imply 11(x) · ~:=:? < E. In particular 

limsup v(x) · \y - xi < 0. 
y-x y- X 
yEU 

Let y = .Xx for 0 < .X < 1. Then y E U, since U is star-shaped. Thus 

x . (.Xx-x) 
11(x) · -1 I = - hm 11(x) · l.X I > 0. x ..x-1- x - x 

D 

We next prove that there can exist no nontrivial solution to problem 
(11) for supercritical growth, provided U is star-shaped. The proof is a 
remarkable calculation initiated by multiplying the PDE -~u = lulP-1u by 
x ·Du and continually integrating by parts. Our selection of the multiplier 
x · Du is inspired by Example 2 in §8.6.2. 

THEOREM 3 (Nonexistence of nontrivial solution). Assume u E C2(U) 
is a solution of problem (11) and the exponent p satisfies inequality (13). 
Suppose further U is star-shaped with respect to 0 and au is 0 1 . Then 

u = 0 within U. 

Proof. 1. We multiply the PDE by x · Du and integrate over U, to find 

(14) fu (-~u)(x ·Du) dx = fu lulP-1u(x ·Du) dx. 

We rewrite this expression as 

A=B. 
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2. The term on the left is 

(15) 

3. Now 

(16) 

n 

A := - L 1 Ux;x;XjUx; dx 
i,j=l u 

n n 

= L 1 Ux,(XjUz;)x, dx- L 1 Ux,ViXjUx; dS 
i,i=I u i,j=I au 

=:Ai+ A2. 

= L 1Dul2 + t cn;12) x; Xj dx 

= (1 - n) J 1Dul2 dx + f 1Dul2 
(11 · x) dS. 

2 u lau 2 
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On the other hand, since u = 0 on au, Du(x) is parallel to the normal v(x) 
at each point x Eau. Thus Du(x) = ±IDu(x)lv(x). Using this equality, we 
calculate 

(17) A2 = - [ 1Dul2(v · x) dS. 
lau 

Combine (15)-(17), to deduce 

2-n1 11 A= 1Dul2 dx - -2 1Dul2 (11 · x) dS. 
2 u au 

4. Returning to (14), we compute 

n 

B := L f 1ulP-1uXjUx; dx 
j=l u 

= t f (lul1'+:) Xj dx = - n 1 [ lulP+l dx. 
. 1 lu P + ... . P + lu 

J= "'3 

5. This calculation and (14) yield 

(18) ( n; 2) L IDul2 dx + ~!au 1Dul2(v · x) dS = P: 1 L lul1'+1 dx. 
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In view of the lemma above, we then obtain the inequality 

(19) 

But once we multiply the PDE -~u = lulP-1u by u and integrate by parts, 
we produce the equality 

Substituting into (19), we thus conclude 

( n - 2 - n ) [ lulp+l dx < 0. 
2 p + 1 lu 

Hence if u t 0, it follows that n22 - p~l < O; that is, p < :!~. D 

The equality (18) is sometimes called the Derrick-Pohozaev identity. 

9.5. GEOMETRIC PROPERTIES OF SOLUTIONS 

9.5.1. Star-shaped level sets. 

We explain in this subsection a simple method that is occasionally useful 
for studying the geometric properties of the level sets of solutions to various 
PDE. The easiest such case occurs when we look at harmonic functions in 
an open set U having the form 

U= W-V, 

where V cc W, for open sets V, W, each of which is star-shaped with 
respect to 0. Write 

(1) 

ro = aw, r 1 = av. 

We consider the problem 

{ 
~u = 0 in U 

u = 1 on ri 
u = 0 on ro. 

Physically u corresponds to the electrostatic potential generated within the 
region U, once we fix the potential value to be one on ri and zero on ro. 
According to the strong maximum principle 0 < u < 1 within U. 
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THEOREM 1 (Star-shaped level sets). For each 0 < .X < 1 the level set 

r.x := {x Eu I u(x) = .X} 

is a smooth surf ace and is the boundary of a set star-shaped with respect to 
0. 

Proof. 1. For each µ > 0, the function x ~ u(µx) is harmonic, and thus 
so 18 

d 
v(x) := dµ (u(µx))lµ=l = Du(x) · x (x EU). 

Now since u = 0 on ro, Du(x) points in the direction of -11(x) at each 
point x E aw. Additionally, we have x · 11(x) > 0 on ro, since W is star
shaped with respect to 0. Consequently v = Du· x < 0 on ro. Similarly 
v < 0 on r 1. According then to the strong maximum principle for harmonic 
functions, v < 0 in U. In particular, Du =f:. 0 within U. Consequently the 
Implicit Function Theorem (§C.7) implies that r.x is a smooth surface for 
0<.X<l. 

2. Extend u to equal 1 on all of V and write 

U,x := {x E WI u > .X}. 

Then U,x is an open subset of Wand au.x = r,x. By the strong maximum 
principle, U ,x is connected. 

Now let x E r.x and let 11(x) denote the outer unit normal to r.x at 
x. Then Du(x) points in the direction of -11(x). Since v(x) < 0, we have 
x · 11(x) > 0. This inequality holds for each x E r,x. 

3. It follows that r.x is the boundary of a set star-shaped with respect 
to 0. To see this, return to the proof of the lemma in §9.4.2, and notice 
that if r ,x were not star-shaped with respect to 0, we could then find a point 
x E r.x for which y = µx ¢ U,x ifµ is close to 1, µ < 1. But then we can 
derive the contradiction 

x . (µx - x) 
11 ( x) · -

1 
I = - hm 11 ( x) · I I < 0. x µ-1- µx - x 

D 

9.5.2. Radial symmetry. 

In this subsection we take U = B 0 (o, 1) to be the open unit ball in Rn 
and investigate this boundary-value problem for a semilinear Poisson PDE: 

(2) { -~u = f ( u) in U 
u = 0 on au. 
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We are interested in positive solutions: 

(3) u>O inU 

and will assume f : JR~ JR is Lipschitz continuous but is otherwise arbitrary. 
Our intention is to prove that u is necessarily radial, that is, u(x) depends 
only on r = lxl. This is quite an unexpectedly strong conclusion, since we 
are making essentially no assumption on the nonlinearity. 

a. Maximum principles. Our proofs will depend upon an extension of 
the maximum principle for second-order elliptic PDE. 

LEMMA 1 (A refinement of Hopf's Lemma). Suppose V C lRn is open, 
v E C2 (V), and c E L 00 (V). Assume 

(4) 

Suppose also v t 0. 

{ -~v + cv > 0 in V 
v > 0 in V. 

(i) If x 0 E oV, v(x0 ) = 0, and V satisfies the interior ball condition at 
x 0 , then 

(5) 

(ii) Furthermore, 

(6) 

av 0 av (x ) < 0. 

v > 0 in V. 

Observe that we are here making no hypothesis concerning the sign of 
the zeroth-order coefficient c. 

Proof. Let w := e->.xiv, where .X > 0 will be selected below. Then v = 
e>.xi w and so , 

CV> ~v = ~(e>.x1 w) = .X2v + 2.Xe>.x1Wx 1 + e>.xi~w. 
Thus 

if .X = liciii,lc!. 
Consequently w is a supersolution for the elliptic operator Kw:= -~w-

2.Xwx1, which has no zeroth-order term. The strong maximum principle im
plies w > 0 in V. According to Hopf's Lemma (§6.4.2) therefore, ~(x0 ) < 0. 
But 

ow (xo) = Dw(xo) . v(xo) = e->.x~ ov (xo) av av 
since v(x0 ) = 0. Assertion (i) therefore holds, and assertion (ii) follows since 
w > 0 in V. D 



9.5. GEOMETRIC PROPERTIES OF SOLUTIONS 557 

LEMMA 2 (Boundary estimates). Let u E C2 (U) satisfy (2), (3). Then 
for each point XO E aU n { Xn > 0}, either 

(7) 

or else 

(8) 

In either case, u is strictly decreasing as a function of Xn near x0 • 

Proof. 1. Fix any point x0 E au n {xn > O} and let v = v(x0 ) 

(vi, ... , Vn) denote the outer unit normal to au at x0 . Note Vn > 0. 

2. We first claim 
Uxn(x0 ) < 0, 

provided 

(9) f(O) > 0. 

Indeed 

0 = -Llu - f(u) = -Llu - f(u) + f(O) - f(O) 

< -Llu +cu, 

for c(x) := - J0
1 f'(su(x)) ds. According to Lemma 1, g~(x0 ) < 0. Since Du 

is parallel to II On au and Vn > 0, We conclude Uxn (x0 ) < 0. 

3. Now suppose 

(10) f(O) < 0. 

If Uxn ( x0 ) < 0, we are done. Otherwise, since Du is parallel to 11, 

(11) Du(x0 ) = 0. 

As (2) is invariant under a rotation of coordinate axes, we may as well 
suppose x0 = (0, ... , 1), v = (0, ... , 1). 

4. We assert 

(12) Uxix; (x0 ) = - f (O)viVj for each i,j = 1, ... , n. 

Since u = 0 on au, we have u(x', 1(x')) = 0 for all x' E Rn-l, lx'I < 1, 
where 1(x') = (1- lx'l2 ) 112• Differentiating with respect to Xi and Xj (i,j = 
1, ... , n - 1) and using (11), we conclude 

(13) Uxix; (x0 ) = 0 (i,j = 1, ... , n - 1). 
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Reflection through a plane 

Since Uxn < 0 on au n {xn > O} and Uxn(x0) = 0, the mapping x' I-+ 

Uxn ( x', 1( x')) has a maximum at x' = 0. Thus 

(14) Uxnxi(x0) = 0 (i = l, ... ,n-1). 

Finally, (13), (14) and the PDE (2) force Uxnxn(x0) = - J(O). This equality 
is (12) for v = (0, ... , 1). Returning to the original coordinate axes, we 
obtain (12). 

5. Setting i = j = n in (12), we find using (10) that 

D 

b. Moving planes. We introduce next a "moving plane" P>,., across which 
we will reflect our partial differential equation. 

NOTATION. (i) If 0 < .X < 1, define the plane 

P>,. := {x E IRn I Xn = .X}. 

(ii) Write X>,. := (xi, ... , Xn-1' 2.X - xn) to denote the reflection of x in 
P>,.. 

(iii) E>,. := {x EU I A< Xn < 1}. 

THEOREM 2 (Radial symmetry). Let u E C2 (U) solve (2), (3). Then u 
is radial; that is, 

u(x) = v(r) (r = lxl) 

for some strictly decreasing function v : [O, 1] -+ [O, oo). 
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Proof. 1. We consider for each 0 < A < 1 the statement 

(15,x) u(x) < u(x,x) for each point x E E,x. 

2. According to Lemma 2, (15,x) is valid for each A < 1, A sufficiently 
close to 1. Set 

(16) Ao := inf{O < A < 1 I (15µ) holds for each A < µ < 1 }. 

We will prove 

(17) Ao= 0. 

Assume instead Ao> 0. Write w(x) := u(x,x0 ) - u(x) (x E E,x0 ). Then 

-~w = f(u(x,x0 )) - f(u(x)) =-cw in E,x0 , 

for c(x) := - J0
1 f'(su(x,x0 ) + (1 - s)u(x)) ds. As w > 0 in E,x0 , we deduce 

from Lemma 1 (applied to v = E.xo) that w > 0 in E.xo, Wxn > 0 on P.xo nu. 
Thus 

(18) 

and 

(19) Uxn < 0 on P.xo n u. 

Using (18), (19) and Lemma 2, we conclude 

(20) u(x) < u(x,x0 -e) in E,x0 -e for all 0 < c <co, 

if co is small enough. Assertion (20) contradicts our choice (16) of Ao, if 
Ao> 0. 

3. Since Ao = 0, we see u(xi, ... , Xn-1, -xn) > u(xi, ... , Xn) for all x E 
Un{xn > O}. A similar argument in Un{xn < O} shows u(xi, ... , Xn-1, -xn) 
< u(xi, ... 'Xn) for all x E u n {xn > O}. Thus u is symmetric in the plane 
Po and Uxn = 0 on Po. 

This argument applies as well after any rotation of coordinate axes, and 
so the theorem follows. D 
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9.6. GRADIENT FLOWS 

In this section we augment our discussion of abstract semigroup theory for 
linear operators (§7.4) by introducing certain nonlinear semigroups, gener
ated by convex functions. Applications include various nonlinear second
order parabolic partial differential equations. 

9.6.1. Convex functions on Hilbert spaces. 

Convexity has been an essential ingredient in much of our analysis of 
nonlinear PDE thus far. We now broaden our view by considering convex 
functions defined on (possibly infinite-dimensional) Hilbert spaces. 

Hereafter H will denote a real Hilbert space, with inner product ( , ) 
and norm II II· 
DEFINITION. A function 

l: H--+ (-00,00] 

is convex provided 

l[Tu + (1 - T)v] < T l[u] + (1 - T)l[v] 

for all u, v E H and each 0 < T < 1. 

Note carefully that we allow I to take on the value +oo (but not -oo ). 
The function l is called proper if l is not identically equal to +oo. The 
domain of l is 

D(l) := {u EH I l[u] < +oo }. 

DEFINITION. We say l: H--+ (-oo, +oo] is lower semicontinuous if 

{ 
Uk --+ u in H implies 

l[u] < lim inf l[uk]. 
k-+oo 

As in the finite-dimensional case (cf. §B. l), it is important to understand 
when the graph of l has a supporting hyperplane. 

DEFINITIONS. Let l : H--+ (-oo, +oo] be convex and proper. 

(i) For each u E H, we write 

(1) 8l[u] := { v EH I l[w] > l[u] + (v, w - u) for all w EH}. 

The mapping 81: H--+ 2H is the subdifferential of l. 

(ii) We say u E D(81), the domain of 81, provided 8l[u] =I= 0. 

The geometric interpretation of (1) is that v E 8l[u] if and only if v 
is the "slope" of an affine functional touching the graph of l from below 
at the point u. Since this graph may have a "corner" at u, 8l[u] could be 
multivalued. 
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THEOREM 1 (Properties of subdifferentials). Let I: H--+ (-oo, +oo] be 
convex, proper and lower semicontinuous. Then 

(i) D(8I) c D(I). 

(ii) If v E 8J[u] and v E 8I[u], then 

(v - v, u - u) > 0 (monotonicity). 

(iii) I[u] = minwEH I[w] if and only if 0 E 8J[u]. 
(iv) For each w EH and .X > 0, the problem 

u+ .X8I[u] 3 w 

has a unique solution u E D(8I). 

Assertion (iv) means that there exist u E D(8I) and v E 8J[u] such that 

u+.Xv = w. 

Proof. 1. Let u E D(8I), v E 8J[u]. Then J[w] > I[u] + (v, w - u) for all 
w E H. Since I is proper, there exists a point Uo with J[Uo] < +oo. Thus 
I[u] < I[uo] + ( v, u - uo) < oo and sou E D(I). This proves (i). 

2. Given v E 8I[u], v E 8I[u], we know 

I[u] > I[u] + (v,u- u), I[u] > I[u] + (v,u- u). 

As (i) implies J[u], I[u] < +oo, we may add the foregoing inequalities and 
rearrange to obtain (ii). 

3. If J[u] =min I, then 

(2) I[w] > I[u] + (0, w - u) for all w EH. 

Hence 0 E 8I[u]. If conversely 0 E 8I[u], then (2) holds, and so I[u] = min I. 
4. Given w E H and .X > 0, define 

(3) J[u] := ~ llull2 + .XI[u] - (u, w) (u EH). 

We intend to show that J attains its minimum over H. 

(4) 

Let us first claim that 

{ 
uk --l. u weakly in H implies 

I[u] < liminf I[uk]· 
k-oo 
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In other words, we are asserting for a convex function I that lower semicon
tinuity with respect to strong convergence of sequences implies lower semi
continuity with respect to weak convergence. To see this, suppose Uk ~ u 
in Hand 

lim inf I[uk] = _lim I[ukj] = l < oo 
k-oo J-oo 

for some subsequence [ukj]~1 C { uk}~1 . For each c > 0 the set Ke = { w E 
HI J[w] < l +c} is closed and convex and is thus weakly closed according to 
Mazur's Theorem (§D.4). Since all but finitely many of the points { Ukj }~1 
lie in Ke, u lies in Ke, and consequently 

I[u] < l + c = lim inf I[uk] + c. 
k-oo 

This is true for each c > 0 and thus ( 4) follows. 

5. Next we assert that 

(5) I[u] > -C - Cllull ( u E H) 

for some constant C. To verify this claim, we suppose to the contrary that 
for each k = 1, 2, . . . there exists a point Uk E H such that 

(6) 

If the sequence { uk}~1 is bounded in H, there exists according to §D.4 a 
weakly convergent subsequence: Uk; ~ u. But then (4) and (6) imply the 
contradiction J[u] = -oo. Thus we may as well assume, passing if necessary 
to a subsequence, that llukll -+ oo. Select uo EH so that J[uo] < oo. Set 

Zk := 11::11 + ( 1 - 11:k 11 ) Uo (k = 1, 2, ... ) . 

Then convexity implies 

As {zk}~1 is bounded, we can extract a weakly convergent subsequence: 
Zk; ~ z and again derive the contradiction J[z] = -oo. We thereby establish 
the claim (5). 

6. Return now to the function J defined by (3). Choose a minimizing 
sequence { uk} ~1 C H so that 

J[uk] -+ inf J[w] = m. 
weH 
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Owing to (3) and (5), m is a finite number. Thus we deduce from (3), 
(5) that the sequence { uk}k-._1 is bounded. We may then extract a weakly 
convergent subsequence: Uk; ~ u. As the mapping u i--+ llull 2 is weakly lower 
semicontinuous, J has a minimum at u. Then assertion (iii) says 0 E 8J[u]. 
A computation verifies that 8J[u] = u - w + A8l[u], and so 

u + A8l[u] 3 w. 

7. To confirm uniqueness, suppose as well 

u + A8l[u] 3 w. 

Then u +AV = w, u +AV = w for v E 8I[u], v E 8I[u]. Owing to the 
monotonicity assertion (ii), 

Since A > 0, u = u. D 

We introduce next nonlinear analogues of the operators RA, AA intro
duced in §7.4. 

DEFINITIONS. (1) For each A > 0 define the nonlinear resolvent JA : 
H-+ D(8I) by setting 

JA[w] := u, 

where u is the unique solution of 

u + A8l[u] 3 w. 

( 2) For each A > 0 define the Yosida approximation AA : H -+ H by 

(7) AA[w) := w - :A[w] (w E H). 

Think of AA as a sort of regularization or smoothing of the operator 
A= 81. 

THEOREM 2 (Properties of JA, AA)· For each A> 0 and w, w EH, the 
following statements hold: 

(i) llJA[w] - JA[w]ll < llw - wll, 

(ii) llAA[w] - AA[w]ll < illw - wll, 
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(iii) O < (w - w, A,x[w] - A,x[w]), 

(iv) A,x[w] E 8J[J,x[w]]. 

(v) If w E D(8I), then 

sup llA.x[w]ll < IA0 [w]I, 
.\>0 

where IA0 [w] I := minzE8/[w) llzll. 

(vi) For each w E D(8I), 

lim J,x[w] = w . 
.\--+O 

Proof. 1. Let u = J,x[w], u = J,x[w]. Then u +Av = w, u +AV = w for 
some v E 8J[u], v E 8J[u]. Therefore 

llw - wll 2 = llu - u + A(v - v)ll 2 

= llu - u.11 2 + 2A(u - u, v - v) + A2 llv - vll 2 

> llu - ull 2 , 

according to Theorem l(ii). This proves assertion (i), and assertion (ii) 
follows at once from the definition (7) of the Yosida approximation A,x. 

2. We verify (iii) by using (7) to compute 

(w - w, A,x[w] - A,x[w]) = ~ (llw - wll 2 - (w - w, J,x[w] - J,x[w])) 

> ~ (llw - wll 2 - llw - wll llJ,x[w] - J,x[w]ll) > 0, 

according to (i). 

3. To prove (iv), note that u = J,x[w] if and only if u +AV= w for some 
v E 8J[u] = 8I[J,x[w]]. But 

v = w - u = w - J,x[w] = A,x[w]. 
A A 

4. Assume next w E D(81), z E 8J[w]. Let u = J,x[w], so that u +AV= 
w, where v E 8J[u]. By monotonicity 

( w - J,x[w]) 0 < (w - u, z - v) = w - J,x[w], z - A = (AA,x[w], z - A,x[w]). 
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Consequently 

and so 
llA.x[w]ll < llzll. 

This estimate is valid for all .X > 0, z E 8l[w]. Assertion (v) follows. 

5. If w E D(81), then 

llJ.x[w] - wll = .XllA.x[w]ll < .XIA0 [w]I, 

and hence J,x[w] ---+was .X---+ 0. Now let w E D(81) - D(81). There exists 
for each€---+ 0 a point w E D(81) with llw - £vii < €. Then 

llJ.x[w] - wll < llJ.x[w] - J,x[w]ll + llJ.x[w] - £vii+ llw - £vii 
< 2llw - £vii+ llJ.x[w] - £vii 
< 2£ + II J A [ {u] - {u 11. 

Since w E D(81), J,x[w] ---+ w as .X---+ 0. Thus 

limsup llJ.x[w] - wll < 2£ 
.x-o 

for each€> 0. 

9.6.2. Subdifferentials and nonlinear semigroups. 

D 

As above, let H be a real Hilbert space, and take l : H ---+ ( -oo, +oo] 
to be convex, proper, lower semicontinuous. Let us for simplicity assume as 
well 

(8) 81 is densely defined, that is, D(81) = H. 

By analogy with the theory of linear semigroups set forth in §7.4, we propose 
now to study the differential equation 

(9) { u'(t) + A[u(t)] 3 0 
u(O)= u, 

(t > 0) 

where u E H is given and A = 81 is a nonlinear, discontinuous operator, 
which is perhaps multivalued. Assuming for the moment (9) has a unique 
solution for each initial point u, we write 

(10) u(t) = S(t)u (t > 0) 
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and regard S( t) so defined as a mapping from H into H for each time 
t > 0. We will employ the notation (10) to emphasize similarities with 
linear semigroup theory, previously introduced in §7.4. But carefully note 
here and afterwards that the mapping u 1-+ S(t)u is in general nonlinear. 

As in §7.4 it is reasonable to expect further that 

(11) S(O)u = u (u EH), 

(12) S(t + s)u = S(t)S(s)u (t, s > 0, u EH), 

and for each u E H 

(13) the mapping t 1-+ S(t)u is continuous from [O, oo) into H. 

DEFINITIONS. (i) A family {S(t)}t>o of nonlinear operators mapping H 
into H is called a nonlinear semigroup if conditions (11)-(13) are satisfied. 

(ii) We say {S(t) h>o is a contraction semigroup if in addition 

(14) llS(t)u - S(t)ull < llu - ull (t > o, u, u EH). 

Our intention is to show that the operator A= 81 generates a nonlinear 
semigroup of contractions on H. In particular we will prove that the ODE 

(15) { u'(t) E -8/[u(t)] (t > 0) 

u(O) = u, 

for a given initial point u E H, is well-posed. This is a kind of infinite
dimensional "gradient flow" governed by 81. Later in §9.6.3 we will see that 
certain quasilinear parabolic PDE can be cast into the abstract from (15). 

THEOREM 3 (Solution of gradient flow). For each u E D(8I) there exists 
a unique function 

(16) u E C([O,oo);H), with u' E £ 00 (0,oo;H), 

such that 

(i) u(O) = u, 

(ii) u(t) E D(8I) for each t > 0, 

and 

(iii) u'(t) E -8/[u(t)] for a.e. t > 0. 
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Proof. 1. We first build approximate solutions by solving for each A > 0 
the ODE 

(17) { u~ ( t) + A_x [ u,x ( t)] = 0 
u,x(O) = u. 

(t > 0) 

According to Theorem 2(ii) the Yosida approximation A,x : H -+ H is 
an everywhere defined, Lipschitz continuous mapping, and thus (17) has a 
unique solution u,x E C 1([0, oo); H). 

Our plan is to show that as A -+ o+, the functions u,x converge to a 
solution of (15). This is subtle, however, as the operator A = 81 is in 
general nonlinear, multivalued, and not everywhere defined. 

2. First, let us take another point v EH and consider as well the ODE 

(18) 

Then 

{ v~ (t) + A,x[v,x(t)] = 0 
v,x(O) = v. 

(t > 0) 

~ ! llu.x - v.xll 2 = (u~ - v~, u,x - v,x) 

= (-A_x[u,x] + A,x[v,x], u,x - v,x) < 0, 

owing to Theorem 2(iii). Hence 

(19) llu.x(t) - v,x(t)ll < llu - vii (t > 0). 

In particular, if h > 0 and v = u,x(h), then by uniqueness v,x(t) = u,x(t + h). 
Consequently (19) implies 

llu.x(t + h) - u,x(t)ll < llu(h) - ull. 

Divide by h and send h -+ 0: 

(20) llu~(t)ll < llu~(O)ll = llA.x[uJll < IA0 [u]I, 

the last inequality resulting from Theorem 2(v). 

3. We next take .X, µ > 0 and compute 

(21) 

Now 

1 d I 12 ( I I ) 
2 dt lu.x - uµI = u,x - uµ, u,x - uµ 

= (-A,x[u.x] + Aµ[uµ], u,x - uµ)· 

u,x - uµ = (u,x - J,x[u,x]) + (J,x[u,x] - Jµ[uµ]) + (Jµ[uµ] - uµ) 

= .XA,x[u.x] + J,x[u.x] - Jµ[uµ] - µAµ[uµ]· 
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Consequently 

(A..\[u..\) - Aµ[uµ], U;\ - uµ) = (A..\[u..\] - Aµ[uµ], J..\[u..\] - Jµ[uµ]) 

(22) + (A;\[u..\] - Aµ[uµ], ,\A;\[u..\] - µAµ[uµ]). 

Since A..\[u..\] E 8J[J..\[u..\]] and Aµ[uµ] E 8I[Jµ[uµ]], the monotonicity prop
erty implies that the first term on the right-hand side of (22) is nonnegative. 
Thus 

(A..\[u..\] - Aµ[uµ], u..\ - uµ) > AllA;\[u..\)11 2 +µllAµ[uµ]11 2 

- (,\ + µ) llA;\[u;\] II llAµ[uµ) II· 

Since 

(.\ + µ)llA;\[u;\Jll llAµ[uµ]ll < ,\ (llA;\[u..\Jll 2 + !llAµ[uµ]ll 2) 

+ µ (llAµ[uµ]ll 2 + !llA..\[u..\)11 2), 

we deduce 

,\ 2 µ 2 
(A..\[u..\] - Aµ[uµ], ll;\ - uµ) > - 4 llAµ[uµ]ll - 4 llA..\[u..\)11 . 

But llA;\[u;\Jll = llu~ll < IA0 [u]I according to (20), whence 

(A;\[u..\] - Aµ[uµ], ll;\ - uµ) > - ,\: µ 1A0 [u]l2 . 

Recalling (21), (22), we obtain the inequality 

and hence 

(23) llu;\(t) - Uµ(t)ll 2 < (,\; µ) tlA0 [u]l 2 (t > 0). 

In view of estimate (23) there exists a function u E C([O, oo); H) such that 

ll;\ -+ u uniformly in C([O, T], H) 

as,\-+ 0, for each time T > 0. Furthermore estimate (20) implies 

(24) u~ --l. u' weakly in L2 (0, T; H) 

for each T > 0 and 

(25) llu'(t)ll < IA0 [u)I for a.e. t. 



9.6. GRADIENT FLOWS 569 

4. We must show u(t) E D(81) for each t > 0 and 

u'(t) + 8J[u(t)] 3 0 for a.e. t > 0. 

Now 

llJ,x[u,x](t) - u,x(t)ll = ,\llA,x[u,x](t)ll = ,\llu~(t)ll < ,\IA0 [u]I 

by (20). Hence 

(26) J,x[u,x] -+ u uniformly in C([O, T]; H) 

for each T > 0. 

For each time t > 0, 

-u~(t) = A,x[u,x(t)] E 8/[J,x[u,x(t)]]. 

Thus given w EH, we have 

I[w] > J[J,x[u,x(t)]] - (u~(t),w- J,x[u,x(t)]). 

Consequently if 0 < s < t, 

(t - s)I[w] > [ I[J>.[u>.(r)]] dr - f.\u~ (r), w - J>.[u>.(r)]) dr. 

In view of (26), the lower semicontinuity of I, and Fatou's Lemma (§E.3), 
we conclude upon sending ,\ -+ 0 that 

(t - s)I[w] > [ I[u(r)] dr - [ (u'(r), w - u(r)) dr 

for each 0 < s < t. Therefore 

I[w] > J[u(t)] + (-u'(t), w - u(t)) 

if tis a Lebesgue point of u', J[u]. Hence for a.e. t > 0, 

I[w] > J[u(t)] + (-u'(t), w - u(t)) 

for all w EH. Thus u(t) E D(8I), with 

-u'(t) E 8/[u(t)] 

for a.e. t > 0. 
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5. Finally we prove u(t) E D(8I) for each t > 0. To see this, fix t > 0 
and choose tk --+ t such that u(tk) E D(8I), -u'(tk) E 8J[u(tk)]. In view of 
(25) we may assume, upon passing if necessary to a subsequence, that 

u' ( tk) ~ v weakly in H. 

Fix w E H. Then 

I[w] > J[u(tk)] + (-u'(tk), w - u(tk)). 

Let tk --+ t and recall that u E C([O, oo]; H) and I is lower semicontinuous. 
We obtain the inequality 

I[w] > J[u(t)] + (-v, w - u(t)). 

Hence u(t) E D(8I) and -v E 8J[u(t)]. 

6. We have shown u satisfies assertions (i)-(iii). To prove uniqueness, 
assume ft is another solution and compute 

~ ! llu - fill 2 = (u' - u', u - u) < 0 for a.e. t > 0, 

since -u' E 8J[u], -u' E 8J[u]. D 

Remarks. (i) The operator A= 81 in fact generates a nonlinear contrac
tion semigroup on all of H. If u, v E D(8I), we write as above 

lim u.x(t) = u(t) = S(t)u 
>.-o 

and 
lim v.x(t) = v(t) = S(t)v. 
>.-o 

Owing to (19), we see 

llS(t)u - S(t)vll < llu - vii (t > 0) 

if u, v E D(8I). Using this inequality, we uniquely extend the semigroup of 
nonlinear operators {S(t)}t~o to H = D(8I). 

(ii) We have assumed that D(8I) is dense in H solely to streamline the 
exposition. In general {S(t)}t~o is a semigroup of contractions on D(8I) C 
H. 
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9.6.3. Applications. 

We now illustrate how some of the abstract theory set forth in §9.6.1 and 
§9.6.2 applies to certain nonlinear parabolic partial differential equations. 

Let us hereafter suppose U is a bounded, open subset of Rn, with smooth 
boundary au. We choose H = L2 (U), and set 

(27) { fu L(Du) dx if u E HJ(U) 
I[u] := 

+oo otherwise, 

where L : Rn --+ IR is smooth, convex and satisfies 

(28) 

n 

(29) L LPiPj (p)eiej > 01e1 2 (p, e E Rn) 
i,j=l 

for constants C, 8 > 0. 

THEOREM 4 (Characterization of 81). 

(i) I: H--+ (-oo, +oo] is convex, proper and lower semicontinuous. 

(ii) D(8I) = H 2 (U) n HJ(U). 

(iii) If u E D(8I), then 81 is single-valued and 

n 

8I[u] = - L(Lpi(Du))xi a.e. 
i=l 

Proof. 1. I is clearly proper and convex. Furthermore, since I is weakly 
sequentially lower semicontinuous (cf. Theorem 1 in §8.2.2), I is lower semi
continuous. 

2. Define the nonlinear operator A by setting 

{ 
D(A) := H 2 (U) n HJ (U), 

A[u] := - E~1 (Lpi(Du))xi 

We must prove A = 81. 

(u E D(A)). 

First let u E D(A), v = A[u], w E L2 (U). If w ¢ HJ(U), then I[w] = 
+oo and so clearly 

(30) I[w] > I[u] + (v, w - u). 
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Assume next w E HJ(U). Thus 

n 

(v, w - u) = -1 ~)Lv,(Du))x,(w- u) dx 
u i=l 
n 

= 1 L Lp,(Du) · (Dw - Du) dx. 
u i=l 

Since L is convex, 

L(Dw) > L(Du) + DpL(Du) · (Dw - Du) a.e. in U. 

Integrating over U gives ( 30). 

3. We have thus far shown that A C 81; that is, D(A) C D(81) and 
Au E 8I[u] for u E D(A). To conclude, we must prove that A ::J 81. 

Select any function f E L 2 (U). If we minimize the functional 

1 w2 
J[w] := L(Dw) + - - fwdx 

u 2 

over the admissible class A= HJ(U), we will find u E HJ(U), which is a 
weak solution of 

n 

(31) u - L;(Lpi(Du))xi = f in U. 
i=l 

According to calculations similar to those for the proof of Theorem l(ii) in 
§8.3, we see that in fact u E H 2 (U), with the estimate 

(32) 

Thus u E D(A), and u + A[u] = f. Consequently the range of I+ A is all 
of H. But this implies A = 81. For if v E D(8I), w E 8I[v], then there 
exists u E D(A) such that u + A[u] = v + w. Since A[u] E 8I[u], w E 8I[v], 
the uniqueness assertion of Theorem l(iv) implies u = v, w = A[u]. Thus 
A=fil. D 

We can now look at the initial/boundary-value problem: 

(33) { 
Ut - l:~=l (LPi (Du))xi = 0 

u =0 
u=g 

in U x (0, oo) 
on 8U x (0, oo) 
on U x {t = O}, 
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where g E L 2 (U). In accordance with Theorem 4, we can recast this problem 
into the abstract form 

(34) { u'(t) = -8I[u(t)] (t > 0) 

u(O) = g. 

We apply Theorem 3. If g E H 2(U) n HJ(U), there exists a unique function 

u E C([O, oo); L 2 (U)), with u' E L00 ((0; oo); L 2 (U)), 

that is, a weak solution of (33). In view of the estimate 

llu(t)llH2(u) < Cllu'(t)llL2(u), 

we see u E L00 ((0, oo), H 2 (U) n HJ(U)) as well. 

9.7. PROBLEMS 

In these problems U always denotes a bounded, open subset of 1Rn, with 
smooth boundary. 

1. Assume the vector field v is smooth. Give another proof of the lemma 
in §9.1 for this case by solving the ODE 

{ x(t) = -v(x(t)) (t > 0) 

x(O) = y. 

Let us write the solution as x(t, y) to display the dependence on the 
initial point y. For each fixed time t > 0, the map y ~ x(t, y) is 
continuous and so has a fixed point. Conclude that v has a zero in 
the closed ball B(O, r). 

2. Assume a : JR--+ JR is continuous and a(f n) ~ a(f) weakly in L2 (0, 1) 
whenever fn ~ f weakly in L 2 (0, 1). Show a is an affine function; 
that is, a has the form 

a(z) = o:z + (3 (z E JR) 

for constants a, (3. 

3. (Penalty method) Let E > 0. Define 

f3,(z) := { ~ if z > 0 
if z < 0, 

and suppose uE E HJ (U) is the weak solution of 

{ -~UE + (3E(uE) = f in u 
UE = 0 On au, 
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where f E L 2(U). Prove that as E ---+ 0, ue --l. u weakly in HJ(U), u 
being the unique nonnegative solution of the variational inequality 

LDu·D(w-u)dx> fut(w-u)dx 

for all w E HJ(U) with w > 0 a.e. 
Approximating the variational inequality by ( *) is the penalty method. 

4. (Solutions periodic in time) Assume 

{ 

Ut - Llu = f 
u =0 
u =g 

in U x (0, oo) 
on aux (0, oo) 
on U x {t = O}, 

where g E L2(U), f E LC'IO(Ur) for each T > 0. Suppose 7 > 0 and f 
is 7-periodic in t; that is, f (x, t) = f (x, t + 7) (x E U, t > 0). Prove 
there exists a unique function g E L 2 (U) for which the corresponding 
solution u is 7-periodic. 

5. Consider the nonlinear boundary-value problem 

{ -Llu + b(Du) = f 
u =0 

in U 
on au. 

Use Banach's Fixed Point Theorem to show there exists a unique 
weak solution u E H2 (U) n HJ(U) provided b : Rn ---+ R is Lipschitz 
continuous, with Lip(b) small enough. 

6. Assume f : R---+ R is Lipschitz continuous, bounded, with /(0) = 0 
and /'(O) > Ai, Ai denoting the principal eigenvalue for -Ll on HJ(U). 
Use the method of sub- and supersolutions to show there exists a weak 
solution u of 

{
-Llu = f(u) 

u=O 
u>O 

in U 
on au 
in U. 

7. Assume that u, u are smooth sub- and supersolutions of the boundary
value problem (1) in §9.3. Use the maximum principle to verify di
rectly 

U = UO < UI <···<Uk<···< U, 

where the { uk}k::o are defined as in §9.3. 

8. (Noncompact families of solutions) 

(a) Assume n > 3. Find a constant c such that 
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solves Yamabe 's equation 

!!il 
-~u = cun-2 in Rn. 

Note the appearance of the critical exponent :~~. (Compare 
with Problem 6 in Chapter 4.) 

(b) Check that for each .X > 0, 

( 
.X ) n22 

uA(x) := _x2 + lxl2 

is also a solution. 

( c) Show that 

lluAllL2*(Rn) = llullL2*(Rn), llDuAllL2(Rn) = llDullL2(Rn) 

for each .X and thus that {uA}A>O is not precompact in L 2* (Rn). 

9. Let u solve the semilinear heat equation 

Ut - ~u = f(u) in Rn x (0, oo). 

Assume that u and its derivatives go to zero rapidly as lxl --+ oo. 

(a) Show that 

dl 1 2 J. 2 -d -2 IDul - F(u) dx = - ut dx, 
t Rn Rn 

where F' = f, F(O) = 0. 

(b) Now show that 

d J. 1 -d lxl2(-IDul2 - F(u)) dx 
t Rn 2 

= - f utlxl 2 - 2nF(u) + (n - 2)1Dul2 dx. 
}Rn 

This is a parabolic analogue of the Derrick-Pohozaev identity. 

(Bauman, Chen, Phillips, Euro. J. Applied Math. 6 (1995), 115-126) 

10. Let Kc Rn be a closed, convex, nonempty set. Define 

I[x] := { 0 ~f x EK 
oo if x ¢ K. 

Explicitly determine A= 81, JA = (I+ .XA)-1 , AA = I-/" (.X > 0) in 
terms of the geometry of K. 
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11. Give a simple example showing that the flow 

u' E -8/[u] (t > 0) 

may be irreversible. (That is, find a Hilbert space H and a convex, 
proper, lower semicontinuous function I: H-+ (-oo, +oo] such that 
the semigroup solution of ( *) satisfies 

S(t)u = S(t)u 

for some t > 0 and u =I= u.) 
12. Let u = u(x, t) denote the height at x E 1R2 of a sandpile that grows 

as sand is added at rate f = f(x, t) > 0. We assume the stability 
condition 

!Dul< 1, 

meaning that nowhere can the sandpile have slope greater than 1. As 
usual, Dxu = Du. We propose the dynamics 

Ut - div(aDu) = f in 1R2 x (0, oo), 

where a= a(x, t) > 0 describes the flow rate of sand rolling downhill, 
that is, in the direction - Du. Suppose lastly that 

spt a C {!Dul= 1}, 

so that the sand flows downhill only if the slope is one. 

Show that the foregoing implies 

f - Ut E 8l[u], 

for the convex function 

[ { 
0 if u E L2 (1R2), IDul < 1 a.e. 

I u] := 
oo otherwise. 

13. Assume u is a smooth solution of the gradient flow system (33) in 
§9.6.3, where L satisfies the uniform convexity condition (29). Show 
there exist constants C, 'Y > 0 such that 

fu u'f (x, t) dx < ce-"(t (t > 0). 

14. Let u be a smooth solution of the nonlinear heat equation 

Ut - ~</>( u) = 0 in 1Rn x (0, oo ), 
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where<//> 0. Assuming IDul > 0, derive the formula 

for v := </>(u). 
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Chapter 10 

HAMILTON-JACOBI 
EQUATIONS 

10. l Introduction, viscosity solutions 

10.2 Uniqueness 

10.3 Control theory, dynamic programming 

10.4 Problems 

10.5 References 

10.1. INTRODUCTION, VISCOSITY SOLUTIONS 

This chapter investigates the existence, uniqueness and other properties of 
appropriately defined weak solutions of the initial-value problem for the 
Hamilton-Jacobi equation: 

(l) { Ut + H(Du, x) = 0 in Rn x (0, oo) 
u = g on Rn x {t = 0}. 

Here the Hamiltonian H : Rn x Rn ---+ R is given, as is the initial function 
g : Rn ---+ R. The unknown is u : Rn x [O, oo) ---+ R, u = u(x, t), and 
Du= Dxu = (uxp ... , Uxn). We will write H = H(p, x), so that "p" is the 
name of the variable for which we substitute the gradient Du in the PDE. 

We recall from our study of characteristics in §3.2 that in general there 
can be no smooth solution of (1) lasting for all times t > 0. We recall 
further that if H depends only on p and is convex, then the Hopf-Lax 
formula (expression (21) in §3.3.2) provides us with a type of generalized 
solution. 

In this chapter we consider the general case that H depends also on x 
and, more importantly, is no longer necessarily convex in the variable p. We 

-579 
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will discover in these new circumstances a different way to define a weak 
solution of ( 1). 

An approximation. Our approach is to consider first this problem: 

(2) { ui + H(Duf., x) - f.6.uf. = 0 in IRn x (0, oo) 
uf.=g onIRnx{t=O}, 

for f. > 0. The idea is that whereas (1) involves a fully nonlinear first-order 
PDE, (2) is an initial-value problem for a quasilinear parabolic PDE, which 
turns out to have a smooth solution. The term f.6. in (2) in effect regularizes 
the Hamilton-Jacobi equation. Then of course we hope that as f. ---+ 0 the 
solutions uf. of (2) will converge to some sort of weak solution of (1). This 
technique is the method of vanishing viscosity. 

However, as f. ---+ 0 we can expect to lose control over the various esti
mates of the function uf. and its derivatives: these estimates depend strongly 
on the regularizing effect of f.6. and blow up as f. ---+ 0. However, it turns 
out that we can often in practice at least be sure that the family { uf.} f.>O 
is bounded and equicontinuous on compact subsets of IRn x [O, oo). Conse
quently the Arzela-Ascoli compactness criterion, §C. 7, ensures that 

(3) uf.i ---+ u locally uniformly in IRn x [O, oo), 

for some subsequence { uf.i} ~1 and some limit function 

(4) u E C(IRn x [O, oo )). 

Now we can surely expect that u is some kind of solution of our initial
value problem (1), but as we only know that u is continuous and have 
absolutely no information as to whether Du and Ut exist in any sense, such 
an interpretation is difficult. 

Similar problems have arisen before in Chapters 8 and 9, where we had to 
deal with the weak convergence of various would-be approximate solutions to 
other nonlinear partial differential equations. Remember in particular that 
in §9.1 we solved a divergence structure quasilinear elliptic PDE by passing 
to limits using the method of Browder and Minty. Roughly speaking, we 
there integrated by parts to throw "hard-to-control" derivatives onto a fixed 
test function and only then tried to go to limits to discover a solution. We 
will for the Hamilton-Jacobi equation (1) attempt something similar. We 
will fix a smooth test function v and will pass from ( 2) to ( 1) as f. ---+ 0 by 
first "putting the derivatives onto v". 

But since (1) is fully nonlinear and in particular is not of divergence 
structure, we cannot just integrate by parts to switch to differentiations 
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on v, as we did in §9.1. Instead we will exploit the maximum principle to 
accomplish this transition, at least at certain points. 

We will call the solution we build a viscosity solution, in honor of the 
vanishing viscosity technique. Our main goal will then be to discover an 
intrinsic characterization of such generalized solutions of ( 1). 

10.1.1. Definitions. 

Motivation for definition of viscosity solution. We henceforth assume 
that H, g are continuous and will as necessary later add further hypotheses. 

The technique alluded to above works as follows. Fix any smooth test 
function v E C00 (Rn x ( 0, oo)) and suppose 

(5) 

This means 

{ 
u - v has a strict local maximum at some point 

(xo, to) E Rn x (0, oo ). 

( u - v )( xo, to) > ( u - v )( x, t) 

for all points (x, t) sufficiently close to (xo, to), with (x, t) =/= (x0 , t0 ). 

Now recall (3). We claim for each sufficiently small Ej > 0, there exists 
a point ( xf.;, tf.;) such that 

(6) uf.i - v has a local maximum at ( xf.;, tf.;) 

and 

(7) 

To confirm this, note that for each sufficiently small r > 0, (5) implies 
maxaB(u - v) < (u - v)(xo, to), B denoting the closed ball in Rn+l with 
center (xo, to) and radius r. In view of (3), uf.i -+ u uniformly on B, and so 
maxaB(uf.i -v) < (uf.i -v)(xo, to) provided Ej is small enough. Consequently 
uf.i - v attains a local maximum at some point in the interior of B. We can 
next replacer by a sequence of radii tending to zero to obtain (6), (7). 

Now owing to (6), we see that the equations 

(8) 

(9) 

and the inequality 

(10) 
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hold. We consequently can calculate 

(11) 

Vt(xf.i' tf.;) + H(Dv(xf.;, tf.; ), xf.;) 

= u? (xf.;, tf.;) + H(Duf.i (xf.;, tf.; ), xf.;) by (8),(9) 

= f.j~Uf.j (xf.j, tf.j) by (2) 

< f.j~v(xf.;, tf.;) by (10). 

Now let Ej ---+ 0 and remember (7). Since v is smooth and H is continuous, 
we deduce 

(12) Vt(xo, to)+ H(Dv(xo, to), xo) < 0. 

We have established this inequality assuming ( 5). Suppose now instead 
that 

(13) u - v has a local maximum at ( xo, to) 

but that this maximum is not necessarily strict. Then u -v has a strict local 
maximum at (xo, to), for v(x, t) := v(x, t)+8(lx-xol 2 +(t-to)2 ) (8 > 0). We 
thus conclude as above that Vt(xo, to)+ H(Dv(xo, to), xo) < 0, whereupon 
( 12) again follows. 

Consequently (13) implies inequality (12). Similarly, we deduce the re
verse inequality 

(14) Vt(xo, to) + H(Dv(xo, to), xo) > 0, 

provided 

(15) u - v has a local minimum at ( xo, to). 

The proof is exactly like that above, except that the inequalities in (10), 
and thus in (11), are reversed. 

In summary, we have discovered for any smooth function v that inequal
ity (12) follows from (13), and (14) from (15). We have in effect put the 
derivatives onto v, at the expense of certain inequalities holding. D 

Our intention now is to define a weak solution of (1) in terms of (12), 
(13) and (14), (15). 

DEFINITION. Assume that u is bounded and uniformly continuous on 
Rn x [O, T], for each T > 0. We say that u is a viscosity solution of the 
initial-value problem (1) for the Hamilton-Jacobi equation provided 

(i) u = g on Rn x {t = O}, 
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and 

(ii) for each v E C00 (IRn x (O,oo)), 

{ 
if u - v has a local maximum at a point (xo, to) E IRn x (0, oo ), 

(16) then 

Vt(xo, to)+ H(Dv(xo, to), xo) < 0, 

and 

{ 
ifu-v has a local minimum at a point (xo,to) E IRn x (O,oo), 

(17) then 

Vt(xo, to)+ H(Dv(xo, to), xo) > 0. 

Remark. Note carefully that by definition a viscosity solution satisfies (16), 
(17), and so all subsequent deductions must be based on these inequalities. 
The previous discussion was purely motivational. 

For emphasis, we repeat the same point, which has caused some confu
sion among students. To verify that a given function u is a viscosity solution 
of the Hamilton-Jacobi equation Ut + H(Du, x) = 0, we must confirm that 
(16), (17) hold for all smooth functions v. Now the argument above shows 
that if u is constructed using the vanishing viscosity method, it is indeed a 
viscosity solution. But we will also see later in §10.3 that viscosity solutions 
can be built in entirely different ways, which have nothing whatsoever to do 
with vanishing viscosity. 

The point is that the inequalities (16), (17) provide an intrinsic charac
terization, and indeed the very definition, of our generalized solutions. 

We devote the rest of this chapter to demonstrating that viscosity so
lutions provide an appropriate and useful notion of weak solutions for our 
Hamilton-Jacobi PDE. 

10.1.2. Consistency. 

Let us begin by checking that the notion of viscosity solution is consistent 
with that of a classical solution. First of all, note that if u E C1 (IRn x [O, oo)) 
solves (1) and if u is bounded and uniformly continuous, then u is a viscosity 
solution. That is, we assert that any classical solution of Ut + H (Du, x) = 0 
is also a viscosity solution. The proof is easy. If v is smooth and u - v 
obtains a local maximum at ( xo, to), then 

{ 
Du(xo, to) = Dv(xo, to) 

Ut(xo, to) = Vt(xo, to). 
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Consequently 

Vt(xo, to)+ H(Dv(xo, to), xo) 

= Ut(xo, to) + H(Du(xo, to), xo) = 0, 

since u solves (1). A similar equality holds at any point (xo, to) where u - v 
has a local minimum. 

Next we assert that any sufficiently smooth viscosity solution is a clas
sical solution and, even more, that if a viscosity solution is differentiable at 
some point, then it solves the Hamilton-Jacobi PDE there. We will need 
the following calculus fact: 

LEMMA (Touching by a C1 function). Assume u: Rn-+ R is continuous 
and is also differentiable at the point xo. Then there exists a function v E 
C1 (Rn) such that 

(18) u(xo) = v(xo) 

and 

(19) u - v has a strict local maximum at xo. 

Proof. 1. We may as well assume 

(20) xo = 0, u(O) = Du(O) = 0, 

for otherwise we could consider u(x) := u(x + xo) - u(x0 ) - Du(x0 ) • x in 
place of u. 

2. In view of (20) and our hypothesis, we have 

(21) 

where 

(22) 

Set 

(23) 

Then 

(24) 

u(x) = lxlp1(x), 

Pl : Rn -+ R is continuous, Pl (0) = 0. 

P2(r) := max {IP1(x)I} (r > 0). 
xEB(O,r) 

p2 : [O, oo) -+ [O, oo) is continuous, p2 ( 0) = 0, 
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and 

(25) P2 is nondecreasing. 

3. Now write 

12lxl 
v(x) := P2(r) dr + lxl2 (x E IRn). 

lxl 

Since lv(x)I < lxlp2(2lxl) + lxl2, we observe 

(26) v(O) = Dv(O) = 0. 

Furthermore if x =f 0, we have 

2x x 
Dv(x) = ~p2(2lxl) - ~p2(lxl) + 2x, 

and so v E C1 (IRn). 

4. Finally note that if x =f 0, 

12lxl 
u(x) - v(x) = lxlp1(x) - p2(r) dr - lxl2 

lxl 

12lxl 
< lxlp2(lxl) - P2(r) dr - lxl2 

lxl 
< -lxl2 by (25) 

< 0 = u(O) - v(O). 

Thus u - v has a strict local maximum at 0, as required. D 

THEOREM 1 (Consistency of viscosity solutions). Let u be a viscosity 
solution of (1), and suppose u is differentiable at some point (xo, to) E IRn x 
(0, oo). Then 

Ut(xo, to)+ H(Du(xo, to), xo) = 0. 

Proof. 1. Applying the lemma above to u, with JRn+l replacing IRn and 
(xo, to) replacing Xo, We deduce there exists a C1 function V such that 

(27) u - v has a strict maximum at ( xo, to). 

2. Now set ve := "le * v, T/e denoting the usual mollifier in the n + 1 
variables ( x, t). Then 

(28) { 

VE--+ V 

Dve --+ Dv uniformly near ( xo, to) 

Vf--+ Vt; 
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and so (27) implies 

(29) 

with 

u - v€ has a maximum at some point (x€, t€), 

(30) 

Applying then the definition of viscosity solution, we see 

v;(x€, t€) + H(Dv€(x€, t€), x€) < 0. 

Let E--+ 0 and use (28), (30) to deduce 

(31) Vt(xo, to)+ H(Dv(xo, to), xo) < 0. 

But in view of (27), we see that since u is differentiable at (xo, to), 

Du(xo, to) = Dv(xo, to), ut(xo, to) = Vt(xo, to). 

Substitute above, to conclude from (31) that 

(32) ut(xo, to) + H(Du(xo, to), xo) < 0. 

3. Now apply the lemma above to -u in JRn+i, to find a C 1 function v 
such that u - v has a strict minimum at ( x0 , to). Then, arguing as above, 
we likewise deduce 

ut(xo, to) + H(Du(xo, to), xo) > 0. 

This inequality and (32) complete the proof. D 

10.2. UNIQUENESS 

Our goal now is to establish the uniqueness of a viscosity solution of our 
initial-value problem for Hamilton-Jacobi PDE. To be slightly more general, 
let us fix a time T > 0 and consider the problem 

(l) { Ut + H(Du, x) = 0 in IRn x (0, T] 
u = g on IRn x { t = O}. 

We say that a bounded, uniformly continuous function u is a viscosity 
solution of (1) provided u = g on IRn x {t = O}, and the inequalities in (16) 
(or ( 17)) from § 10 .1.1 hold if u - v has a local maximum (or minimum) at 
a point (xo, to) E IRn x (0, T). 

LEMMA (Extrema at a terminal time). Assume u is a viscosity solution 
of (1) and u - v has a local maximum (minimum} at a point (xo, to) E 
IRn x (0, T]. Then 

(2) Vt(xo, to)+ H(Dv(xo, to), xo) < 0 (> 0). 

The point is that we are now allowing for t0 = T. 
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Proof. Assume u - v has a local maximum at the point ( x0 , T); as before 
we may assume that this is a strict local maximum. Write 

v(x, t) := v(x, t) + TE (x E Rn, 0 < t < T). 
-t 

Then for E > 0 small enough, u - v has a local maximum at a point (xe, te), 
where 0 < te < T and (xe, te) ---+ (xo, T). Consequently 

Vt(Xe, te) + H(Dv(xe, te), Xe) < 0, 

and so 
f 

Vt(Xe, te) + (T _ te) 2 + H(Dv(xe, te), Xe) < 0. 

Letting E ---+ 0, we find 

Vt(xo, T) + H(Dv(xo, T), xo) < 0. 

This proves (2) if u-v has a maximum at (xo, T). A similar proof gives the 
reverse inequality should u - v have a minimum at (xo, T). D 

To go further, let us hereafter suppose the Hamiltonian H to satisfy 
these conditions of Lipschitz continuity: 

(3) { IH(p, x) - H(q, x)I <Gip - qi 
IH(p, x) - H(p, Y)I < Clx - Yl(l + lpl) 

for x, y,p, q E Rn and some constant C > 0. 

We come next to the central fact concerning viscosity solutions of the 
initial-value problem (1), namely uniqueness. This important assertion jus
tifies our taking the inequalities (16) and (17) from §10.1.1 as the foundation 
of our theory. 

THEOREM 1 (Uniqueness of viscosity solution). Under assumption (3) 
there exists at most one viscosity solution of ( 1). 

The following proof is based upon an unusual idea of "doubling the 
number of variables". See the proof of Theorem 3 in §11.4.3 for a related 
technique. 

Proof*. 1. Assume u and u are both viscosity solutions with the same 
initial conditions, but 

(4) sup (u-u)=:O'>O. 
JR.nx[O,T] 

•Omit on first reading. 
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Choose 0 < f, A< 1 and set 

(5) 

<ll(x, y, t, s) :=u(x, t) - u(y, s) - .X(t + s) 
1 

- 2(lx - Yl 2 + (t - s) 2 ) - E(lxl 2 + IYl 2), 
f 

for x, y E Rn, t, s > 0. Then there exists a point (xo, Yo, to, so) E R2n x [O, T] 2 

such that 

(6) <ll(xo, Yo, to, so) = max <ll(x, y, t, s). 
JR2n x [O,T]2 

2. We may fix 0 < f, A< 1 so small that (4) implies 

(7) 
a 

<ll(xo, Yo, to, so) > sup <ll(x, x, t, t) > 2 . 
JR.nx[O,T] 

In addition, <ll(xo, Yo, to, so) > <ll(O, 0, 0, O); and therefore 

(8) 
.\(to+ so)+ ~ (lxo - Yol 2 +(to - so)2 ) + E(lxol2 +1Yol2) 

f 

< u(xo, to) - u(yo, so) - u(O, 0) + u(O, 0). 

Since u and u are bounded, we deduce 

(9) lxo - Yol, Ito - sol = 0(€) as f-+ 0. 

Furthermore (8) implies E(lxol 2 + 1Yol2 ) = 0(1), and consequently 

E(lxol + IYol) = f 114 f 314 (lxol + IYol) 

Thus 

(10) 

< f 112 + C€312 (lxol2 + 1Yol2) 

< 0€1/2. 

3. Since <ll(xo, yo, to, so) > <ll(xo, xo, to, to), we also have 

u(xo, to) - u(yo, so) - .\(to+ so) - 1
2 (lxo - Yol 2 + (to - so)2 ) 

f 

Hence 

- E(lxol2 + 1Yol2) > u(xo, to) - u(xo, to) - 2-Xto - 2Elxol2 . 

~ (lxo - Yol 2 +(to - so)2 ) < u(xo, to) - u(yo, so)+ .\(to - so) 
f 

+ E(xo +Yo) · (xo - Yo). 
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In view of (9), (10) and the uniform continuity of ii, we deduce 

(11) lxo - Yol, Ito - sol = o(E). 

4. Now write w(·) to denote the modulus of continuity of u; that is, 

lu(x, t) - u(y, s)I < w(lx - YI+ It - sl) 

for all x, y E IRn, 0 < t, s < T, and w(r) --+ 0 as r--+ 0. Similarly, w(·) will 
denote the modulus of continuity of ii. 

Then (7) implies 

~ < u(xo, to) - ii(yo, so) = u(xo, to) - u(xo, 0) + u(xo, 0) - ii(xo, 0) 

+ ii(xo, 0) - ii(xo, to) + ii(xo, to) - ii(yo, so) 

< w(to) + w(to) + w(o(€)), 

by ( 9), ( 11) and the initial condition. We can now take € > 0 to be so 
small that the foregoing implies ~ < w(to) + w(to); and this in turn implies 
t0 > µ > 0 for some constantµ> 0. Similarly we have so>µ> 0. 

5. Now observe in light of (6) that the mapping (x, t) 1---+ <I>(x, yo, t, so) 
has a maximum at the point (xo, to). In view of (5) then, 

u - v has a maximum at (xo, to) 

for 

- 1 v(x, t) := u(yo, so)+ A(t +so)+ 2(lx - Yol 2 + (t - so)2 ) + E(lxl2 +1Yol 2). 
€ 

Since u is a viscosity solution of (1), we conclude, using the lemma if neces
sary, that 

Vt(xo, to)+ H(Dxv(xo, to), xo) < 0. 

Therefore 

2(to - so) ( 2 ) (12) A+ €2 + H €2 (xo - Yo) + 2Exo, xo < 0. 

We further observe that since the mapping (y, s) 1---+ -<I>(xo, y, to, s) has 
a minimum at the point (yo, so), 

ii - v has a minimum at (yo, so) 
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for 

v(y, s) := u(xo, to) - ,\(to+ s) - 1
2 (lxo - Yl 2 +(to - s)2) - e(lxol2 + IYl 2 ). 

f 

As u is a viscosity solution of ( 1), we know then that 

:Vs(Yo, so)+ H(Dyv(yo, so), Yo) > 0. 

Consequently 

(13) -A+ 2(to €;so) + H (; (xo -Yo) - 2€Yo, Yo) > 0. 

6. Next, subtract (13) from (12): 

(14) 2A < H (; (xo -yo) - 2fyo,Yo )- H (; (xo -yo)+ 2€xo,xo). 

In view of hypothesis (3) therefore, 

(15) A < C€(1xol + IYoll + Clxo - Yol ( 1 + lxo ~ Yol + €(1xol + IYoll) . 

We employ estimates (10), (11) in (15) and then let e---+ 0, to discover 
0 < ,\ < 0. This contradiction completes the proof. D 

10.3. CONTROL THEORY, DYNAMIC 
PROGRAMMING 

It remains for us to establish the existence of a viscosity solution to our 
initial-value problem for the Hamilton-Jacobi partial differential equation. 
One method would be now to prove the existence of a smooth solution u~ of 
the regularized equation (2) in §10.1 and then to make good enough uniform 
estimates. This technique in fact works but requires knowledge of certain 
bounds for the heat equation beyond the scope of this book. 

In this section we provide an alternative approach of independent inter
est, which is suitable for Hamiltonians which are convex in p. 

We will first of all introduce some of the basic issues concerning control 
theory for ordinary differential equations and the connection with Hamilton
J acobi PDE afforded by the method of dynamic programming. This discus
sion will make clearer the connections of the theory developed above in 
§§10.1-10.2 with that set forth earlier in §3.3.1. The remarkable fact is 
that the defining viscosity solution inequalities (16), (17) in §10.1.1 are a 
consequence of the optimality conditions of control theory. 
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(x(T), T) 

(x t) 

ic(s) •f (x(s) ,a (s)) 

Response of system to the control a(·) 

10.3.1. Introduction to optimal control theory. 

We will now study the possibility of optimally controlling the solution 
x( ·) of the ordinary differential equation 

(1) { x(s) = f(x(s},a(s)) (t < s < T) 

x(t) = x. 

Here · = Js, T > 0 is a fixed terminal time, and x E Rn is a given initial 
point, taken on by our solution x( ·) at the starting time t > 0. At later 
times t < s < T, x( ·) evolves according to the ODE, where 

f: Rn x A ~Rn 

is a given bounded, Lipschitz continuous function and A is some given com
pact subset of, say, Rm. The function a(·) appearing in (1) is a control, that 
is, some appropriate scheme for adjusting parameters from the set A as time 
evolves, thereby affecting the dynamics of the system modeled by (1). 

Let us write 

(2) A:= {a: (0, T] ~A I a(·) is measurable} 

to denote the set of admissible controls. Then since 

(3) lf(x,a)I < C, lf(x,a}- f(y,a)I < Clx -yl (x,y E Rn, a EA) 

for some constant C, we see that for each control a(·) E A, the ODE (1) 
has a unique, Lipschitz continuous solution x( ·) = x0 < ·) ( ·), existing on the 
time interval (t, T] and solving the ODE for a.e. time t < s < T. We call 
x(-} the response of the system to the control a(·), and x( s) the state of the 
system at time s. 
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Our goal is to find a control a* ( ·) which optimally steers the system. 
However in order to define what "optimal" means, we must first introduce a 
cost criterion. Given x E IRn and 0 < t < T, let us define for each admissible 
control a ( ·) E A the corresponding cost functional 

(4) C,,,t[<>( · )] := 1T r(x(s), a(s)) ds + g(x(T)), 

where x(·) = x 0 <·>(-) solves the ODE (1) and 

r : IRn x A ---+ IR, g : IRn ---+ IR 

are given functions. We call r the running cost per unit time and g the 
terminal cost, and will henceforth assume 

{ lr(x, a)I, lg(x)I < C 
(5) (x, y E IRn, a E A) 

lr(x, a) - r(y, a)I, lg(x) - g(y)I < Clx - YI 
for some constant C. 

Given now x E IRn and 0 < t < T, we would like to find if possible 
a control a*(·) which minimizes the cost functional (4) among all other 
admissible controls. This is a finite horizon optimal control problem. (See 
Problems 10 and 11 for infinite horizon problems.) 

10.3.2. Dynamic programming. 

The method of dynamic programming investigates the above problem by 
turning attention to the value function 

(6) u(x, t) := inf Cx,t[a(·)] (x E IRn, 0 < t < T). 
a(-)EA 

The plan is this: having defined u(x, t) as the least cost given that we 
start at the position x at time t, we want to study u as a function of x 
and t. We are therefore embedding our given control problem (1), (4) into 
the larger class of all such problems, as x and t vary. The idea then is 
to show that u solves a certain Hamilton-Jacobi type PDE and to show 
conversely that a solution of this PDE helps us to synthesize an optimal 
feedback control. 

Hereafter, we fix x E IRn, 0 < t < T. 

THEOREM 1 (Optimality conditions). For each h > 0 so small that 
t + h < T, we have 

(7) u(x, t) = inf { rt+h r(x(s), o:(s)) ds + u(x(t + h), t + h)} ' 
a(·)EA lt 

where x(·) = x 0 <->(·) solves the ODE (1) for the control a(·). 
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Proof. 1. Choose any control a1(·) EA and solve the ODE 

(8) { :X1(s) = f(x1(s), a1(s)) (t < s < t + h) 

x1(t) = x. 

Fix E > 0 and choose then a2 ( ·) E A so that 

(9) u(x1(t + h), t + h) + E > 1T r(x2(s), a2(s)) ds + g(x2(T)), t+h 
where 

(10) { :X2(s) = f(x2(s), a2(s)) (t + h < s < T) 

x2(t + h) = x1(t + h). 

Now define the control 

(11) 

and let 

(12) 

{ a1 ( s) if t < s < t + h 
a3(s) := _ 2(s) 

~ if t + h < s < T, 

{ x3 ( s) = f ( X3 ( s), a3 ( s)) ( t < s < T) 

x3(t) = x. 

By uniqueness of solutions to the differential equation (1), we have 

(13) { x 1 ( s) if t < s < t + h 
x3(s) = x2(s) if t + h < s < T. 

Thus the definition (6) implies 

u(x, t) < Cx,t[aa(·)] 

= 1T r(xa(s), aa(s)) ds + g(xa(T)) 

l t+h 1T 
= r(x1 (s), a1 (s)) ds + r(x2(s), a2(s)) ds + g(x2(T)) t t+h 
l t+h 

< t r(x1(s),a1(s))ds+u(x1(t+h),t+h)+E, 

the last inequality resulting from (9). As a1(·) EA was arbitrary, we con
clude 

(14) u(x, t) < inf {lt+h r(x(s), a(s)) ds + u(x(t + h), t + h)} + E, 
a(·)EA t 
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x(·) = xaO(·) solving (1). 

2. Fixing again e > 0, select now a4(·) EA so that 

(15) 

where 

u(x, t) + e > 1T r(x.i(s), a4(s)) ds + g(x4(T)), 

{ x4(s) = f(X4(s), a4(s)) (t < s < T) 

X4(t) = X. 

Observe then from (6) that 

(16) u(x4(t + h), t + h) < [T r(x4(s), a4(s)) ds + g(x4(T)). lt+h 
Therefore 

u(x, t) + e > inf {lt+h r(x(s), a(s)) ds + u(x(t + h), t + h)}, 
a(·)EA t 

x(·) = xaO(·) solving (1). This inequality and (14) complete the proof of 
(7). D 

10.3.3. Hamilton-Jacobi-Bellman equation. 

Our eventual goal is writing down as a PDE an "infinitesimal version" 
of the optimality conditions (7). But first we must check that the value 
function u is bounded and Lipschitz continuous. 

LEMMA (Estimates for value function). There exists a constant C such 
that 

lu(x, t)I < C, 

lu(x, t) - u(x, t)I < C(lx - xi+ It - ti) 
for all x,x E IRn, 0 < t,t < T. 

Proof. 1. Clearly hypothesis (5) implies u is bounded on IRn x [O, T]. 

2. Fix x, x E IRn, 0 < t < T. Let e > 0 and then choose a(·) EA so that 

(17) u(X, t) + e > 1T r(X(s), &(s)) ds + g(X(T) ), 

where x(·) solves the ODE 

(18) { ~(s) = ~(:X:(s), a(s)) (t < s < T) 
x(t) = x. 
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Then 

(19) 
u(x, t) - u(X, t) < lT r(x(s), &(s)) ds + g(x(T)) 

-lT r(X(s), &(s)) ds - g(X(T)) + €, 

where x( ·) solves 

(20) { x(s) = f(x(s),a(s)) (t < s < T) 

x(t) = x. 

Since f is Lipschitz continuous, (18), (20) and Gronwall's inequality (§B.2) 
imply lx(s) - x(s)I < Clx - xi (t < s < T). Hence we deduce from (5) and 
(19) that u(x, t) - u(x, t) < Clx - xi+ E. The same argument with the roles 
of x and x reversed implies 

lu(x, t) - u(x, t)I < Clx - xi (x, x E ]Rn, 0 < t < T). 

3. Now let x E lRn, 0 < t < t < T. Take E > 0 and choose a{) EA so 
that 

u(x, t) + € > lT r(x(s), o:(s)) ds + g(x(T)), 

x(·) solving the ODE (1). Define 

and let x(.) solve 

a ( s) := a( s + t - t) for t < s < T 

{ :i(~) = f(x(s), a(s)) (t < s < T) 
x(t) = x. 

Then x(s) = x(s + t - t). Hence 

u(x, t) - u(x, t) < 1T r(X(s ), &(s)) ds + g(X(T)) 

(21) - lT r(x(s),o:(s)) ds - g(x(T)) + € 

= - [T A r(x(s), a(s)) ds + g(x(T + t - t)) - g(x(T)) + E 
lr+t-t 

<Cit-ti+ E. 
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Next pick&(·) so that 

where 

Define 

u(x, t) + l > hT r(X(s), &(s)) ds + g(X(T)), 

{ i:(~) = f(x(s), &(s)) (t < s < T) 
x(t) = x. 

{ &( s + t - t) if t < s < T + t - t 
a(s) ·-

.- &(T) if T + t - t < s < T, 

and let x(·) solve (1). Then a(s) = &(s + t - t), x(s) = x(s + t - t) for 
t < s < T + t - t. Consequently 

u(x, t) - u(x, t) < iT r(x(s), a(s)) ds + g(x(T)) 

-hT r(X(s), a(s)) ds - g(X(T)) + l 

= fT ~ r(x(s), a(s)) ds + g(x(T)) - g(x(T + t - t)) + f 

lr+t-t 

<Cit - ti+£. 

This inequality and (21) prove 

lu(x, t) - u(x, t)I <Cit - ti (0 < t < t < T, x E lRn). D 

We prove next that the value function solves a Hamilton-Jacobi type 
partial differential equation. 

THEOREM 2 (A PDE for the value function). The value function u is the 
unique viscosity solution of this terminal-value problem for the Hamilton
J acobi-Bellman equation: 

(22) { 
Ut +min {f(x, a)· Du+ r(x, a)}= 0 in 1Rn x (0, T) 

aEA 
u = g on 1Rn x { t = T}. 

Remarks. (i) The Hamilton-Jacobi-Bellman PDE has the form 

Ut + H(Du, x) = 0 in lRn x (0, T), 

for the Hamiltonian 

(23) H(p, x) :=min {f(x, a)· p + r(x, a)} (p, x E lRn). 
a EA 
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From the inequalities (5), we deduce that H satisfies the estimates (3) in 
§10.2. 

(ii) Since (22) is a terminal-value problem, we must specify what we mean 
by a solution. Let us say that a bounded, uniformly continuous function u 
is a viscosity solution of (22) provided 

(a) u = g on IRn x {t = T}, 

and 

(b) for each v E 0 00 (IRn x (0, T)) 

{ 
if u - v has a local maximum at a point (xo, to) E IRn x (0, T), 

(24) then 

Vt(xo, to) + H(Dv(xo, to), xo) > 0, 

and 

{ 
if u - v has a local minimum at a point (xo, to) E IRn x (0, T), 

(25) then 

Vt(xo, to) + H(Dv(xo, to), xo) < 0. 

Observe that for our terminal-value problem (22) we reverse the sense of the 
inequalities from those for the initial-value problem. 

(iii) The reader should check that if u is the viscosity solution of (22), 
then w(x, t) := u(x, T - t) (x E IRn, 0 < t < T) is the viscosity solution of 
the initial-value problem 

{ Wt - H(Dw,x) = 0 in IRn x (0, T) 
w = g on IRn x { t = 0}. 

Proof. 1. In view of the lemma, u is bounded and Lipschitz continuous. In 
addition, we see directly from (4) and (6) that 

u(x, T) = inf Cx,T[a(·)] = g(x) (x E IRn). 
a(-)EA 

2. Now let v E C 00 (IRn x (0, T)), and assume 

u - v has a local maximum at a point (xo, to) E IRn x (0, T). 

We must prove 

(26) Vt(xo, to)+ min{f(xo, a)· Dv(xo,to) + r(xo, a)}> 0. 
a EA 
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Suppose not. Then there exist a EA and()> 0 such that 

(27) Vt(x, t) + f(x, a) · Dv(x, t) + r(x, a) < -{} < 0 

for all points ( x, t) sufficiently close to ( xo, to), say 

(28) Ix - xol + It - tol < 8. 

Since u - v has a local maximum at ( xo, to), we may as well also suppose 

(29) { (u - v)(x, t) < (u - v)(xo, to) 

for all (x, t) satisfying (28). 

Consider now the constant control a ( s) = a (to < s < T) and the corre
sponding dynamics 

(30) { 
x(s) = f(x(s), a) (to < s < T) 

x(to) = xo. 

Choose 0 < h < 8 so small that lx(s) - xol < 8 for to< s <to+ h. Then 

(31) Vt(x(s), s)+f(x(s), a)·Dv(x(s), s)+r(x(s), a) < -{} (to< s < to+h), 

according to (27), (28). But utilizing (29), we find 

u(x(to + h), to+ h) - u(xo, to) < v(x(to + h), to+ h) - v(xo, to) 

(32) 
1

to+h d 1to+h 
= dv(x(s), s) ds = Vt(x(s), s) + Dv(x(s), s) · x(s) ds 

to 8 to 

1
to+h 

= Vt(x(s), s) + f(x(s), a)· Dv(x(s), s) ds. 
to 

In addition, the optimality condition (7) provides us with the inequality 

1
to+h 

(33) u(xo, to) < r(x(s), a) ds + u(x(to + h), to+ h). 
to 

Combining ( 32) and ( 33), we discover 

1
to+h 

0 < Vt(x(s), s) + f(x(s), a)· Dv(x(s), s) + r(x(s), a) ds < -8h, 
to 

according to (31). This contradiction establishes (26). 

3. Now suppose 

u - v has a local minimum at a point (xo, to) E Rn x (0, T); 
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we must prove 

(34) Vt(xo, to)+ min{f(xo, a) · Dv(xo, to)+ r(xo, a)} < 0. 
a EA 

Suppose not. Then there exists()> 0 such that 

(35) Vt(x, t) + f(x, a) · Dv(x, t) + r(x, a) > () > 0 

for all a E A and all (x, t) sufficiently close to (xo, to), say 

(36) Ix - xol +It - tol < 8. 

Since u-v has a local minimum at (xo, to), we may as well also suppose 

(37) { (u - v)(x, t) > (u - v)(xo, to) 

for all (x, t) satisfying (36). 

Choose 0 < h < 8 so small that lx(s) - xol < 8 for to < s <to+ h, where 
x(·) solves 

(38) { x(s) = f(x(s), a(s)) (to < s < T) 

x(to) = xo 

for some control a(·) EA. This is possible owing to hypothesis (3). 

Then utilizing (37), we find for any control a(·) that 

u(x(to + h), to+ h) - u(xo, to) 

> v(x(to + h), to+ h) - v(xo, to) 

(39) l
to+h d 

= -d v(x(s), s) ds 
to 8 

l
to+h 

= Vt(x(s ), s) + f(x(s ), a(s)) · Dv(x( s ), s) ds, 
to 

by (38). On the other hand, according to the optimality condition (7) we 
can select a control a ( ·) E A so that 

l
to+h ()h 

(40) u(xo, t0 ) > r(x(s), a(s)) ds + u(x(to + h), to+ h) - 2· 
to 

Combining ( 39) and ( 40), we discover 

()h lto+h 
- > Vt(x(s), s) + f(x(s), a(s)) · Dv(x(s), s) 
2 to 

+ r(x(s), a(s)) ds >Oh, 

according to ( 35). This contradiction proves ( 34). D 
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Design of optimal controls. We have now shown that the value function 
u, defined by ( 6), is the unique viscosity solution of the terminal-value prob
lem (22) for the Hamilton-Jacobi-Bellman equation. How does this PDE 
help us solve the problem of synthesizing an optimal control? In informal 
terms, the method is this. Given an initial time 0 < t < T and an initial 
state x E IRn, we consider the optimal ODE 

(41) { 
x*(s) = f(x*(s), a*(s)) 

x*(t) = x, 

(t < s < T) 

where at each times, a*(s) EA is selected so that 

(42) 
f(x*(s), a*(s)) · Du(x*(s), s) + r(x*(s), a*(s)) 

= H(Du(x*(s), s), x*(s)). 

In other words, given that the system is at the point x* ( s) at time s, we 
adjust the optimal control value a*(s) so as to attain the minimum in the 
definition (23) of the Hamiltonian H. We call a*(·) so defined a feedback 
control. 

It is fairly easy to check that this prescription does in fact generate a 
minimum cost trajectory, at least in regions where u and a* ( ·) are smooth 
(so that (42) makes sense). There are however problems in interpreting (42) 
at points where the gradient Du does not exist. 

10.3.4. Hopf-Lax formula revisited. 

Remember that earlier in §3.3 we investigated this initial-value problem 
for the Hamilton-Jacobi equation: 

(43) { 
Ut + H(Du) = 0 in IRn x (0, T] 

u = g on IRn x {t = O}, 

under the assumptions that 

and 

. H(p) 
p 1-+ H(p) is convex, hm I I = +oo, 

IPl--+oo P 

g : IRn -+IR is Lipschitz continuous. 

Notice that we are now taking 0 < t < T, to be consistent with §10.2. We 
introduced as well the Hopf-Lax formula for a solution: 

(44) u(x, t) = min {tL (x - y) + g(y)} (x E IRn, t > 0), 
yEJRn t 
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where Lis the Legendre transform of H: 

(45) L(v) = sup {p · v - H(p)} (q E JRn). 
pERn 

In order to tie together the theory set forth here and in §3.3, let us 
now check that the Hopf-Lax formula gives the correct viscosity solution, 
as defined in §10.1.l. (The proof is really just a special case of that for 
Theorem 2.) 

THEOREM 3 (Hopf-Lax formula as viscosity solution). Assume in addi
tion that g is bounded. Then the unique viscosity solution of the initial-value 
problem (43) is given by the formula (44). 

Proof. 1. As shown in §3.3 the function u defined by ( 44) is Lipschitz 
continuous and takes on the initial function g at time t = 0. It is easy to 
verify as well that u is also bounded on ]Rn x ( 0, T], since g is bounded. 

2. Now let v E C00 (JRn x ( 0, oo)) and assume u - v has a local maximum 
at (x0 , t0 ) E ]Rn x (0, oo ). According to Lemma 1 in §3.3.2, 

(46) u(xo, to)= min {(to - t)L (xo - x) + u(x, t)} 
xeJRn to - t 

for each 0 < t <to. Thus for each 0 < t <to, x E JRn 

(47) ( xo - x) u(xo, to) < (to - t)L + u(x, t). 
to - t 

But since u - v has a local maximum at (xo, to), 

u(xo, to) - v(xo, to) > u(x, t) - v(x, t) 

for (x, t) close to (x0 , t0 ). Combining this estimate with (47), we find 

(48) v(xo, to) - v(x, t) < (to - t)L ( xo - x) 
to - t 

for t < t0 , (x, t) close to (xo, to). Now write h = to - t and set x = xo - hv, 
where v E JRn is given. Inequality (48) becomes 

v(xo, to) - v(xo - hv, to - h) < hL(v). 

Divide by h > 0 and send h -+ 0: 

Vt(xo, to)+ Dv(xo, to)· v - L(v) < 0. 
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This is true for all v E Rn and so 

(49) Vt(xo, to)+ H(Dv(xo, to)) < 0, 

since 

(50) H(p) = sup {p · v - L(v)}, 
veJRn 

by the convex duality of H and L. We have, as desired, established the 
inequality ( 49) whenever u - v has a local maximum at ( xo, to). 

3. Now suppose instead u -v has a local minimum at a point (xo, to) E 
Rn x (0, T). We must prove 

(51) Vt(xo, to)+ H(Dv(xo, to)) > 0. 

Suppose to the contrary that estimate ( 51) fails, in which case 

Vt(x, t) + H(Dv(x, t)) < -() < 0 

for some () > 0 and all points ( x, t) close enough to ( x0 , t0 ). In view of ( 50) 

(52) Vt(x, t) + Dv(x, t) · v - L(v) < -() 

for all (x, t) near (xo, to) and all v E Rn. 

Now from ( 46) we see that if h > 0 is small enough, 

(53) ( XO - Xl) u(xo, to) = hL h + u(xi, to - h) 

for some point x1 close to xo. We then compute 

fl d 
v(xo, to) - v(xi, to - h) =lo ds v(sxo + (1 - s)xi, to+ (s - l)h) ds 

= fo1 Dv(sxo + (1 - s)xi, to+ (s - l)h) · (xo - xi) 

+ Vt(sxo + (1 - s)x1, to+ (s - l)h)hds 

f1 (XO - Xl) 
= h J 

0 
Dv ( · · · ) · h + Vt ( · · · ) ds. 

Now if h > 0 is sufficiently small, we may apply ( 52), to find 

v(xo, to) - v(xi, to - h) < hL ( xo ~xi) - 9h. 

But then (53) forces 

v(xo, to) - v(x1, to - h) < u(xo, to) - u(xi, to - h) - ()h, 

a contradiction, since u - v has a local minimum at ( xo, to). Consequently 
the desired inequality (51) is indeed valid. D 
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10.4. PROBLEMS 

1. Assume u is a viscosity solution of 

Ut + H(Du, x) = 0 in lRn x (0, oo). 

Show that u := -u is a viscosity solution of 

Ut + H(Du,x) = 0 in lRn x (O,oo), 

for H(p, x) := -H(-p, x). 

603 

2. Let { uk}k::1 be viscosity solutions of the Hamilton-Jacobi equations 

u~ + H(Duk, x) = 0 in lRn x (0, oo) 

(k = 1, ... ), and suppose uk ---+ u uniformly. Assume as well that H 
is continuous. Show u is a viscosity solution of 

Ut + H(Du, x) = 0 in lRn x (0, oo). 

Hence the uniform limits of viscosity solutions are viscosity solutions. 

3. Suppose for each t > 0 that uE is a smooth solution of the parabolic 
equation 

n 

ui + H(DuE,x) - t L aiiu~ixi = 0 
i,j=l 

in lRn x (0, oo), where the smooth coefficients aii (i,j = 1, ... , n) 
satisfy the uniform ellipticity condition from Chapter 6. Suppose also 
that H is continuous and that uE ---+ u uniformly as t ---+ 0. 

Prove that u is a viscosity solution of Ut + H (Du, x) = 0. (This 
exercise shows that viscosity solutions do not depend upon the precise 
structure of the parabolic smoothing.) 

4. Let ui ( i = 1, 2) be viscosity solutions of 

{ u~ + H(Dui, x~ = O_ in lRn x (0, oo) 
u" = g" on lRn x { t = O}. 

Assume H satisfies condition (3) in §10.2. Prove the contraction prop
erty 

5. (a) Show that u(x) := 1 - lxl is a viscosity solution of 

{ lu'I _ 1 in_(-1, 1) 
u(-1) - u(l) - 0. 
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This means that for each v E C00 ( -1, 1), if u - v has a maximum 
(minimum) at a point xo E (-1, 1), then lv'(xo)I < 1 (> 1). 

(b) Show that u(x) := lxl-1 is not a viscosity solution of(*). 

( c) Show that u is a viscosity solution of 

{ -lu'I = -1 in (-1, 1) 
u(-1) = u(l) = o. 

(Hint: What is the meaning of a viscosity solution of ( ** )?) 

(d) Why do problems(*),(**) have different viscosity solutions? 

6. Let U c Rn be open, bounded. Set u(x) := dist(x, 8U) (x E U). 
Prove that u is Lipschitz continuous and that it is a viscosity solution 
of the eikonal equation 

!Dul= 1 in U. 

This means that for each v E C00 (U), if u - v has a maximum (mini
mum) at a point xo EU, then IDv(xo)I < 1 (> 1). 

7. Suppose an open set UC Rn is subdivided by a smooth hypersurface 
r into the subregions v+ and v-. Let v denote the unit normal to 
r, pointing into v+. Assume that u is a viscosity solution of 

H(Du)=O inU 

and that u is smooth in if+ and v-. Write u;!"" for the limit of Du· v 
along r from within v+' and write u; for the limit from within v-. 
Prove that along r we have the inequalities 

H(>..u-;; + (1 - >..)ut) > 0 if u-;; < ut 

and 
H(>..u-;; + (1 - >..)ut) < 0 if ut < u-;;, 

for each 0 < >.. < 1. 

8. A surface described by the graph of u : R2 -+ R is illuminated by 
parallel light rays from the vertical ea direction. We assume the sur
face has constant albedo and in addition is Lambertian, meaning that 
incoming right rays are scattered equally in all directions. Then the 
intensity i = i(x) of the reflected light above the point x E R2 is given 
by the formula i = e3 · v, where v is the upward pointing unit normal 
to the surface. 
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Show that u solves a PDE of the form 

IDul=n 

for a given function n = n(x), computed in terms of the intensity 
i. (Finding the surface by solving this PDE for u is the shape from 
shading problem.) 

9. A yacht starts at the point (xi, 0) on the positive xi-axis and sails 
to the right at speed b1 > 0. Another yacht is initially at the point 
(0, x2 ) along the positive x2-ax:is and starts in pursuit, sailing always 
towards the first yacht at speed b2 > b1. 

Find the PDE solved by 

u(xi, x 2 ) :=time it takes the second yacht to intercept the first. 

(Think of this as a dynamic programming problem, but with no con
trols.) 

10. (Infinite horizon control problem) Assume f and r satisfy the condi
tions given in §10.3. Given a point x E lRn and a control belonging 
to A:= {a: [O, oo) ~A I a(·) is measurable}, let x(·) be the unique 
solution of the ODE 

{ x(s) = f(x(s),a(s)) 

x(O) = x. 

Fix A > 0 and define the discounted cost 

(s > 0) 

C,,[a{ )] :=fa'"" e->.•r(x(s), a(s)) ds. 

Define the value function 

u(x) := inf Cx[a(·)]. 
a:(-}EA 

(a) Show that u is bounded and that if A > Lip[f], then u is Lip
schitz continuous. 

(b) Show that if 0 < A < Lip[f], then u is Holder continuous for 
some exponent 0 < a < 1. 

11. (Continuation) Prove that the value function u is a viscosity solution 
of the PDE 

Au - min {f(x, a)· Du+ r(x, a)}= 0 in lRn. 
aEA 
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(This means that if vis smooth and u - v has a local maximum at a 
point xo, then 

AU - min {f(x, a)· Dv + r(x, a)}< 0 
a EA 

at xo, and that the opposite inequality holds if u - v has a local 
minimum at xo.) 

The next sequence of exercises develops some of the theory of viscosity 
solutions for fully nonlinear elliptic PDE of second order. 

12. Remember from §A.1 that if R, S E sn, we write R > S if R - S 
is nonnegative definite. A function F : sn x Rn x Rn ~ R, F = 

F(R,p, x), is elliptic provided 

R > S implies F(R,p, x) < F(S,p, x). 

Here §n denotes the space of real, n x n symmetric matrices. 

(a) Show that F(R) = -tr R is elliptic. 

(b) More generally, show that if A E sn and A > 0, then F(R) = 
-A: R = -tr(ART) is elliptic. 

( c) Show that if for each k = 1, ... , m, Fk is elliptic, then so are 
max Fk and min Fk. 

k k 

13. Let F be continuous and elliptic. We say that a function u E C(U) is 
a viscosity solution of the fully nonlinear elliptic PDE 

(*) F(D2u,Du,x) = 0 in U, 

provided for each v E C00 (U), (i) if u - v has a local maximum at a 
point x 0 E U, then F(D2u(x0 ), Du(x0 ), x 0 ) < 0 and (ii) if u - v has a 
local minimum at a point xo EU, then F(D2u(xo), Du(xo), xo) > 0. 

Show that if u is a C2 solution of ( *), then u is a viscosity solution. 

14. Assume that Uk is a viscosity solution of 

F(D2uk, Duk, x) = 0 in U 

for k = 1, .... Suppose Uk ~ u uniformly and show u is a viscosity 
solution of 

F(D2u, Du, x) = 0 in U. 

10.5. REFERENCES 

Section 10.1 The definition of viscosity solutions presented here is due to 
Crandall, Evans and Lions (Thans. AMS 282 (1984), 487-
502), who recast an earlier definition set forth in the basic 
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paper of Crandall and Lions (Trans. AMS 277 (1983), 1-42). 

Section 10.2 The uniqueness proof follows the first paper cited above, with 
improvements I learned from M. Crandall. 

Section 10.3 P.-L. Lions [Li] observed the connection between the def
inition of viscosity solution and the optimality conditions 
of control theory. The books of Fleming-Soner [F-S] and 
Bardi-Capuzzo Dolcetta [B-CD] provide much more infor
mation about viscosity solutions and the connections with 
deterministic and stochastic optimal control. 

Section 10.4 D. Ostrov contributed Problem 8. Consult Cabre-Caffarelli 
[C-C] and Gilbarg-Trudinger[G-T] for more about fully non
linear elliptic equations. 
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11.1. INTRODUCTION 

Chapter 11 

In this chapter we study systems of nonlinear, divergence structure first
order hyperbolic PDE, which arise as models of conservation laws. 

Physical interpretation. In the most general circumstance we would like 
to investigate a vector function 

u = u(x, t) = (u1(x, t), ... , um(x, t)) (x E ~n, t > 0), 

the components of which are the densities of various conserved quantities in 
some physical system under investigation. Given then any smooth, bounded 
region U c ~n, we note that the integral 

(1) fu u(x, t) dx 

-609 
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represents the total amount of these quantities within U at time t. Now 
conservation laws typically assert that the rate of change within U is gov
erned by a flux function F : :!Rm ---+ Mmxn, which controls the rate of loss or 
increase of u through au. Otherwise stated, it is appropriate to assume for 
each time t 

(2) dd f udx = - f F(u)vdS, 
t lu lau 

v denoting as usual the outward unit normal along U. Rewriting (2), we 
deduce 

(3) f Ut dx = - f F(u)vdS = - f divF(u) dx. lu lau lu 
As the region U c :!Rn was arbitrary, we derive from (3) this initial-value 
problem for a general system of conservation laws: 

(4) { ut+divF(u) =0 inIRn x (O,oo) 
u=g onIRnx{t=O}, 

the given function g = (g1, ... , gm) describing the initial distribution of 
u=(u1, ... ,um). 

At present a good mathematical understanding of problem (4) is largely 
unavailable (but see Zheng [Zh]). For this reason we shall henceforth con
sider instead the initial-value problem for a system of conservation laws in 
one space dimension: 

(5) { 
llt + F( u) x = 0 in IR x ( 0, oo) 

u = g on IR x { t = 0}, 

where F : :!Rm ---+ :!Rm and g : IR ---+ :!Rm are given and u : IR x [O, oo) ---+ :!Rm is 
the unknown, u = u(x, t). We call :!Rm the state space and write 

F = F(z) = (F1(z), ... , Fm(z)) (z E :!Rm) 

for the smooth flux function. 

We intend to study the solvability of problem (5), properties of its solu
tions, etc. 

Example 1. The '[>-System is this collection of two conservation laws: 

(6) { u} - u; = 0 (compatibility condition) 

ur - p( u 1 )x = 0 (Newton's law) 
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in IR x (0, oo ), where p : IR ~ IR is given. Here 

(7) F(z) = (-z2, -p(z1)) 

for z = (zi, z2). The p-system arises as a rewritten form of the scalar 
quasilinear wave equation 

(8) Utt - (p(ux))x = 0 in IR x (0, oo). 

Taking u 1 := ux, u2 := Ut, we obtain the system (6), with the stated inter
~~~- D 

Example 2. Euler's equations for compressible gas flow in one dimension 
are 

{ 
Pt + (pv )x = 0 (conservation of mass) 

(9) (pv)t + (pv2 + P)x = 0 (conservation of momentum) 

(pE)t + (pEv + pv)x = 0 (conservation of energy) 

in IR x (0, oo). Here pis the mass density, v the velocity, and Ethe energy 
density per unit mass. We assume 

v2 
E=e+-2' 

where e is the internal energy per unit mass and the term v; corresponds to 
the kinetic energy per unit mass. The letter pin (9) denotes the pressure. 
We assume p is a known function 

(10) p = p(p, e) 

of p and e; formula (10) is a constitutive relation. Writing u = ( u 1 , u2, u3 ) = 
(p, pv, pE), we check that (9) is a system of conservation laws of the requisite 
form 

Ut + F(u)x = 0 in IR x (0, oo) 

for F = (F1 F 2 F 3 ) 
' ' ' 

(11) { 
F 1(z) = z2 

p2(z) = (z2)2 + p(z1 ~ - !(~)2) 
z1 ' z1 2 z1 

p3(z) = ~ +p(z ~ - !(~)2)~ 
z1 1, z1 2 z1 z1 ' 

D 
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Example 3. The one-dimensional shallow water equations are 

{ 
ht+ (vh)x = 0 (conservation of mass) 

(vh)t + ( v2h + ; 2
) x = 0 (conservation of momentum) 

in 1R x [O, oo), where v is the horizontal velocity and h > 0 is the height. 
Putting q := vh, we can rewrite the equations into standard conservation 
law form: 

{ 
ht+ Qx = 0 

i!... h2 -
Qt + ( h + 2) x - 0. 

Here 

D 

11.1.1. Integral solutions. 

The great difficulty in this subject is discovering a proper notion of weak 
solution for the initial-value problem (5). We have already encountered 
similar issues in §3.4 in our study of the much simpler case of a single or 
scalar conservation law (i.e., m = 1 above). 

Following then the development in §3.4.1, let us suppose 

(12) { 
v : 1R x [O, oo) ~ lRm is smooth, 

with compact support, v = (v1, ... , vm). 

We temporarily assume u is a smooth solution of our problem (5), take 
the dot product of the PDE Ut + F(u)x = 0 with the test function v, and 
integrate by parts, to obtain the equality 

(13) {''° f 00 u. Vt+ F(u) . Vx dxdt + f 00 g. v dxlt=O = 0. 
Jo 1-oo -oo 

This identity, which we derived supposing u to be a smooth solution, makes 
sense if u is merely bounded. 

DEFINITION. We say that u E L00 (1R x (0, oo); 1Rm) is an integral solu
tion of the initial-value problem (5) provided the equality (13) holds for all 
test functions v satisfying (12). 

Continuing now to parallel the development in §3.4.1 for a single conser
vation law, let us now consider the situation that we have an integral solution 
u of (5) which is smooth on either side of a curve C, along which u has sim
ple jump discontinuities. More precisely, let us assume that V c 1R x (0, oo) 
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l c 

t 

R 

Rankine-Hugoniot condition 

is some region cut by a smooth curve C into a left-hand part Vi and a 
right-hand part v;.. 

Assuming that u is smooth in Vi, we select the test function v with 
compact support in Vi and deduce from (13) that 

(14) Ut + F(u)x = 0 in Vz. 

Similarly, we have 

(15) Ut + F(u)x = 0 in v;., 

provided u is smooth in v;.. Now choose a test function v with compact 
support in V but which does not necessarily vanish along the curve C. 
Then utilizing the identity ( 13), we find 

(16) 

O = f 00j 00 u ·Vt+ F(u) · Vx dxdt lo -oo 

=flu· Vt+ F(u) · Vxdxdt+ f i, u ·Vt +F(u) · Vxdxdt. 
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As v has compact support within V, we deduce 

J l u ·Vt+ F(u) · v., dxdt = - J l [ut + F(u).,] · vdxdt 

(17) +la (uw2 + F(Uj)v1) · v dl 

=la (Ujv2 + F(u1)v1) · vdl, 

owing to (14). Here v = (v1 , v 2 ) is the unit normal to the curve C point
ing from Vi into Yr, and the subscript "l" denotes the limit from the left. 
Likewise (16) implies 

f i. u ·Vt+ F(u) · v., dxdt = - la (u.v2 + F(u.)v1). v dl, 

"r" denoting the limit from the right. Adding this identity to (17) and 
remembering ( 16), we <led uce 

la[(F(u1) - F(u,. ))v1 + (u1 - Ur )v2] • v di= 0. 

This identity obtains for all smooth functions v as above, whence 

(18) (F(ul) - F(ur))v1 + (ul - ur)v2 = 0 along C. 

Suppose now the curve C is represented parametrically as { ( x, t) I x = 

s(t)} for some smooth functions(·): [O,oo) ~ ~- Then v = (v1,v2 ) = 
(1+82)-112 (1, -s). Consequently (18) reads 

(19) 

in V along the curve C. 

NOTATION. 

{ 
[[u]] = ul - Ur = jump in u across the curve C 

[[F(u)]] = F(ul) - F(ur) =jump in F(u) 

u = s = speed of the curve C. 

Let us then rewrite (19) as the identity 

(20) [[F(u)]] = u[[u]] 

along the discontinuity curve, the Rankine-Hugoniot jump condition. Note 
carefully this is a vector equality. 
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11.1.2. Traveling waves, hyperbolic systems. 

We have seen in §3.4 that the notion of an integral solution for conser
vation laws is not adequate: such solutions need not be unique. We are 
therefore intent upon discovering some additional requirements for a good 
definition of a generalized solution. This will presumably entail as in §3.4 
an entropy criterion based upon an analysis of shock waves. This expecta
tion, now as carried over to systems, is largely correct, but first of all we 
must study more carefully the nonlinearity F in the hopes of discovering 
mathematically appropriate and physically correct structural conditions to 
impose. 

Let us start by first considering the wider class of semilinear systems 
having the nondivergence form: 

(21) Ut + B(u)ux = 0 in Rx (0, oo), 

where B: Rm---+ Mmxm. This system is for smooth functions equivalent to 
the conservation law in ( 5), provided 

(
F}1 

B=DF= 

F-;:: 
We consider now the possibility of finding particular solutions which 

have the form of a traveling wave: 

(22) u(x, t) = v(x - ut) (x E R, t > 0), 

where the profile v : R ---+ Rm and the velocity u E R are to be found. We 
substitute expression (22) into the PDE (21) and thereby obtain the equality 

(23) -uv'(x - ut) + B(v(x - ut))v'(x - ut) = 0. 

Observe that (23) says u is an eigenvalue of the matrix B(v) corresponding 
to the eigenvector v'. 

This conclusion suggests (exactly as for the linear theory in §7.3) that 
if we wish to find traveling waves or, more generally, wavelike solutions of 
our system of PDE, we should make some sort of hyperbolicity hypothesis 
concerning the eigenvalues of B. 

DEFINITION. If for each z E Rm the eigenvalues of B(z) are real and 
distinct, we call the system (21) strictly hyperbolic. 

We henceforth assume the system of partial differential equations (21) 
(and the special case B = DF of conservation laws ) to be strictly hyperbolic. 
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NOTATION. (i) We will write 

(24) A1 (z) < .\2(z) < · · · < Am(z) (z E Rm) 

to denote the real and distinct eigenvalues of B(z), in increasing order. 

(ii) Then for each k = 1, ... , m, we let 

denote a corresponding nonzero eigenvector, so that 

(25) B(z)rk(z) = Ak(z)rk(z) (k = 1, ... , m, z E Rm). 

Since we are always assuming the strict hyperbolicity condition, the vectors 
{rk(z)}k=l span Rm for each z E Rm. 

(iii) Next, since a matrix and its transpose have the same spectrum, we 
can introduce for each k = 1, ... , ma nonzero eigenvector 

for the matrix B(z)T, corresponding to the eigenvalue Ak(z). Thus 

This equality is usually written 

(27) lk(z)B(z) = .\(z)lk(z) (k = 1, ... , m, z E Rm). 

Thus {lk(z)}k=l can be regarded as left eigenvectors of B(z), and {rk(z)}k=l 
are right eigenvectors. 

Remark. Additionally, we observe 

(28) 

To confirm this, we compute using (25) and (26) that 

Ak(z)(ll(z) · rk(z)) = ll(z) · (B(z)rk(z)) = (B(z)Tll(z)) · rk(z) 

= Al(z)(ll(z) · rk(z)), 

whence ( 28) follows since Ak ( z) -/:- Al ( z) if k -/:- l. 

Let us first show that the notion of strict hyperbolicity is independent 
of coordinates. 
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THEOREM 1 (Invariance of hyperbolicity under change of coordinates). 
Let u be a smooth solution of the strictly hyperbolic system (21). Assume 
also C.() : :!Rm ~ :!Rm is a smooth diff eomorphism, with inverse \JI. Then 

(29) ii := C.()(u) 

solves the strictly hyperbolic system 

(30) iit + B(ii)iix = 0 in IR x (0, oo), 

for 

(31) B(z) := nci;(w(z))B(w(z))Dw(z) (z E IRm). 

Proof. 1. We compute iit = DC.()(u)ut, iix = DC.()(u)ux, and so equation 
(30) is valid for B(z) = DC.()(z)B(z)DC.()-1(z), where z = C.()(z). Substituting 
z = \Jl(z), we obtain (31). 

2. We must prove that the system (30) is strictly hyperbolic. If Ak(z) is 
an eigenvalue of B(z), with corresponding right eigenvector rk(z), we have 

Setting 

(32) 

(33) 

we compute 

(34) 

Similarly if lk ( z) is a left eigenvector, we write 

(35) 

and calculate 

(36) 

In view of (32)-(36), we conclude that the system (30) is strictly hyperbolic. 
D 

Next we study how Ak(z), rk(z) and Ik(z) change as z varies: 
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THEOREM 2 (Dependence of eigenvalues and eigenvectors on parame
ters). Assume the matrix function B is smooth, strictly hyperbolic. 

(i) Then the eigenvalues Ak(z) depend smoothly on z E IRm (k = 1, ... , m). 

(ii) Furthermore, we can select the right eigenvectors rk(z) and left eigen
vectors lk ( z) to depend smoothly on z E IRm and satisfy the normalization 

lrk(z)I, llk(z)I = 1 (k = 1, ... , m). 

Proof. 1. Since B( z) is strictly hyperbolic, for each zo E IRm we have 

(37) A.1 (zo) < A.2(zo) < · · · < Am(zo). 

Fix k E {1, ... ,m} and any point zo E IRm, and let rk(zo) satisfy 

{ 11(zo)rk(zo)= A.k(zo)rk(zo) 

lrk(zo)I= l. 

Upon rotating coordinates if necessary, we may assume 

{38) rk(zo) = em = (0, ... , 1). 

We first show that near zo, there exist smooth functions Ak(z), rk(z) such 
that 

{ 
B(z)rk(z)= A.k(z)rk(z) 

lrk(z)I= l. 

2. We will apply the Implicit Function Theorem (§C. 7) to the smooth 
function~: IRm x IR x IRm ~ JRm+l defined by 

Now 

~(r, A., z) = (B(z)r - A.r, lrl2 ) (r, z E IRm, A. E IR). 

a~(r, A., z) 
a(r,A.) 

B(z) - A.I 

0 (m+l)x(m+l) 

and so, according to (38), it suffices to check that 

0 

det #0. (39) B(zo) - Ak(zo)I 
-1 

0 ...... 2 0 
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3. Note that for£> 0 sufficiently small, the matrix 

(40) BE= B(zo) - (>..k(zo) + £)1 

is invertible. In light of (38), 

Therefore 

0 0 0 

I 
(-€)-1 0 -1 

0 ... 2 0 0 ... 0 1 0 ... 2 2(-£)-1 

619 

Consequently, since the determinant of the second matrix before the equals 
sign is one, we have 

det BE 

0 ... 2 

0 

-1 
0 

= 2 II (>..j(zo) - (>..k(zo) + £))(-£)(-£)-1 

jf.k 

~ 2 II (>..i(zo) - >..k(zo)) as£~ 0. 
jf.k 

As B(zo) is strictly hyperbolic, the last expression is nonzero. Condition 
(39) is verified. We may thus invoke the Implicit Function Theorem (§C. 7) 
to find near zo smooth functions >..k(z) and rk(z), satisfying the conclusion 
of the theorem. 

4. It remains to show that we can define >..k(z) and rk(z) for all z E IRm 
and not just near any particular point zo. To do so, let us write 

R := sup{r > 0 I >..k(z), rk(z) as above exist and are smooth on B(O, r)}. 

If R = oo, we are done. Otherwise, we cover 8B(O, R) with finitely many 
open balls into which we can smoothly extend >..k(·) and rk(·), using steps 
1-3 above. This yields a contradiction to the definition of R. 

A similar proof works for the left eigenvectors. D 

Observe that we are not only globally and smoothly defining the eigen
values and eigenspaces of B, but are also globally providing the eigenspaces 
with an orientation. 

This proof depends fundamentally upon the one-dimensionality of the 
eigenspaces. See Problem 3 for an example of what could go wrong in the 
hyperbolic, but not strictly hyperbolic, setting. 
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Example 1 (continued). For the p--system (6), we have 

Ut + B(u)ux = 0, 

for 

B(z) = DF(z) = ( ~( ) -p z1 
-1) 0 . 

The eigenvalues are .X1 =-a, .X2 =a, for a:= p'(z1)112. These are real and 
distinct provided we hereafter suppose the strict hyperbolicity condition 

(41) p' > 0. 

For the nonlinear wave equation (8) this is the physical assumption that the 
stress p( Ux) is a strictly increasing function of the strain Ux. D 

Example 2 (continued). Euler's equations (9) comprise a strictly hyper
bolic system provided we assume p > 0 and 

(42) 
8p 8p 
8p > O, 8e > O, 

where p = p(p, e) is the constitutive relation between the mass density, the 
internal energy density and the pressure. This assertion is however difficult 
to verify directly, as the flux function F defined by (11) is complicated. 

Let us rather change variables and regard the density p, velocity v and 
internal energy e as the unknowns. We can then rewrite Euler's equations (9) 
in terms of these quantities and, in so doing, obtain after some calculations 
the system 

(43) { 
Pt + V Px + ';x _ 0 
Vt + VVx + µPx - 0 

et + vex + ~Vx = 0, 

provided p > 0. These equations are not in conservation form. Setting now 
u = ( u1, u2 , u3 ) = (p, v, e ), we rewrite ( 43) as 

(44) Ut + B(u)ux = 0 in IR x (0, oo), 

for 

(45) B(z) = z2l + B(z), 

where 
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The characteristic polynomial of B is -.X(.X2 - u2), for u2 = ~~ + ~. z1 8e 8p 
Recalling ( 45) and reverting to physical notation, we see that the eigenvalues 
of Bare 

(46) .X1 = v - u, .X2 = v, A3 = v +a, 

where 

( 
p 8p 8p)l/2 

u := p2 8e + 8p > 0 

is the local sound speed. We therefore see that the system ( 44) is strictly hy
perbolic, provided assumption (42) is valid. Remembering now Theorem 1, 
we deduce that Euler's equations (9) are also strictly hyperbolic, with eigen
values given by (46). D 

11.2. RIEMANN'S PROBLEM 

In this section we investigate in detail the system of conservation laws 

(1) Ut + F(u)x = 0 in IR x (0, oo), 

with the piecewise-constant initial data 

(2) g= { 
Ul 

Ur 

if x < 0 

if x > 0. 

This is Riemann's problem. We call the given vectors ui and Ur the left and 
right initial states. 

11.2.1. Simple waves. 

We commence our study of (1), (2) in very much the same spirit as in 
§11.1.2, in that we look for solutions of (1) having a special form. Before we 
searched for traveling waves, that is, solutions of the type u(x, t) = v(x-ut). 
We now seek simple waves. These are solutions of (1) having the structure 

(3) u(x, t) = v( w(x, t)) (x E IR, t > 0), 

where v : IR~ IRm, v = (v1, ... , vm), and w : IR x [O, oo) ~ IR are to be 
found. To discover the requisite properties of v and w, let us substitute (3) 
into (1) and obtain the equality 

(4) v(w)wt + DF(v(w))v(w)wx = 0. 
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Now in view of equation (25) from §11.1.2, with B = DF, we see (4) 
will be valid if for some k E {1, ... , m}, w solves the PDE 

(5) Wt+ Ak(v(w))wx = 0 

and v solves the ODE 

(6) V(s) = rk(v(s)) (- = ! ) . 
If (5) and (6) hold, we call the function u defined by (3) a k-simple wave. The 
point of all this is that we can regard (6) as an ODE for the vector function v, 
and then-once v has been found by solving (6)-we can interpret equation 
(5) as a scalar conservation law for w. 

Let us next identify circumstances under which we can employ the con
struction (3)-(6) to build a continuous solution u of (1). We must examine 
first the ODE (6). 

DEFINITION. Given a fixed state zo E IRm, we define the kth _rarefaction 
curve 

Rk(zo) 

to be the path in IRm of the solution of the ODE (6) which passes through zo. 

zo 

Rarefaction curve 

Given then the solution v of (6), we turn to the PDE (5), which we 
rewrite as the scalar conservation law 

(7) Wt+ Fk(w)x = 0 

for 

(8) Fk(s) := f >.k(v(t))dt (s E JR). 

The PDE (7) will fall under the general theory developed in §3.4 provided 
Fk is strictly convex (or else strictly concave). Let us therefore compute 

(9) F~(s) = Ak(v(s)), 
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{10) F~(s) = DAk(v(s)) · v(s) = DAk(v(s)) · rk(v(s)). 

Owing to (10), the function Fk will be convex if 

and concave if 

The function Fk is linear provided 

These possibilities motivate the following 

DEFINITIONS. (i) The pair (Ak(z), rk(z)) is called genuinely nonlinear 
provided 

(11) 

(ii) We say (Ak(z), rk(z)) is linearly degenerate if 

(12) 

NOTATION. If the pair (Ak, rk) is genuinely nonlinear, write 

and 

Then 
Rk(zo) = Rt(zo) U {zo} U R-,;(zo). 

Ric (ZO) 

zo 

Two parts of the rarefaction curve 
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11.2.2. Rarefaction waves. 

We turn our attention again to Riemann's problem (1), (2). 

THEOREM 1 (Existence of k-rarefaction waves). Suppose that for some 
kE{l, ... ,m}, 

(i) the pair (Ak, rk) is genuinely nonlinear, and 

(ii) Ur E Rt( ul). 

Then there exists a continuous integral solution u of Riemann's problem (1), 
(2), which is a k-simple wave constant along lines through the origin. 

We call u a (centered) k-rarefaction wave. 

k-rarefaction wave 

Proof. We first choose wl and Wr E IR so that ul = v( wl), Ur = v( Wr). 
Suppose for the moment 

(13) 

Consider then the scalar Riemann problem consisting of the PDE (7) 
together with the initial condition 

(14) g = { Wl if X < 0 

Wr if X > 0. 

Now in view of hypothesis (ii) we have Ak( Ur) > Ak( ul); that is, according 
to (9), Fk( Wr) > Fk( wl). But then it follows from (i) that the function Fk 
defined by (8) is strictly convex. Accordingly we can apply Theorem 4 in 
§3.4.4 to the scalar Riemann problem (7), (14), whose unique weak solution 
is a continuous rarefaction wave connecting the states Wl and Wr. More 
specifically, 

{ 
Wl 

w(x, t) = Gk (f) 
Wr 

if r < Fk(wl) 

if Fk(wl) <. r < Fk(wr) (x E IR, t > 0) 
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where Gk= (Fk)-1. Thus u(x, t) = v(w(x, t)), where v solves the ODE (6) 
and passes through Ut, is a continuous integral solution of (1), (2). 

The case Wt > Wr is treated similarly, since Fk is then concave. D 

11.2.3. Shock waves, contact discontinuities. 

We consider next the possibility that the states Ut and Ur may be joined 
not by a rarefaction wave as above, but rather by a shock. 

k-shock wave 

a. The shock set. Recalling the Rankine-Hugoniot condition from §11.1.1, 
we see that necessarily we must have the equality F(ui)-F(ur) = u(ul-ur), 
where u E JR, for such a shock wave to exist. This observation motivates 
the following 

DEFINITION. Given a fixed state zo E ]Rm, we define the shock set 

S(zo) := {z E lRm I F(z) - F(zo) = u(z - zo) for a constant u = u(z, zo)}. 

THEOREM 2 (Structure of the shock set). Fix zo E ]Rm. In some 
neighborhood of zo, S(zo) consists of the union of m smooth curves Sk(zo) 
(k = 1, ... , m), with the following properties: 

(i) The curve Sk(zo) passes through zo, with tangent rk(zo). 

(ii) lim u(z, zo) = Ak(zo). 
Z---+ZQ 

zESk(zo) 

(iii) u(z, zo) = >.k(z)~>.k(zo) + O(lz - zol 2), as z--+ zo with z E Sk(zo). 

Proof. 1. Define 

B(z) := [ DF(zo + t(z - zo)) dt (z E Rm). 
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zo 

Contact between Rk and Sk 

Then 

(15) B(z)(z - zo) = F(z) - F(zo). 

In particular z E S ( z0 ) if and only if 

(16) (B(z) - o1)(z - zo) = 0 

for some scalar u = u(z, zo). 

2. We study equation (16) by first of all noting 

(17) B(zo) = DF(zo). 

Now in view of the strict hyperbolicity, the characteristic polynomial A ~ 
det(AJ - B(z0)) has m distinct, real roots, and hence the polynomial A ~ 
det (Al - B ( z)) likewise has m distinct roots if z is close to zo. Recalling 
Theorem 2 in §11.1.2, we see that near zo there exist smooth functions 
.\1(z) < · · · < -Xm(z) and unit vectors {fk(z), ik(z)}k=l satisfying 

.\k(zo) = Ak(zo), fk(zo) = rk(zo), ik(zo) = lk(zo) (k = 1, ... , m) 

and 

(18) { ~(z)fk(z) = ~k(z)_fk(z) 
.. .. .. (k = 1, ... , m). 
lk(z)B(z) = Ak(z)Ik(z) 

Note that {fk(z)}, {ik(z)}k=l are bases of Rm, and also 

(19) il(z) · fk(z) = 0 (k =/= l). 

3. Equation (16) will hold provided a= .\k(z) for some k E {1, ... , m} 
and (z - zo) is parallel to fk(z). In light of (19), these conditions are equiv
alent to asking that 

(20) il(z) · (z - zo) = 0 (l =/= k). 
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These equalities amount to m - 1 equations for the m unknown components 
of z, which we intend to solve using the Implicit Function Theorem (§C. 7). 
So define ~k : IRm---+ IRm-l by setting 

~k(z) := ( ... ,ik-1 (z) · (z - zo), ik+l (z) · (z - zo), ... ). 

Now ~k(zo) = 0 and 

Ii (zo) 

lk-1 (zo) 
lk+l (zo) 

lm(zo) (m-l)xm 

the entries of this matrix being regarded as row vectors. Since the vectors 
{lk(zo) }k=l form a basis of IRm, we see 

rank D~k(zo) = m - 1. 

Accordingly, there exists a smooth curve <Pk : IR ---+ IRm such that 

(21) <Pk(O) = zo 

and 

(22) ~k(<Pk(t)) = 0 for all t close to 0. 

The path of the curve <Pk(·) fort near zero defines Sk(zo). We may repara
meterize as necessary to ensure 

(23) 

4. Now (20)-(22) imply 

(24) 

for all t near zero, whereµ: IR---+ IR is a smooth function satisfying µ(O) = 

0, jJ,(O) = 1. Differentiating (24) with respect tot and setting t = 0, we thus 
find 

(25) 
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Hence the curve Sk(zo) has tangent rk(zo) at zo. Assertion (i) is proved. 

5. In light of the foregoing analysis, there exists a smooth function 
a : Rm x Rm ~ R such that 

(26) F(<J>k(t)) - F(zo) = a(<l>k(t), zo)(<l>k(t) - zo) 

for all t close to zero. Differentiating with respect tot and setting t = 0, we 
deduce from (21) that 

In light of (25), we see that u(z0 , z0 ) = Ak(z0 ). This establishes assertion 
(ii). 

6. Now write u(t) := a(<J>k(t), zo), so that (26) reads 

F(<J>k(t)) - F(zo) = a(t)(<l>k(t) - zo). 

Differentiate twice with respect to t: 

(D2F(<J>k(t))<i>k(t))<i>k(t) + DF(<J>k(t))(i,k(t) 

= a(t)(<J>k(t) - zo) + 2u(t)<i>k(t) + u(t)(i,k(t). 

Evaluate this expression at t = 0 and recall u(O) = Ak(zo), <l>k(O) = zo, 
<i>k(O) = rk(zo): 

(27) 
2 .. 

(20-(0)J - D F(zo)rk(zo))rk(zo) = (DF(zo) - Ak(zo)l)<J>k(O). 

7. Let 1/Jk(t) = v(t) be a unit speed parameterization of the rarefaction 
curve Rk(zo) near zo (as in (6) above). Then 

(28) 

Thus 

for 

Next differentiate with respect tot and set t = 0: 

(29) 

Add (27) and (29), to obtain 

(30) (2<7(0) - ,\k(O))rk(zo) = (DF(zo) - Ak(zo)I)(¢k(O) - rk(O)). 
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Take the dot product with lk(zo) and observe lk · rk #- 0, to conclude 

(31) 20-(0) = ~k(O). 

We deduce from (31) that 

Assertion (iii) follows. D 

We see from Theorem 2(iii) that the curves Rk(ZO) and Sk(zo) agree at 
least to first order at zo. Next is the assertion that in the linearly degenerate 
case these curves in fact coincide. 

THEOREM 3 (Linear degeneracy). Suppose for some k E {1, ... , m} that 
the pair (>..k, rk) is linearly degenerate. Then for each zo E Rm, 

(i) Rk(zo) = Sk(zo) 
and 

(ii) a(z, zo) = >..k(z) = >..k(zo) for all z E Sk(zo). 

Proof. Let v = v( s) solve the ODE 

{ 
v(s) = rk(v(s)) (s ER) 

v(O) = zo. 

Then the mappings f-+ >..k(v(s)) is constant, and so 

F(v(s)) - F(zo) = f DF(v(t))V(t) dt = f DF(v(t))rk(v(t)) dt 

= f Ak(v(t))rk(v(t)) dt = >.k(ZO) f V(t) dt 

= >..k(ZO)(v(s) - zo). D 

b. Contact discontinuities, shock waves. We next undertake to an
alyze in light of Theorems 2 and 3 the possibility of solving Riemann's 
problem by joining two given states ui and Ur by some kind of shock wave. 

Contact discontinuities. Suppose first that (>..k, rk) is linearly degenerate 
and 

(32) 
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k-contact discontinuity 

We then define an integral solution of our system of conservation laws by 
setting 

(33) u(x, t) = 

for 

(34) 

{ 
Ut 

Ur 

if x <at 
if x >at, 

Now observe from our analysis in §3.2.1 that since Ak(ui) = Ak(ur) =a, 
the projected characteristics to the left and right are pamllel to the line 
of discontinuity. We interpret this situation physically by saying that fluid 
particles do not cross the discontinuity. The line x = at is called a k-contact 
discontinuity. 

Shock waves. We next turn our attention to the case that (.Xk, rk) is 
genuinely nonlinear and 

(35) 

as before. If we consider the integral solution 

(36) 

for 

(37) 

{ 
Ut if X < at 

u(x, t) = 
Ur if X >at, 

a = a( Un ui), 

we see that there are two essentially different cases according as to whether 

(38) 
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or else 

(39) 

Now in view of assertion (iii) from Theorem 2, we have then either 

(40) 

or 

(41) 

provided Ur is close enough to ui. 

This dichotomy is reminiscent of a corresponding situation in §3.4, for a 
scalar conservation law. By analogy with the entropy conditions introduced 
there, let us hereafter agree to reject the inequalities ( 41) as allowing for 
"nonphysical shocks" from which characteristics emanate as we move for
ward in time. We rather take (40) as being physically correct. The informal 
viewpoint is that then the characteristics from the left and right run into 
the line of discontinuity, whereupon "information is lost" and so "entropy 
increases". This interpretation was largely justified mathematically in §3.4 
with our uniqueness theorem for weak solutions that satisfied this sort of 
entropy condition. 

Refocusing our attention again to systems, we therefore agree to regard 
( 40) as the correct inequalities to be satisfied: 

DEFINITION. Assume the pair (.\k, rk) is genuinely nonlinear at ui. We 
say that the pair ( ui, Ur) is admissible provided 

and 

(42) 

We refer to ( 42) as the Lax entropy condition. If ( ui, Ur) is admissible, 
we call our solution u defined by (36), (37) a k-shock wave. 

By analogy with our decomposition of Rk(zo) into R~(zo), let us intro
duce this 

DEFINITION. If the pair (.\k, rk) is genuinely nonlinear, we write 

st (zo) := { z E Sk(zo) I Ak(zo) < a(z, zo) < Ak(Z)} 
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Shock curve 

and 

Then 

Sk(zo) = St(zo) U {zo} U s;(zo) 

near zo. Note then that the pair ( uz, Ur) is admissible if and only if 

11.2.4. Local solution of Riemann's problem. 

Next we glue together the physically relevant parts of the rarefaction 
and shock curves. 

DEFINITIONS. (i) If the pair (.Xk, rk) is genuinely nonlinear, write 

Tk(zo) := Rt(zo) U {zo} U s;(zo). 

(ii) If the pair (.Xk, rk) is linearly degenerate, we set 

Owing to Theorem 2(ii), the curve Tk(zo) is 0 1. Employing the notation of 
§11.2.3, we see that nearby states ui and Ur can be joined by a k-rarefaction 
wave, a shock wave or a contact discontinuity provided 

(43) 

We now at last ask if we can find a solution to Riemann's problem 
provided only that Ur is close to Ut (but ( 43) may fail for each k = 1, ... , m). 
The hope is that by moving along various paths Tk for different values of 
k, we may be able to connect ui to Un utilizing a sequence of rarefaction 
waves, shock waves, and/ or contact discontinuities. 
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sic<zoJ 

zo 

Structure of the T-curve 

THEOREM 4 (Local solution of Riemann's problem). Assume for each 
k = 1, ... , m that the pair (.Xk, rk) is either genuinely nonlinear or else 
linearly degenerate. Suppose further the left state Ut is given. Then for each 
right state Ur sufficiently close to Ut there exists an integral solution u of 
Riemann's problem, which is constant on lines through the origin. 

Proof. 1. We intend to apply the Inverse Function Theorem (§C.6) to a 
mapping ~ : Rm ~ Rm, defined near 0 as follows. 

First, for each family of curves Tk ( k = 1, ... , m) choose the nonsingular 
parameter Tk to measure arc length; that is, if z, z E IRm with z E Tk(z), 
then 

rk(z) - rk(z) = (signed) distance from z to z along the curve Tk(z). 

We take the plus sign for Tk(z) if z E Rt(z), the minus sign if z E s;(z). 
2. Given then t = (ti, ... , tm) E Rm, with ltl small, we define ~(t) = z 

as follows. First, temporarily write 

(44) Ut = zo. 

Then choose states z1, ... , Zm to satisfy 

(45) 

Now write 

(46) 

and define 

(47) 

z1 E Ti (zo), r1 (z1) - r1 (zo) = ti, 

z2 E T2(z1), r2(z2) - r2(z1) = t2, 

Z = Zm, 

~(t) = z. 
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Note <P is 0 1 and 

(48) 

3. We claim 

(49) 

To see this, observe 

Thus 

and so 
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<P(O) = zo. 

D<P(O) is nonsingular. 

8<P 
-8 (0) = rk(zo) (k = 1, ... , m), 

tk 

D<P(O) = (r1(zo), ... , rm(zo))mxm, 

the entries regarded as column vectors. This matrix is nonsingular, since 
{rk(zo)},;i=l is a basis. 

4. In light of ( 49), the Inverse Function Theorem applies: for each state 
Ur sufficiently close to Ut there exists a unique parameter t = (ti, ... , tm) 
close to zero such that <P(t) =Ur. 

Recall next that if Zk-1 and Zk are joined by a k-rarefaction wave, this 
wave is 

if f < Ak(Zk-1) 

if Ak(Zk-1) < f < Ak(zk), 

if Ak(Zk) < f. 

Moreover if Zk-1, Zk are joined by a k-shock, it has the form 

{ 
Zk-1 if f < u(zk, Zk-1) 

Zk if a(zk, Zk-1) < f, 

where Ak(zk) < a(zk, Zk-1) < Ak(Zk-1). In both cases the waves are constant 
outside the regions Ak(zo) - e < f < Ak(zo) + e, for small e > 0, provided 
zk, Zk-1 are close enough to zo. This is true for k = 1, ... , m. 

Since Ai(zo) < · · · < Am(zo), we see then that the rarefactions, shock 
waves and/ or contact discontinuities connecting Ut = zo to z1, z1 to z2, z2 

to z3, ... , Zm-1 to Zm =Ur do not intersect. D 



11.3. SYSTEMS OF TWO CONSERVATION LAWS 635 

11.3. SYSTEMS OF TWO CONSERVATION LAWS 

In this section we more deeply analyze the initial-value problem form= 2, 
which is to say, for a pair of conservation laws: 

(1) u~ + F 2 (u1, u2 )x = 0 
in Rx (0, oo) { 

ul +pl ( ul' u2)x = 0 

u1 = g1, u2 = g2 on Rx {t = O}. 

Here F = (F1 , F 2 ), g = (g1 , g2 ), u = (u1 , u 2 ). 

11.3.1. Riemann invariants. 

Our intention is first to demonstrate that we can transform ( 1) into a 
much simpler form by performing an appropriate nonlinear change of de
pendent variables. The idea is to find two functions w1 , w2 : R2 ~ R with 
nice properties along the rarefaction curves R 1, R2: 

DEFINITION. We say 
wi: R2 ~ R 

is an ith _Riemann invariant provided 

(2) Dwi(z) is parallel to lj(z) (z E R2 , i =/:- j). 

We will see momentarily how useful condition (2) is, but let us first pause 
to ask whether Riemann invariants exist. It turns out that since we are now 
taking m = 2, this is easy. Indeed, because lj(z) · ri(z) = 0 (i =I- j), we see 
(2) is equivalent in R2 to the statement 

(2') 

which is to say 

(3) wi is constant along the rarefaction curve~ (i = 1, 2). 

In particular, any smooth function wi satisfying (3) satisfies also (2'), (2) 
and so is an ith_Riemann invariant. 

In the case that m > 2, Riemann invariants do not in general exist. 

Now we can regard w = (wi,w2) = (w1(zi,z2),w2(z1,z2)) as being new 
coordinates on the state space R2 , replacing z = (zi, z2). More precisely, we 
define w: R2 ~ R2 by setting 

(4) 
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The inverse mapping is z(w) = z(wi,w2) = (z1(wi,w2),z2(wi,w2)). 

Let us now utilize the transformation ( 4) to simplify our system of two 
conservation laws (1). For this, let us suppose henceforth u = (u1, u 2 ) is a 
smooth solution of (1). We now change dependent variables by setting 

(5) v(x, t) := w(u(x, t)) (x E R, t > 0). 

What system of PDE does v = (v1 , v2 ) satisfy? 

THEOREM 1 (Conservation laws and Riemann invariants). The func
tions v1, v2 solve the system 

(6) { vf + -X2(u)vi = 0 
in Rx (0, oo). vi+ -X1(u)vi = 0 

The point is that the system (6), although not in conservation law form, 
is in many ways rather simpler than (1). Note in particular that whereas 
the PDE for u 1 involves the term ui, the PDE for v1 does not entail v;. 
Similarly, the PDE for v2 does not involve vi. 
Proof. According to (5), we see that for i = 1, 2, i # j, 

v; + Aj(u)v~ = Dwi(u) · Ut + Aj(u)Dwi(u) · Ux 

= Dwi(u) · (-F(u)x + Aj(u)ux) 

= Dwi(u) · (-DF(u) + Aj(u)J)ux = 0, 

since, by definition, Dwi is parallel to lj. D 

Remarks. (i) We can interpret the system of PDE (6) by introducing the 
ODE 

(7) 

for i = 1, 2, j # i. Then we see from (6) that 

(8) vi is constant along the curve (xi(s), s) (s > 0) 

for i = 1, 2. 

(ii) Recall from §11.2 that our condition of genuine nonlinearity reads 

(9) 
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Since we can also regard Ai as a function of w = (w1, w2), we can rewrite 
(9) to read 

(10) 8Ai _J_ O ( 1[])2 . _J_ .) 
8w· r w E J!'f:..' i r J . 

J 

To see (9) is equivalent to (10), observe that if (10) fails, then 

(11) 
8Ai 2 8Ai 8zk o---"'--aw· -~azkaw·· 

J k=l J 

But since L~=l ~~: ~: = 8ij = 0 for i # j, we see that ( 11) asserts that D Ai 

is parallel to Dwi. However, Dwi is perpendicular to ri, and so we obtain 
a contradiction to (9). Hence (9) implies (10), and the converse implication 
is established in the same way. D 

Example (Barotropic compressible gas dynamics). We illustrate the fore
going ideas by examining in detail Euler's equations for compressible gas 
dynamics (Example 2 in § 11.1) in the special case that the internal energy 
e is constant. The relevant PDE are 

(12) { 
Pt+ (pv)x = 0 

(pv)t + (pv2 + P)x = 0 

(conservation of mass) 

(conservation of momentum), 

where we now assume 

(13) p = p(p) 

for some smooth function p : IR ~ IR. Formula (13) is called a barotropic 
equation of state. We assume the strict hyperbolicity condition 

(14) p' > 0. 

Setting u = (u1,u2 ) = (p,pv), we can rewrite (12), (13) to read 

Ut + F(u)x = 0, 

for 
F = (F1, F 2) = (z2, (z2)2 /z1 + p(z1)) 

and z = (zi, z2), provided z1 > 0. Then 
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Consequently 

(15) 

In physical notation, 

(16) Ai = v - a, A2 = v + a, 

for the sound speed 

(17) a:= p'(p)112. 

Remembering (7), we consider next the ODE 

(18) ±1(t) = v(x1(t), t) + a(x1(t), t), 

(19) 

where a(x, t) := p'(p(x, t))~, t > 0. We know from (8) that the Riemann 
invariant v1 = w1(u) is constant along the trajectories of (18) and v2 = 

w2 (u) is constant along trajectories of (19). 

To compute w1 and w2 directly, let us carry out some computations on 
the system ( 12). First we transform ( 12) in nondivergence form: 

(20) Pt + pvx + PxV = 0, 

(21) PtV + PVt + PxV2 + 2pvvx + Px = 0. 

Multiplying (20) by a2 = p'(p) and recalling (13) gives us 

(22) 

In addition (20), (21) combine to yield 

(23) PVt + pvvx + Px = 0. 

We now manipulate (22), (23) so that the directions Ai, A2 = v =f= a 
appear explicitly. To accomplish this, we multiply (23) by a and then add 
to and subtract from (22): 

(24) { Pt+ (v + a)px +pa( Vt+ (v + a)vx) = 0 

Pt+ (v - a)px - pa(vt + (v - a)vx) = 0. 
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We then deduce from (24) that 

{ ti [p(x1 (t), t)] + p(x1 (t), t)a(x1 (t), t) it [v(x1 (t), t)] = 0 
(25) 

ti [p(x2(t), t)] - p(x2(t), t)a(x2(t), t) ti [v(x2(t), t)] = 0. 

A ~ 2!!£_ s dt =a dt'wesee 

(26) a ddp ± ddv = 0 along the trajectories of (18), (19), 
p t t 

provided p > 0. 
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Think now of the Riemann invariants as functions of p and v. Then 
since v1 = w1(p, v) is constant along the curve determined by x1(·), we have 

d 1 
0 = dt [w (p(x1 (t), t), v(x1 (t), t) )] 

ow1 d ow1 d 
= op dt[p(x1(t),t)] + av dt[v(x1(t),t)]. 

This is consistent with (26) if 

We similarly deduce 

ow1 - a(p) ow1 - 1 
op -p, av - . 

ow2 - a(p) ow2 - 1 
op - P' av - - · 

Integrating, we conclude that the Riemann invariants are, up to additive 
constants, 

wl = [P a(s) ds + v, w2 = [P a(s) ds - v. 
11 s 11 s 

We leave it as an exercise to check that w1, w2, taken now as functions of 
z = (z1, z2), satisfy the definition of Riemann invariants. D 

11.3.2. Nonexistence of smooth solutions. 

Illustrating now the usefulness of Riemann invariants, we establish the 
following criterion for the nonexistence of a smooth solution: 

THEOREM 2 (Riemann invariants and blow-up). Assume g is smooth, 
with compact support. Suppose also the genuine nonlinearity condition 

(27) ~Ai > 0 in R2 (i = 1,2, i :f: j) 
UWj 

holds. Then the initial-value problem ( 1) cannot have a smooth solution u 
existing for all times t > 0 if 

(28) either v; < 0 or v; < 0 somewhere on Rx {t = O}. 
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Proof. 1. Assume for the time being that u is a smooth solution of (1). 
Write 

(29) a ·- VI b ·- v2 
.- X' .- X' 

where v = w(u), v = (vI, v2), solves the system of PDE (6). We differentiate 
the first equation of (6) with respect to x, to compute 

(30) 
8>..2 2 8>..2 

at + >..2ax + -8 a + -8 ab = 0. 
WI W2 

We employ then the second equation of (6), which we rewrite as 

v~ + >..2v; = (>..2 - AI)b. 

Substituting this expression into (30) gives 

(31) 8>..2 2 [ 1 8>..2 2 2 ] at+ >..2ax + -8 a + >.. >.. -8 (vt + >..2vx) a= 0. 
WI 2 - I W2 

2. To integrate (31), fix xo E IR and set 

where 

(33) { ±I(s) = >..2(u(xI(s), s)) (s > 0) 

xI(O) = xo. 

Next is the key observation from (8) that vI is constant along the curve 
(xI(s),s). So write 

vI(xI(s), s) = vJ = vI(xo, 0) (s > 0). 

Thus we see that the expression ( .x2 ~.x 1 g~~) , considered as a function of 

v = w(u), depends only on v2 . Let us set 

-y(µ) := { C,.2 ~ >.i 7:n:) (vfi, v) dv. 

Then (32), (33) imply 

(34) t;.(t) =exp (l !b(v2(x1(s),s))] ds) 
= exp( 'Y( v2(xI (t), t)) - 1( v2(xo, 0)) ). 
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3. We now transform (31) to read 

where a(t) := a(x1(t), t) and we assume a =I 0. Consequently 

This equality in turn rearranges to become 

( ta )-1 
(35) a:(t) = a:(O)C1(t) 1+ a:(O) l ~: C 1(s) ds 

4. Now in view of the system of PDE (6), v is bounded. Thus we 
deduce from (34) that 0 < () < {(t) < e for all times t > 0, for appropriate 
constants 0, 0. Therefore it follows from (27) and (35) that a is bounded 
for all t > 0 if and only if a(O) > 0, that is, if 

v!(xo, 0) > 0. 

A similar calculation holds with v2 replacing v1. We conclude that if either 
vi < 0 or else v; < 0 somewhere on ~ x { t = 0}, there cannot then exist a 
smooth solution of (1), lasting for all times t > 0. D 

11.4. ENTROPY CRITERIA 

In our study of Riemann's problem in §11.2 we have taken Lax's entropy 
condition 

(1) 

for some k E {1, ... , m} as the selection criteria for admissible shock waves. 

There is great ongoing interest in discovering other mathematically cor
rect and physically appropriate entropy conditions of various sorts, with the 
aim of applying these to more complicated integral solutions of our system 
of conservation laws, so as to obtain uniqueness criteria, more information 
concerning allowable discontinuities, etc. 

One general principle, instances of which we have already seen for scalar 
conservation laws in §4.5.1 and for Hamilton-Jacobi equations in §10.1, is 
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that physically and mathematically correct solutions should arise as the limit 
of solutions to the regularized system 

(2) u~ + F(uc)x - cll~x = 0 in JR x (0, oo) 

as c ---+ 0. The idea is to interpret the term "cuix" as providing a small 
viscosity effect, which will presumably "smear out" sharp shocks. The hope 
is to study various aspects of the problem (2) in the limit c ---+ 0, and thereby 
to discover more general entropy criteria, to augment Lax's condition (1). 

The next subsections discuss aspects of this general program. 

11.4.1. Vanishing viscosity, traveling waves. 

We begin our investigation of the parabolic system (2) by first seeking 
a traveling wave solution, having the form 

(3) u'(x, t) = v( x ~ ut) ( x E JR, t > 0), 

where as usual the speed a and profile v must be found. Substituting (3) 
into (2), we find v : JR ---+ lRm, v = v(s ), must solve the ODE 

(4) V=-uV+DF(v)V (=:8 ). 

Assume now Ut, Ur E lRm are given and furthermore 

(5) lim v = Ut, lim v = Un lim v = 0. 
s--oo s-+oo s-±oo 

Then from (3) we deduce 

(6) 
if x <at 
if x >at. 

Hence the limit as c ---+ 0 of our solution to (2) gives us a shock wave 
connecting the states Ut, Ur. The plan now is to study carefully the form of 
a and v and thereby glean more detailed information about the structure 
of the shock determined by ( 6). 

The first and primary question is whether there in fact exist a and v 
solving ( 4), ( 5). Integrating ( 4), we deduce 

(7) v=F(v)-av+c 

for some constant c E lRm. We conclude from ( 5) that 

(8) F(ut) - aul + c = F(ur) - aur + c. 
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Hence 

(9) 

In view of (5), (8) and (9), our ODE (7) becomes 

(10) v = F(v) - F(ut) - a(v - ut)· 

Now think of the left state Ut as being given, and suppose we are trying 
to build a traveling wave connecting Ut to a nearby state Ur. From (9) we 
see that necessarily Ur E Sk( ut) for some k E {1, ... , m} and 

(11) 

We refine this observation as follows: 

THEOREM 1 (Existence of traveling waves for genuinely nonlinear sys
tems). Assume the pair (.Xk, rk) is genuinely nonlinear for k = 1, ... , m. 
Let Ur be selected sufficiently close to ul. Then there exists a traveling wave 
solution of (2) connecting Ut to Ur if and only if 

(12) 

for some k E {1, ... , m}. 

Proof. 1. Assume first a and v solve (4), (5). Then, as noted above, 
necessarily Ur E Sk(ut) for some k E {1, ... ,m}, a= a(ur,ul)· Now set 

(13) G(z) := F(z) - F(ut) - a(z - ut). 

Our ODE (10) then reads 

(14) v = G(v), 

and we have 

(15) G(ut) = G(ur) = 0, 

according to (9). We compute 

DG(ut) = DF(ut) - al; 

and so the eigenvalues of DG at ul are { Ak( ut) - a }k=l' with corresponding 
right and left eigenvectors {rk, lk};:i_1, rk = rk(ut), lk = lk(ut)· 
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2. Now since Ur E Sk(ut) and lur - ud is small, we know from Theo
rem 2(iii) in §11.2.3 that 

_ Ak(ur) + Ak(ut) (I I) a - 2 + o Ur - Ut . 

Thus 
, ( ) Ak ( Ul) - Ak (Ur) (I I) Ak Ut - a = 2 + 0 Ur - Ut . 

In order that there be an orbit of the ODE (14) connecting Ut at s = -oo 
to Ur E Sk(ur) at s = +oo, it must be that Ak(ut)-a > 0, for otherwise the 
trajectory would not converge to Ut as s ~ -oo. Thus if lur - ull is small 
enough, Ak(ur) < Ak(ui), which is to say Ur E s;;(ui). 

3. We omit proof of the sufficiency of condition (12): see Majda-Pego 
(J. Diff. Eq. 56 (1985), 229-262). D 

The preceding result employs the genuine nonlinearity assumption, but 
the assertion holds in general, provided we introduce an appropriate variant 
of Lax's entropy condition (1). So let us suppose now Ur E Sk(ut) for some 
k E { 1, ... , m} and furthermore 

(16) { a(z, ul) > a(ur, ul) for each z lying 

On the curve Sk ( Ul) between Ur and Ut. 

Condition (16) is Liu 's entropy criterion. (Observe that this condition is 
automatic provided ( Ak, rk) is genuinely nonlinear, Ur E SJ; ( Ut), and Ur is 
sufficiently close to ul.) 

We can motivate (16) by again seeking traveling wave solutions of system 
(2). So assume Ut is given. Then provided lur - ud is small enough, it turns 
out that there exists a traveling wave solution ue(x, t) = v(x~at), v solving 
(4), (5), if and only if the entropy condition (16) is satisfied. See Conlon 
(Adv. in Math. 35 (1980), 1-18) for a proof. 

To make this all a bit clearer, we next present in detail a specific appli-
cation. .-

Example (Traveling waves for the p-system). Let us consider again the 
p-system 

(17) { u} - u2 = 0 (compatibility condition) 
ur - p(u1 ): = 0 (Newton's law), 
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under the usual strict hyperbolicity condition 

(18) p' > 0. 

We investigate the existence of traveling wave solutions to the regularized 
system 

(19) 

Notice we have added the viscosity term only to the second equation. This 
makes sense physically, as the first line of ( 17) is only a mathematical com
patibility condition. 

Assume now uc = v(x~at) is a traveling wave solution of (19), with 

(20) lim v = ul, lim v = Un lim v = 0. 
s--oo s-oo s-±oo 

Writing v = (v1 , v2), we compute from (19) that 

{21) { -av1 - v2 = o (" = Js) 
-av2 - p(v1 )" = v2 . 

An integration using (20) gives 

(22) { av1 + v2 = av{ + v[ = av°!; + v; 
v2 = a(vl - v2) + p(v{) - p(v1 ) = a(v; - v2 ) + p(v;) - p(v1 ), 

for u1 = (v{,vf), Ur= (v;,v~). In particular, 

{ av1 + v2 = av1 + v2 l l r r 

avl + p( vl) = av; + p( v"f;). 

Solving these equations for a, we obtain 

(23) 2 p( v"f;) - p( vl) 
a = 1 1 · 

Vr -Vl 

Suppose hereafter v; > v{. In view of (18) we can take a > 0. In this 
situation the Liu entropy criterion reads 

(24) 
p( z1) - p( vl) > p( v;) - p( vl) 

z1 - v1 v1 - v1 
l r l 
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for all z on the curve Sk(ui) between ui and Ur, z = (z1, z2). 

We now claim the system of ODE (22), with asymptotic boundary con
ditions (20), has a solution if and only if the entropy condition (24) holds. 
To confirm this, combine the two equations in (22) to eliminate v2 : 

. 1 _p(v1)-p(v[) ( 1 1)-· ( 1) 
V - - a V - Vt -. g V • 

a 

Now g(v[) = 0 and g(v;) = 0, according to (23). Thus in order that the ODE 
(24) have a solution, with lims--oo v1 = v[, lims-oo v1 = v;, we require 

But this is precisely the entropy criterion (24). A similar calculation works 
"f 1 1 D 1 vr < vl. 

11.4.2. Entropy /entropy-flux pairs. 

Both Lax's and Lin's entropy criteria provide restrictions on possible 
left- and right-hand states joined by a shock wave (or a traveling wave for 
the viscous approximation). It is however of considerable interest to widen 
still further the entropy criteria, so as to apply to more general integral 
solutions of our conservation laws. 

One idea is to require that an integral solution satisfy certain "entropy
type" inequalities. 

DEFINITION. Two smooth functions <I>, \JI: :!Rm---+ IR comprise an entro
py/entropy-flux pair for the conservation law Ut + F(u)x = 0 provided 

(25) <I> is convex 

and 

(26) D<I>(z)DF(z) = D\Jl(z) (z E :!Rm). 

To motivate condition (26), suppose for the moment u is a smooth so
lution of the system of PDE Ut + F(u)x = 0. We then compute 

(27) 
<I>(u)t + \Jl(u)x = D<I>(u) · Ut + D\Jl(u) · Ux 

= (-D<I>(u)DF(u) + D\Jl(u)) · Ux = 0 

by (26). This computation says the quantity <I>(u) satisfies a scalar conser
vation law, with flux \J!(u). 
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Now in general integral solutions of ( 1) will not be smooth enough, owing 
to shocks and other irregularities, to justify the foregoing computation. The 
new idea is instead to replace (27) with an inequality: 

(28) <P(u)t + \Jl(u)x < 0 in JR x (0, oo ). 

In applications <P(u) will sometimes be the negative of physical entropy and 
\J!(u) the entropy flux. The inequality (28) therefore asserts that entropy 
evolves according to its flux but may also undergo sharp increases, for in
stance along shocks. 

Let us hereafter rigorously understand ( 28) to mean 

(29) { J; J~00 <P(u)vt + '1>'(u)vx dxdt > 0 

for each v E Cgc>(JR x (0, oo)), v > 0. 

We consider once more the initial-value problem 

(30) { 
Ut + F ( u) x = 0 in JR x ( 0, oo) 

u = g on JR x { t = 0}. 

DEFINITION. We call u an entropy solution of (30) provided u is an in
tegral solution and u satisfies the inequalities (29) for each entropy/entropy
flux pair ( <P, '11). 

Let us now attempt to build for general initial data g an entropy solution. 
As in §11.4.1 we expect such a "physically correct" solution u to be a limit 
of solutions ue of approximating viscous problems 

(31) { UI + F(ue)x - c:uix= 0 
Ue=g 

in JR x (0, oo) 
on JR x { t = 0}. 

We assume ue is a smooth solution of (31), converging to 0 as lxl ~ oo 
sufficiently rapidly to justify the calculations below. Let us further suppose 
{ ue}O<e<l is uniformly bounded in £ 00 and furthermore 

(32) ue ~ u a.e. as c: ~ 0 

for some limit function u. (In practice it is extremely difficult to verify this 
a.e. convergence.) 

THEOREM 2 (Entropy and vanishing viscosity). The function u is an 
entropy solution of the conservation law (30). 
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Proof. 1. Choose any smooth entropy/entropy-flux pair (~, '11). Left mul
tiplying (30) by D~(uc) and recalling (26), we compute 

(33) 
~(uc)t + w(uc)x = cD~(uc)u~x 

As ~ is convex, 

(34) 

2. Multiply (33) by v E Cgc'(IR x (0, oo )), v > 0. We integrate by parts 
and discover that 

the last inequality holding in view of (34) and the nonnegativity of v. 

Now let c ~ 0. Recalling (32) and the Dominated Convergence Theo
rem, we obtain 

t'° J00 ~(u)vt + w(u)vx dxdt > 0. 
lo -oo 

Thus u verifies the entropy /entropy-flux inequalities (29). If ~ and '11 are 
not smooth, we obtain the same conclusion after an approximation. 

3. Finally fix v E Cg" (IR x [O, oo); Rm) and take the dot product of the 
PDE in (31) with v. After integrating by parts, we obtain 

f 00 J00 Uc. Vt+ F(uc)vx +cue. Vxx dxdt + J00 
g. v dxlt=O = 0. lo -oo -oo 

We send c ~ 0, to deduce u is an integral solution of (30). D 

Example 1. In the case of a scalar conservation law (i.e. m = 1), for any 
convex ~ we can find a corresponding flux function '11, namely 

\Jl(z) := {z ~'(w)F'(w) dw (z E IR). 
lzo 

See § 11.4.3 following for an application. D 
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Example 2. For the p--system we have m = 2. To verify (25), (26) we must 
find ~, \JI, with ~ convex and 

A solution is 
z2 

~(z) = ; + P(z1), \Jl(z) = -p(z1)z2 (z E JR2), 

where P' = p. Note~ is convex, since p' > 0. D 

See the exercises for further examples. 

11.4.3. Uniqueness for scalar conservation laws. 

As a further illustration of the ideas in §11.4.2, let us now consider again 
the initial-value problem for a scalar conservation law 

(35) { Ut + F(u)x = 0 in JR x (0, oo) 
u = g on JR x { t = 0}. 

Hence the unknown u = u(x, t) is real-valued and F : JR -. JR is a given 
smooth flux function. 

In §3.4 we carefully studied the problem (35), making use of the primary 
assumption that F be strictly convex, to derive the Lax-Oleinik formula (see 
§3.4.2). Let us now drop the assumption that F be convex and devise an 
appropriate notion of weak solution. As above, we introduce entropies: 

DEFINITION. Two smooth functions~' \JI : JR-. JR comprise an entro
py/entropy-flux pair for the conservation law Ut + F(u)x = 0 provided 

(36) ~ is convex 

and 

(37) ~'(z)F'(z) = w'(z) (z E JR). 

As noted in Example 1 above, for each convex ~ there exists a corresponding 
flux \JI. 

The entropy condition for u reads 

~(u)t + w(u)x < 0 on JR x (0, oo) 

for each entropy/entropy-flux pair~' \JI. This means 

{ f0
00 J~00 ~(u)vt + \Jl(u)vx dxdt > 0 

(38) 
for each v E Cgc>(JR x (0, oo) ), v > 0. 
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DEFINITION. We call u E C([O, oo), L1(R)) n L00 (R x (0, oo)) an en
tropy solution of (35) provided u satisfies the inequalities (38) for each 
entropy/entropy-flux pair(~, '11) and u(·, t) ~ g in L1 as t ~ 0. 

Remarks. (i) This definition supersedes our earlier definition of "entropy 
solution" in §3.4.3. 

(ii) Taking ~(z) = ±z, \Jl(z) = ±F(z) in (38), we deduce 

f 00100 
UVt + F(u)vxdxdt = 0 lo -oo 

for all v > 0 and thus for all v E C~(R x (0, oo)). It is an exercise to prove 
then that 

f 00 100 
UVt + F( u )vx dxdt + 100 

gv dxlt=O = 0 lo -oo -oo 

for all v E C~ (R x [O, oo)), since u( ·, t) ~ g in L1. Thus an entropy solution 
is an integral solution. 

We discussed in §11.4.2 the construction of an entropy solution, and we 
now prove uniqueness. 

THEOREM 3 (Uniqueness of entropy solutions for a single conservation 
law). There exists-up to a set of measure zero-at most one entropy solu
tion of (35). 

As in the proof of Theorem 1 in §10.2, the basic idea will be to "double 
the variables" in the problem. 

Proof*. 1. Let u be an entropy solution of (35). Then 

(39) f 00 f 00 ~(u)vt + \Jl(u)vx dxdt > 0 
lo 1-oo 

for all v E Cgc>(R x (0, oo)), v > 0, where~ is smooth, convex and 

\Jl(z) = fz ~'(w)F'(w) dw 
lzo 

for any zo. Fix a E R and take 

(40) ~k(z) := f3k(z - a) (z ER), 

•Omit on first reading. 
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where for each k = 1, ... , the function f3k : R ---+ R is smooth, convex and 

{ f3k(z) ---+ lzl uniformly 

{3~ ( z) ---+ sgn( z) boundedly, a.e. 

Thus ~k(z)---+ lz - al uniformly for z ER. A flux corresponding to (40) is 

ll!k(z) = [ ,B~(w - a)F'(w) dw. 

Consequently for each z 

ll!k(z) -> [ sgn(w - a)F'(w) dw = sgn(z - a)(F(z) - F(a)). 

Putting ~k, \Jlk into (39) and sending k ---+ oo, we deduce 

(41) fo00 i: lu - alvt + sgn(u - a)(F(u) - F(a))vz dxdt > 0 

for each a E R and v as above. 

2. Next let u be another entropy solution. Then 

(42) t'° 100 lu - alvs + sgn(u - a)(F(u) - F(a))vy dyds > o 
lo -oo 

where a ER and v E Cgc'(R x (0, oo)), v > 0. 

Now let w E Cgc'(R x R x (0, oo) x (0, oo)), w > 0, w = w(x, y, t, s). 
Fixing (y, s) ER x (0, oo), we take a= u(y, s), v(x, t) = w(x, y, t, s) in (41). 
Integrating with respect toy, s, we produce the inequality 

f 00 f 00100 100 lu(x, t) - u(y, s)lwt 
(43) lo lo -oo -oo 

+ sgn(u(x, t) - u(y, s))(F(u(x, t)) - F(u(y, s)))wx dxdydtds > 0. 

Likewise, for each fixed (x, t) E R x (0, oo) we take a = u(x, t), v(y, s) = 
w(x, y, t, s) in ( 42). Integrating with respect to x, t gives 

f 00 f 00100 100 lu(y, s) - u(x, t)lws 
(44) lo lo -oo -oo 

+ sgn(u(y, s) - u(x, t)) (F(u(y, s)) - F(u(x, t)))wy dxdydtds > 0. 

Add (43), (44): 

roo roo loo loo lu(x, t) - u(y, s)l(Wt + Ws) 
lo lo -oo -oo 

(45) + sgn(u(x, t) - u(y, s)) (F(u(x, t)) - F(u(y, s))) 

( Wx + Wy) dxdydtds > 0. 
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3. We design as follows a clever choice for w in ( 45). Select T/ to be 
a standard mollifier as in §C.4 (with n = 1) and, as usual, write T/e:(x) = 

~T/ (~). Take 

( x-y) (t-s) (x+y t+s) w(x, y, t, s) := T/e: 2 T/e: -2- <P 2 '-2- ' 

where <PE Cgc>(JR x (0, oo)), <P > 0. We insert this choice of w into (45) and 
thereby obtain 

roo roo roo roo { ( x + y t + s) 
lo lo 1-oo 1-oo lu(x, t) - u(y, s)l<Pt 2 '-2-

( 46) + sgn(u(x, t) - ii.(y, s))(F(u(x, t)) - F(ii.(y, s) ))ef>., ( x; Y, t ~ 8 )} 

11.( x; Y) 'l•C 2 
8

) dxdydtds > 0. 

Change variables by writing 

Then ( 46) implies 

(47) 

where 

{ 
X = x~y' t = tts 

- _ x-y - _ t-s 
Y- 2 ,s - 2· 

G(fl, s) := f 00 f 00 lu(x +fl, t + s) - u(x - fl, t - s)l<Pt(x, t) 
lo 1-oo 

(48) + sgn(u(x +fl, t + s) - u(x - fl, t - s)) 

(F( u(x +fl, t + s)) - F(u(x - fl, t - s)) )<Px(x, t) dxdt. 

Now u(x +fl, t + s) ~ u(x, t), u(x - fl, t - s) ~ u(x, t) in Lfoc as fl, s ~ 0. 
Since the mappings (a, b) ~ la - bl, sgn(a - b)(F(a) - F(b)) are Lipschitz 
continuous, we deduce upon letting c ~ 0 in ( 4 7) that 

f 00 f 00 lu(x, t) - u(x, t)I <Pt(x, t) 
lo 1-oo 

+ sgn(u(x, t) - u(x, t)) (F(u(x, t)) - F(u(x, t))) <Px(x, t) dxdt > o. 

Rewriting x = x, t = t, we have therefore 

(49) fo00 1: a(x, t)ef>t(x, t) + b(x, t)ef>.,(x, t) dxdt > 0, 
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for 

{ a(x, t) := lu(x, t) - u(x, t)I 

b(x, t) := sgn(u(x, t) - u(x, t))(F(u(x, t)) - F(u(x, t))). 

4. We now employ the inequality (49) to establish the L1-contraction 
inequalities 

(50) { J~00 lu(x, t) - u(x, t)I dx < J~00 lu(x, s) - u(x, s)I dx 
for a.e. 0 < s < t. 

To prove this assertion, we take 0 < s < t, r > 0 and let </>(x, t) = a(x)f3(t) 
in (49), where 

and 

{ 
a: JR--. 1R is smooth, 

a(x) = 1 if lxl < r, a(x) = 0 if lxl > r + 1, 

la'(x)I < 2 

/3 : JR --. 1R is Lipschitz, 

f3(r) = 0 if 0 < T < s or T > t + o, 
/3( T) = 1 if S + 0 < T < t, 
/3 is linear on [s, s + o] and [t, t + o], 

for 0 < o < t - s. We deduce 

1 1s+6 Joo 1 rt+6 Joo 8 s _
00 

a(x, r)a(x) dxdr > "8 lt -oo a(x, r)a(x) dxdr 

J.t+61 - b(x, r)a'(x)b(r) dxdr. 
s {r~lxl~r+l} 

Let r--. oo: 

11t+6 Joo 11s+6 Joo 8 a(x, r) dxdr < "8 a(x, r) dxdr. 
t -oo s -oo 

Next let o--. 0 to deduce (50) for a.e. 0 < s < t. 

5. In light of (50) and the fact that u(·, t), u(·, t) --. gin L1 as t--. 0, we 
at last conclude u = u a.e. D 
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11.5. PROBLEMS 

1. Show that this generalization of the p-system is a strictly hyperbolic 
system if p', q' > 0: 

{ uf - q( u2 )x = 0 

ui- p(u1)x = 0. 

2. (a) Verify that the shallow water equations (Example 3 in §11.1) 
form a strictly hyperbolic system, provided h > 0. 

(b) Show that for a smooth solution (h,q) = (h,vh), with h > 0, 
the shallow water equations can be recast into this alternate 
conservation law form: 

{ 
ht + ( vh )x = 0 

Vt + ( v; + h) x = 0. 

Check that this is a strictly hyperbolic system. 

3. Define for z ER, z =I 0, the matrix function 

·- -~ (cos(~) sin(~) ) B(z) .- e z • 2 2 , 
s1n(z) - cos(z) 

and set B(O) = 0. Show that B is C00 and has real eigenvalues, but 
we cannot find unit-length right eigenvectors {r1(z), r2(z)} depending 
continuously on z near 0. What happens to the eigenspaces as z ~ O? 

4. (Rarefaction curves) Show that for the shallow water wave equations 
in the form ( *) from Problem 2 the rarefaction curves Ri, R2 in the 
(h, v)-plane are given by the formulas 

2v'h ± v = c, 

where c is a constant. 

5. (Shock curves) For the shallow water wave equations in the variables 
(h, q), find a formula describing the shock set S(zo) in the (h, q)-plane, 
where zo = (ho, qo) and ho > 0. For the particular case that qo = 0, 
show that the shock set is given by the expression 

1 

_ (h - ho)h (! _.!:_) 2 
q-± v'2 h+ho · 

6. (Continuation) Construct an entropy solution u = (h, q) of the shallow 
water equations, corresponding to the Riemann initial data Ut = (ht, 0) 
for x < 0 and Ur= (hr,O) for x > 0, where ht> hr> 0. 
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Your answer should consist of a rarefaction wave connecting ul to an 
intermediate state Ui = (hi, qi) = (hi, Vihi) and a shock wave connect
ing Ui to Ur. To do this, transfer the formula from Problem 5 to the 
( h, v )- plane, and show that there exists a point of intersection (hi, Vi) 
of a rarefaction curve through ( hl, 0) and a shock curve through (hr, 0). 

7. Confirm that the functions w1, w2 computed for the barotropic gas 
dynamics in § 11.3.1 are indeed Riemann invariants. 

8. Suppose that Cl> is an entropy for the shallow water equations in the 
form(*) from Problem 2. Prove 

9. 

10. 

a2ci> a2ci> 
8v2 = h 8h2 • 

Show that Cl> = pv2 /2 + P(p) is an entropy for the barotropic Euler 
equations (from § 11.3. l), provided P" (p) = p' (p) / p, p > 0. Confirm 
that Cl> is convex in the proper variables. What is the corresponding 
entropy flux '11? 

(Gradient flux function) Suppose that F = D¢, where <P : Rm ---+ R. 
Show that 

form an entropy /entropy-flux pair for the system of conservation laws 
Ut + F(u)x = 0. 

11. (Antigradient flux function) 

(a) Assume that m = 2 and F has the "antigradient" form F = 
( </>z2 , </>z1 ) for a convex function </> : R2 ---+ R. Confirm that 

are an entropy/entropy-flux pair for the system Ut +F(u)x = 0. 

(b) Find an entropy /entropy-flux pair for the generalization of the 
p-system given in Problem 1. 

12. Formulate what it means for Cl>, '11 to be an entropy /entropy-flux pair 
for the general system of conservation laws 

Ut + divF(u) = 0 in Rn x (0, oo). 

13. Maxwell's equations for nonlinear dielectrics read in part 

{ 
Dt = curlH 

Bt = -curlE 
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in IR3 x (0, oo ), where E denotes the electric field; H the magnetic 
field; D the electric displacement; and B the magnetic induction. 
(We suppose the current J vanishes.) We introduce the constitutive 
relations 

H = DB71(B, D), E = Dn71(B, D), 

determined by a given convex electromagnetic field energy 77 = 71(B, D). 

Show that 
cp := 77, \JI := Dn71 x DB'T1 

are an entropy/entropy-flux pair. 

14. (Nonconvex flux function) Assume that u is an entropy solution of 
the scalar conservation law Ut + F( u)x = 0 and that, as in §3.4.1, u is 
smooth on either side of a curve { x = s ( t)}. 

(a) Prove that along this curve the left- and right-hand limits of u 
satisfy 

F(.Xul + (1 - .X)ur) > .XF(ul) + (1 - .X)F(ur) if Ul <Ur 

and 

F(.Xul + (1 - .X)ur) < .XF( ul) + (1 - .X)F( Ur) if Ur < Ul 

for each 0 < A < 1. These inequalities are called condition 
E. Draw pictures illustrating the geometric meaning of these 
inequalities. 

(Compare with Problem 7 in Chapter 10.) 

(b) What does condition E imply if Fis uniformly convex? 

15. (Explicit solutions for nonconvex flux) Compute the unique entropy 
solution of the Riemann problem 

(*) {ut+(u3 -u)x=O inIRx(O,oo) 
u = g on IR x { t = 0}, 

for 

{ -1 if x < 0 
g( x) = 1 if x > 0. 

(Hint: The solution involves a rarefaction wave with a shock along its 
left edge. Make sure your solution verifies condition E, introduced in 
the previous problem.) 

16. (Continuation) Discuss the structure of the entropy solution of the 
conservation law ( *) from Problem 15, for 

{ 
-1 + .X if x < -1 

g( x) = -1 - AX if - 1 < x < 0 
1 if x > 0, 
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when A> 0 is small. How does this perturbation affect the behavior 
of the shock in the solution found in the previous problem? 

17. Assume u is a smooth solution with compact support in space of the 
scalar conservation law in several variables 

{ 
Ut + divF(u) = 0 in Rn x (0, oo) 

u = g on Rn x { t = O}, 

where F = ( F 1 , ... , pn). Show that if u is another smooth solution 
with initial data g, we have the L1-contraction estimate 

for each time t > 0. 

(Hints: Show that w := u - u satisfies Wt + div(b w) = 0 for an 
appropriate vector field b = b(x, t). Let T > 0 and introduce the 
solution v of the adjoint problem Vt + b · Dv = 0 in Rn x [O, T], with 
the terminal condition v(·, T) = sgn(w(·, T)).) 

11.6. REFERENCES 

T.-P. Liu wrote the initial draft of this entire chapter. 

Section 11.1 The shallow water equations are discussed in Holden-Risebro 
[H-R] and LeVeque [LV]. P. Colella helped me with the cal
culations in §11.1.2. The proof of Theorem 2 follows sug
gestions of W. Han. See Bresson [Bs], Courant-Friedrichs 
[C-F], Dafermos [DJ, Majda [Mj], Xiao-Zhang [X-Z], and 
Zheng [Zh] for more. 

Section 11.3 I followed Logan [Lo] for the example. Consult Neu [Ne] for 
more on using Riemann invariants. 

Section 11.4 See Smoller [SJ for more about viscous traveling waves. The 
uniqueness theorem in §11.4.3 is due to S. Kruzkov (Mat. 
Sbornik 123 (1970), 228-255). 

Section 11.5 Problem 3 is taken from Kato [K]. Problems 4-6 are based 
upon Holden-Risebro [H-R]. Problems 10 and 11 are from 
Smoller [S], and Problem 13 is from Dafermos [DJ. 
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NONLINEAR WAVE 
EQUATIONS 

12.1 Introduction 

12.2 Existence of solutions 

12.3 Semilinear wave equations 

12.4 Critical power nonlinearity 

12.5 Nonexistence of solutions 

12.6 Problems 

12.7 References 

12.1. INTRODUCTION 

Chapter 12 

This final chapter studies the existence (or sometimes nonexistence) of so
lutions to the initial-value problem for the semilinear wave equation 

(1) Utt - flu+ J(u) = 0. 

The linear case that f(u) = m 2u is the Klein-Gordon equation. We will 
also discuss certain mildly quasilinear wave equations having the form 

(2) Utt - flu+ J(Du, Ut, u) = 0, 

where as usual we write Du= Dxu for the gradient in the x-variables. 

We follow the custom of putting the nonlinearity on the left of the equals 
sign in (1) and (2): this simplifies some later formulas a bit. More compli
cated quasilinear wave equations, in which the coefficients of the second
order derivatives depend on Du, Ut, u, are beyond the scope of this book. 

-659 
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12.1.1. Conservation of energy. 

Considering first the semilinear PDE ( 1), we hereafter set 

F(z) := [ f(w) dw (z E IR). 

Then F(O) = 0 and F' = f. We recall from §8.6.2 that the energy of a 
solution u of ( 1) at time t > 0 is 

E(t) := Ln ~(~ + 1Dul2) + F(u) dx 

and that this energy is conserved: 

THEOREM 1 (Conservation of energy). Assume that u is a smooth solu
tion of the semilinear wave equation (1) and that u(·, t) has compact support 
in space for each time t. Then 

t 1--+ E(t) is constant. 

Proof. We calculate 

E(t) = J. UtUtt +Du· Dut + J(u)ut dx = [ Ut(Utt - ~u + f(u)) dx = 0, 
Rn }Rn 

h . d w ere = dt· D 

The integration by parts in this proof is valid, since u has compact 
support in space for each time. In many subsequent proofs we will similarly 
integrate by parts, implicitly relying upon our solution's vanishing for large 
lxl to justify the computation. 

12.1.2. Finite propagation speed. 

Recalling the domain of dependence calculation for the linear wave equa
tion in §2.4.3, we reintroduce the backwards wave cone: 

DEFINITION. Fix xo E IRn, to > 0 and define the backwards wave cone 
with apex (xo, to): 

K(xo, to) := {(x, t) I 0 < t <to, Ix - xol <to - t}. 

The curved part of the boundary of K(xo, to) is 

r(xo, to) := {(x, t) Io< t <to, Ix - xol =to - t}. 
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THEOREM 2 (Flux estimate for semilinear wave equation). Assume that 
u is a smooth solution of the semilinear wave equation ( 1). 

(i) For each point (xo, to) E IRn x (0, oo) we have the identity 

(3) 1 fr 1 lil 2 lutv - Dul2 + F(u) dS = e(O), 
v 2 r(xo,to) 

where v := x-xo and 
lx-xol 

e(t) := { ~(uF + 1Dul2 ) + F(u) dx (0 < t <to). J B(xo,to-t) 

(ii) If 

and 
u(·, 0), Ut(·, 0) = 0 within B(xo, to), 

then u = 0 within the cone K(xo, to). 

The expression on the left-hand side of (3) is the energy flux through 
the curved surface r(xo, to). 

Proof. 1. We compute that 

e(t) = { UtUtt +Du. Dut + f(u)Ut dx 
J B(xo,to-t) 

(4) 

- { !(uF + 1Dul2 ) + F(u) dS 
} 8B(xo,to-t) 2 

L au 1 2 2 = aut - -(ut +!Dul ) - F(u) dS 
8B(xo,to-t) 11 2 

L 1 2 
= - 2 lutv - Dul + F(u) dS, 

8B(xo,to-t) 

since 
2 2 au 2 

lutll - Dul = Ut - 2Ut av + !Dul . 
Now integrate in time between 0 and to to derive (3). Notice that the factor 
~ appears when we switch to integration over r(xo, to), since this surface 
is tilted at constant angle i above B(xo, to) x { t = O}. 

2. If u(·, 0), Ut(·, 0) = 0 on B(xo, to), then e(O) = 0 since F(O) = 0. As 
F > 0, it follows from (4) that e = 0. We deduce that Ut, Du = 0, and 
therefore u = 0, within the cone K(xo, to). D 
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Although the mildly quasilinear wave equation (2) does not in general 
have a conserved energy, we can nevertheless adapt the previous proof to 
show finite propagation speed. 

THEOREM 3 (Domain of dependence). Assume that 

f(0,0,0)=0 

and that u is a smooth solution of the quasilinear wave equation (2). If 

u(·, 0), Ut(·, 0) = 0 within B(xo, to), 

then u = 0 within the con~ K(xo, to). 

So any disturbance originating outside B(xo, to) does not affect the so
lution within K(xo, to). Consequently the effects of nonzero initial data 
propagate with speed at most one. 

Proof. Define 

Then 

e ( t) := ! 1 u; + 1Dul2 + u2 dx ( 0 < t < to). 
2 B(xo,to-t) 

e(t) = 1 UtUtt +Du. Dut + UUt dx 
B(xo,to-t) 

- ! f uF + 1Dul2 +u2 dS 
2 laB(xo,to-t) 

= 1 Ut (Utt - ~u + u) dx 
B(xo,to-t) 

l au ll 2 2 2 + -Ut dS - - Ut + !Dul + u dS 
8B(xo,to-t) 8v 2 8B(xo,to-t) 

< 1 Ut(- f(Du, Ut, u) + u) dx. 
B(xo,to-t) 

Since f (0, 0, 0) = 0 and u is smooth, 

lf(Du, Ut, u)I < C(IDul + lutl + lul) 
for some constant C depending upon I !Du, Ut, ul I Loo. We conclude that 

e(t) < C 1 uF + 1Dul2 + u2 dx = Ce(t). 
B(xo,to-t) 

As e(O) = 0, Gronwall's inequality (§B.2) implies e = 0. Therefore u = 0 
within the cone K(xo, to). 0 
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12.2. EXISTENCE OF SOLUTIONS 

We devote this section to proving existence theorems for solutions of the 
mildly quasilinear initial-value problem 

(1) { 
Utt - ~u + f(Du, Ut, u) = 0 in IRn X (0, T] 

u = g, Ut = h on IRn X { t = 0}. 

Similarly to §7.2, we say that a function u E L2 (0, T; H1~c(IRn)), with 
u' E L2 (0 T· L2 (IRn)) and u" E L2 (0 T· H-1 (1Rn)) is a weak solution of 

' ' loc ' ' loc ' 
the initial-value problem (1) provided u(O) = g, u'(O) = h, 

f := - f(Du, u', u) E L2 (0, T; Lf0 c(IRn)), 

and 
(u", v) + B[u, v] = (f, v) 

for each v E H 1 (1Rn) with compact support and a.e. time 0 < t < T. Here 
B[u, v] := fntn Du · Dv dx. 

We always assume 
f (0, 0, 0) = 0. 

12.2.1. Lipschitz nonlinearities. 

We start with a strong assumption on the nonlinearity, namely that 

(2) f : IRn x IR x IR --. IR is Lipschitz continuous. 

THEOREM 1 (Existence and uniqueness). 

(i) Assume g E H1~c(IRn), h E Lf0 c(IRn). Then for each T > 0 there 
exists a unique weak solution u of the initial-value problem (1). 

(ii) If in addition g E Hfoc (IRn), h E H1~c (IRn), then 

{ 
u E L 00 ( (0, T); H1~c(IRn) ), 

u' E £ 00 ((0, T); H1~c(IRn)), 
u" E £ 00 ((0, T); Lf0 c(IRn)). 

Proof. 1. We will first suppose that T > 0 is sufficiently small, as deter
mined below. Given R > > 1, let us consider first the initial/boundary-value 
problem 

{ 

Utt - ~u + f(Du, Ut, u) = 0 in B(O, R) x (0, T] 

(3) u = 0 on 8B(O, R) x [O, T] 

u = g, Ut = h on B ( 0, R) x { t = 0}. 
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We temporarily also assume g E HJ(B(O, R)). 

Introduce the space of functions 

X := {u E L00 (0,T;HJ(B(O,R))) I u' E L00 (0,T;L2 (B(O,R)))}, 

with the norm 

llull := ess sup (llu(t)llH1(B(O R)) + llu'(t)llL2(B(O,R)))· 
o::;t::;T 0 ' 

Given v E X, we hereafter write u = A[v] to mean that u E X is the 
unique weak solution of the linear problem 

{ 

Utt - ~u = - J(Dv, Vt, v) in B(O, R) x (0, T) 

(4) u = 0 on 8B(O, R) x (0, T) 

u = g, Ut = h on B(O, R) x {t = 0}. 

This weak solution exists according to Theorems 3-5 in §7.2. 

Suppose that we are given also v EX, and likewise write ft= A[v). Put 
w := u - ft. Then w is the unique weak solution of 

{ 

Wtt - ~w = J(Dv, Vt, v) - J(Dv, Vt, v) in B(O, R) x (0, T) 

w = 0 on 8B(O, R) x (0, T) 

w=O, Wt=O onB(O,R)x{t=O}. 

Consequently estimate (50) from §7.2 provides us with the bound 

llwll < Cll/(Dv, v', v) - J(Dv, v', v)llL2(0,T;L2(B(O,R)))· 

In view of the Lipschitz continuity off, it follows that 

llwll2 < C fTJ, 1Dv-Dvl2 +lv'-v'l2 +lv-vl2 dxdt < CTllv-vll2 . lo B(O,R) 

Since w = u - ft= A[v] - A[v), we deduce that 

llA[v] - A[vJll < ~llv - vii 

provided T > 0 is small enough, depending only upon the Lipschitz constant 
off. Banach's Theorem (§9.2.1) now implies the existence of a unique fixed 
point u EX, which is the unique weak solution of (3). 

2. In particular we may assume that T < 1. Let S = R - 1. Then 
the finite propagation speed (Theorem 3 in §12.1) implies that the solution 
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within the cylinder B(O, S) x [O, T] depends only upon the initial data g, h 
restricted to B(O, S +T) CC B(O, R). Consequently our temporary assump
tion that g E HJ(B(O, R)) does not matter, since we can multiply g by a 
cutoff function vanishing near 8B(O, R) without affecting the solution within 
B(O, S) x [O, T]. 

Suppose now that we repeat the above construction for another large 
radius R > R > 1, to build a weak solution u of (3) (with R replacing R). 
Then owing to uniqueness and finite propagation speed, we have 

u - u on B(O, R - T) x [O, T]. 

Consequently, we can construct solutions Uk for a sequence of radii Rk ~ oo, 
and these solutions will exist and agree on any compact subset of IRn x [O, T], 
for sufficiently large k. The common value of these solutions for large k 
determines our unique weak solution u of (1) for times 0 < t < T. 

We have therefore built a unique solution of (1) on IRn x [O, T] provided 
T > 0 is sufficiently small. We then extend the solution to the time intervals 
[T, 2T], [2T, 3T], etc., to construct a unique weak solution existing for all 
time. 

3. Select k E {1, ... , n} and let ii := D~u denote a corresponding 
difference quotient of u (§5.8.2). Then ii is the weak solution of 

{ Utt - ~u + b ·Du+ _cii ~ d~t = ~ in IRn x (0, T) 

u = g, Ut = h on IRn x { t = O}, 

where g = D~g, h = D~h and 

{ 
bi = f0

1 fp; (sDu(x + hek, t) + (1 - s)Du(x, t), sut(x + hek, t) 

+(1 - s)ut(x, t), su(x + hek, t) + (1 - s)u(x, t)) ds, 

c : = f0
1 f z ( · · · ) ds, d : = f 01 f Pn+i ( · • · ) ds. 

As above, we can estimate for large R > 0 that 

lliill = ess sup (llii(t)llHl(B(O,R)) + llii'(t)llL2(B(O,R))) < c, 
O~t~T 

the constant C depending only on ll9llH1(B(0,2R)) < CllgllH2(B(0,3R)) and 

llhllL2(B(0,2R)) < CllhllH1((0,3R))· The above estimates for k = 1, ... , n show 
that u E L00 ((0, T); H~c(IRn)) and u' E L00 ((0, T); H1~c(IRn)). Finally, we 
use the PDE Utt - ~u + f(Du, Ut, u) = 0 to estimate f B(O,R) u~t dx and so 
conclude that u" E L00 ((0, T); L~0c(IRn)). D 
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12.2.2. Short time existence. 

Consider again the problem 

(5) { 
Utt - ~u +/(Du, Ut, u) = 0 in :!Rn x (0, T] 

u = g, Ut = h on :!Rn X {t = 0}. 

We hereafter drop the restrictive assumption (2) that the nonlinearity f 
be Lipschitz continuous and instead just suppose that f is a given smooth 
function. Our goal is proving there is a unique solution, existing for at least 
some short time interval [O, T]. We will need more smoothness on the initial 
data, requiring g E Hk(JRn), h E Hk- 1 (IRn) for a possibly large integer k 
(depending on n). 

We first introduce some new estimates for the Sobolev space Hk (IRn): 

THEOREM 2 (Sobolev inequalities for Hk). Suppose that the functions 
u1, ... , Um belong to Hk(JRn), where k > ~-

(6) 

(i) If l,81 I + · · · + l,Bml < k, then 

m 

11nlhu1 ... n.Bmumll£2(JRn) < c TI lluillHk(JRn) 
j=l 

for a constant C = C(n, m, k). 

(ii) Let f : :!Rm ---. IR be a smooth function satisfying f(O) = 0. Then 
f(ui, ... , Um) E Hk(JRn) and 

where ~ is a continuous function, nondecreasing in each argument and de
pending only upon f, k, n, m. 

Proof. 1. We leave the proof of (6) to the reader: see Problem 12. 

2. Let 0 < lal < k. Then noi f(ui, ... , um) can be written as a finite 
sum of terms of the form 

, 

where A depends on the partial derivatives off of order at most k evaluated 
at ( u i, ... , Um), l < k, 0 < I ,Bi I < I a I, and ,81 + · · · + ,Bl = a. 

Recall from Theorem 6 in §5.6.3 that k > ~ implies the estimate 
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Therefore llAllLoo is bounded by a term depending only upon f and lluillHk 
(j = 1, ... , m). According then to estimate ( 6), 

is bounded by an expression involving only lluillHk, for j = 1, ... , m. Since 
f(O) = 0, we can similarly estimate 11/(ui, ... , um)llL2· This establishes 
(7). D 

We next demonstrate that if we select the time T > 0 sufficiently small, 
depending upon the initial data g, h, we can find a solution existing on 
Rn x (0, T): 

THEOREM 3 (Short time existence). Assume f : IRn x IR x IR ~ IR 
is smooth, f(O, 0, 0) = 0. Suppose also g E Hk(JRn), h E Hk- 1(1Rn) for 
k>~+l. 

There exists a time T > 0 such that the initial-value problem 

(8) {
Utt - ~u+ f(Du,Ut,U) = 0 

U = g, Ut = h 

has a unique weak solution u, with 

in Rn x (0, T] 

onIRnx{t=O} 

The time T of existence provided by the proof depends in a compli
cated way upon both f and llgllHk(Rn), llhllHk-l(Rn) and can be very short 
if I lgl IHk(Rn) and I lhl IHk-l(Rn) are large. We will see in §12.5 that solutions 
of even the simpler semilinear wave equation need not exist for all time. 

Proof. 1. Let 

with the norm 

We introduce also the stronger norm 
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For A > 0 define 

X>. := { u EX I lllulll <A, u(O) = g, u'(O) = h}. 

If v E X>., we write u = A[v] to mean that u solves the linear initial-value 
problem 

(9) { 
Utt - ~u = -f(Dv, Vt, v) in Rn x (0, T] 

u = g, Ut = h on Rn x { t = 0}. 

Define 

and 

2. We claim now that we have the estimate 

(10) (0 < t < T) 

for some continuous and monotone function \JI depending only upon n, k 
and/. 

To prove (10), let lal < k - 1 and apply na = D'; to the PDE (9), to 
discover 

Wtt - ~w = -Da(f(Dv, Vt, v)) 

for w := Dau. Therefore we can use estimate (7), with k - 1 in place of k 
and with m = n + 2, to compute 

dd f ( w~ + 1Dwl2) dx = 2 J. WtWtt + Dw · Dwt dx 
t }JRn JRn 

= 2 f Wt(Wtt - ~w) dx 
}JRn 

= -2 { WtDa f(Dv, Vt, v) dx 
}JRn 

< { w~ + IDa f(Dv, Vt, v)l2 dx 
}JRn 

< { W~ dx + C~2 (1 lvx1 llHk-l(JRn), ... , llvxn llHk-l(JRn), 
}JRn 

I lvtl IHk-l(JRn), I lvl IHk-l(JRn)) 
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for some appropriate function \JI. Apply Gronwall's inequality and then sum 
the above over all lal < k - 1 to deduce (10). 

3. We assert next that if A > 0 is large enough and T > 0 is small 
enough, then 

A: X>. ~ X>.. 

To see this, observe that (10) implies 

for some function \JI. Let 

and then fix T > 0 so small that 

CTW(~2 ) < ~2 . 

Then (11) forces lllA[v]lll 2 < .X2 , and consequently A[v] = u EX>.. 

4. Next we claim that if A is large enough and Tis small enough, then 

(12) llA[v] - A[v] II < ~ llv - vii 

for all v, v E X>.. 

To confirm this, let us write u = A[v], ft= A[v]. Put w := u-ft. Then 

!}__ J. 1Dwl2 + w: + w2 dx 
dt Rn 

= 2 J. Wt(f(Dv, Vt, v) - f(Dv, Vt, v) + w) dx 
Rn 

< J. w: + w2 dx +cf. IDv - Dvl2 +lilt - Vtl 2 +Iv - vl 2 dx, 
Rn Rn 

the constant C depending on llDv, Vt, v, Dv, Vt, vllvxi. This quantity is bound
ed since the functions v, v belong to X>. and k > ~ + 1. Invoking Gronwall's 
inequality, we deduce that 

max j 1Dwl2 + lwtl2 + w2 dx 
O~t~T 

< C fT f IDv - Dvl2 + lvt - fltl2 +Iv -vl2 dxdt Jo }Rn 
< CTllv - vll 2 . 
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We can now select T small enough to ensure (12). 

5. Select any uo E X>-.. According to the proof of Banach's Theorem 
from §9.2.1, if we inductively define Uk+l ·- A[uk] for k = 0, ... , then 
Uk -+ u in X and 

A[u] = u. 

Furthermore, since llluklll < .X, we have u E X>-.. Uniqueness follows from 
(12). D 

Note carefully the strategy of this proof. We showed that for small 
T > 0 the operator A is a strict contraction in the weaker norm 11 · 11 and 
also preserves certain estimates in the stronger norm 111 · I I 1 · Consequently the 
iteration scheme from Banach's Theorem provides a sequence that converges 
in X, to a fixed point that actually lies in the better space X >-.. We did not 
have to show that A is a strict contraction in the stronger norm. 

12.3. SEMILINEAR WAVE EQUATIONS 

This section and the next section discuss the initial-value problem for semi
linear wave equations: 

(1) {
Utt - ~u+ f(u) = 0 in Rn x (O,oo) 

u = g, Ut = h on Rn x { t = O}. 

We will prove much stronger existence theorems than those in §12.2 not 
only because the nonlinear term f(u) is simpler than f(u, Du, Ut) but also 
because we have for (1) the conserved energy functional 

E{t) := Ln ~(u~ + 1Dul2) + F(u) dx, 

unavailable for the general quasilinear wave equations. Our main goal is 
discovering when solutions exist for all times t > 0. 

12.3.1. Sign conditions. 

Our first existence theorem holds for nonlinearities such that f ( z) and 
z have the same sign. 

THEOREM 1 (Sign condition on/). Suppose f is smooth and 

(2) zf(z) > 0 (z ER). 
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Then the initial-value problem ( 1) has a global weak solution u existing 
for all times, with 

{ 
u E Lf0 c((O, oo); L2 (IRn)) n L00 ((0, oo); H 1(IRn)) 

u' E L00 ((0, oo); L2 (IRn)), F(u) E L00 ((0, oo); L1(IRn)). 

Furthermore, we have the energy inequality 

(3) E(t) < E(O) for all times t > 0. 

Note that we do not assert equality in (3): our sol1;1tion is not known to 
be smooth enough for us to calculate rigorously that E = 0. 

Change of notation. Starting with the following proof, we transition 
away from boldface notation, indicating a mapping of time t into a space of 
functions of x, and will instead hereafter regard our solution as a function 
u = u(x, t) of both variables x and t together. 

Proof. 1. According to the sign condition (2), F(z) = J0z f(w) dw is non
decreasing for z > 0 and is nonincreasing for z < 0. Select a sequence of 
smooth function Fk : IR ---+ IR so that 

Fk > 0, Fk---+ F pointwise, Fk < F, Fk =Fon [-k, k] 

and fk := F~ ~s Lipschitz continuous, with zfk(z) > 0 for all z E IR. 
We solve the problems 

(4) { 
uft - 6.uk + fk(uk) = 0 in IRn x (0, oo) 

uk = g, uf = h on IRn x { t = 0}. 

Since fk is Lipschitz continuous, there exists according to Theorem 1 in 
§12.2 a solution uk satisfying 

{ 
uk,Duk,uf E C([O,oo);L2 (IRn)), 

n;uk, Dxuf, uft E L~c((O, oo); L2 (IRn)). 

2. This is enough regularity to allow us to calculate for almost every 
time t that 

Therefore 

(5) 
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Now Fk(g) ---+ F(g) pointwise as k ---+ oo, and 0 < Fk(g) < F(g). Since 
F(g) E L1, we can apply the Dominated Convergence Theorem to deduce 

Since Fk > 0, we also have the bound 

(6) 

and consequently for each time T > 0 

(7) 

We extract a subsequence (which we reindex and still denote "uk") such 
that 

{ 
uk---+ u strongly in Lf0 c(Rn x (0, oo)) and a.e., 

Duk, u~ ~Du, Ut weakly in Lf0 c(Rn x (0, oo)). 

3. Next, multiply the PDE (4) by uk and integrate over Rn x (0, T): 

Since uk fk(uk) > 0, (6) and (7) imply the estimate 

(8) 

4. We next assert that the functions {gk := fk(uk)}k:: 1 are uniformly 
integrable. This means that for each € > 0, there exists 8 > 0 such that if 
Eis a measurable subset of Rn x (0, T) and IEI < 8, then JJE IYkl dxdt < € 

for all k. 

To confirm this, we calculate using (8) that 
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Take .\ so large that 0 <[> < ~. Then for all but finitely many k 

Jr f IYkl dxdt < -2c + IEI max I/ (y)I < E, JE IYI~,\ 

provided IEI < o for o > 0 sufficiently small. 

5. We claim now that 

(9) 

To see this, again write gk := fk(uk), put g := f(u), and fix R > 0, E > 0. 
In view of the uniform integrability proved in step 4, we can select o > 0 so 
that IEI < o implies JE IYkl dx < E for k = 1, .... According to Egoroff's 
Theorem (§E.2), there exists a measurable set E so that IEI < o and gk---+ g 
uniformly on B(O, R) - E. Therefore 

limsupf, lgk -9'1 dx < limsupf, lgk - 9'1dx<2c. 
k,l-oo B(O,R) k,l-oo E 

This is true for each E > 0. Consequently {gk}k::1 is a Cauchy sequence in 
L1(B(O, R)) and so converges to some g E L1(B(O, R)). Since gk ---+ g a.e., 
we deduce g = g. 

6. Because 

we deduce upon multiplying by a smooth test function and passing to limits 
that 

(10) Utt - Dau+ f(u) = 0 in Rn x (0, oo). 

Furthermore 

and according to Fatou's Lemma (§E.3), 

These last two inequalities together imply E(t) < E(O). D 
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12.3.2. Three space dimensions. 

Nonlinear wave equations in three space dimensions are physically the 
most important and turn out to admit useful £ 00 estimates owing to the 
special form of the solution to the linear nonhomogenous problem provided 
by the retarded potential formula (44) from §2.4.2. 

So let us now look at the initial-value problem 

(11) { 
Utt - ~ U + f ( U) = 0 in IR3 X ( 0, 00) 

u = g, Ut = h on IR3 x { t = 0}. 

We henceforth always assume that f: IR---+ IR is smooth, with f(O) = 0, and 
that g, h E C~(IR3). 

THEOREM 2 (Short time existence and blow-up in £ 00). 

(i) There exists a time T > 0 and a unique smooth solution u of the 
initial-value problem (11) on IR3 x (0, T). 

(ii) If the maximal time T* of existence of this smooth solution is finite, 
then 

(12) lim llu(·, t)llvXl(JR3) = oo. 
t-T• 

Assertion (12) is important since (unlike Theorem 3 in §12.2.2) it pro
vides a simple criterion for the failure of the solution to exist beyond time 
T*. We will see in Theorem 3 below and also in §12.4 that we can sometimes 
bound the £ 00 norm of solutions and so ensure existence for all time. 

Proof. 1. We will look for a solution u having the form 

u = v+w, 

where v solves the homogeneous wave equation 

(13) 

and w solves 

{ 
Vtt - ~v = 0 in IR3 x (0, oo) 

v = g, Vt= h on IR3 x {t = O} 

{ 
Wtt - ~w = -f(u) in IR3 x (0, oo) 

w = Wt = 0 on IR3 x { t = O}. 

Formula (44) from §2.4.2 lets us write 

w(x, t) = -~ r f(u(y, t - ly - xi)) dy. 
47r J B(x,t) IY - xi 
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Hence our desired solution u must solve the nonlinear integral identity 

(14) 1 1 f(u*) 3 u(x, t) = v(x, t) - -4 I I dy (x E IR , t > 0), 
7r B(x,t) X - Y 

where for each fixed (x, t) we write 

(15) u*(y) := u(y, t - ly - xi) (y E B(x, t)). 

2. Introduce the collection of functions 

X := {u E C([O, T] x R3 ) I u(·, 0) = g, llu - vllvxi < 1}, 

where v solves the linear, homogeneous problem (13). Since g, hare smooth, 
so is v. Thus there exists a constant C1 such that 

(16) 

for all u EX. 

We define the nonlinear mapping A: X ~ C([O, T] x R3 ) by 

1 1 f(u*) A[u](x, t) := v(x, t) - -4 I I dy. 
7r B(x,t) X - Y 

Then if u, u E X, 

llA[u] - A[u]llLoo((O,T)xJR3) < sup ( 4
1 { lf(u?-?'*)I dy) 

xEJR3 ,O~t~T 7r J B(x,t) X - Y 

1 lu* u*I 
<C sup dy 
- xEJR3 ,O~t~T B(x,t) Ix - YI 

< Cllu - UllL~((o,T)xR') sup { I dy I 
xElR3 ,0~t~T j B(x,t) X - Y 

< CT211u - illlLoo((O,T)xJR3), 

the constant C in the second line depending upon max1w1~c1 l/'(w)I- For 

the last inequality in this calculation we noted that JB(O,r) TuT = Cr2. 

Fix T so small that A is a strict contraction. Observing also that A : 
X ~ X if T is small, we see from Banach's Theorem (§9.2.1) that A has a 
unique fixed point u, which consequently solves the integral identities (14). 

3. We can apply the same method to estimate the first and even higher 
derivatives of u. To see this, write ii, := D~u for a difference quotient, 
k = 1, 2, 3 (§5.8.2). Then 

{ 
ii.u - ~ii,+ cii. = ~ in IR.3 x (0, T] 

ii, = g, Ut = h on IR.3 x { t = O}. 
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h - 1 where g := Dkg, h := n:h and c :=Io f'(su(x + hek, t) + (1- s)u(x, t)) ds. 
The function c is bounded, since u is bounded. 

As above, 

(17) 1 1 c*u* u(x, t) = v(x, t) - -4 I I dy, 
7r B(x,t) X - Y 

where 

{ 
Vtt - ~v = 0 in IR3 x (O,oo) 

v = g, Vt= h on IR3 x {t = 0}. 

In particular, v is smooth, and consequently ( 1 7) implies 

llii{·, t)llL~ < C +Cl llii(·, s)llL~ ds (0 < t < T). 

We invoke Gronwall's inequality (§E.2) next to estimate the L00-norms of 
Du. We can similarly bound Ut. Writing u = Uxk or Ut, we see that u is a 
weak solution of 

Utt - ~u + f'(u)u = o. 
We can now apply our difference quotient argument to this PDE to derive 
L00 bounds on D2u. By induction we can similarly estimate all the partial 
derivatives of u in terms of the L00-norm of u. 

4. Now let T* denote the maximal time of existence of a smooth solution. 
If T* < oo, but (12) fails, we can as above estimate all the derivatives of u 
on IR3 x [O, T*) and therefore extend the solution beyond this time. D 

12.3.3. Subcritical power nonlinearities. 

We now turn our attention to the nonlinear wave equation in three di
mensions with a power-type nonlinearity: 

(18) { 
Utt - ~u + lulP-1u = 0 in IR3 x (0, oo) 

u = g, Ut = h on IR3 x {t = O}, 

the energy for which is 

!. 1 1u1P+l 
E(t) := -(u; + 1Dul2) + dy. 

R3 2 p + 1 

We assume g, h E Cgc>(IR3 ). 

Our goal now is building a global solution for 1 < p < 5 . 
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THEOREM 3 (Subcritical existence theorem). If 1 < p < 5, then there 
exists a unique global smooth solution of (18). 

Section 12.4 will introduce more sophisticated techniques to handle the 
critical case p = 5. 

Proof. 1. In view of Theorem 2, we may assume we have a smooth solution 
u existing on R3 x (0, T) for some T > 0. We need to show that 

for some constant C = C(T). 

Let 
{ 

Vtt - ~v = 0 in R3 x (0, oo) 

v = g, Vt = h on IR3 x { t = O}, 

so that as in the previous proof 

1 J, lu*IP-lu* 
u(x, t) = v(x, t) - -4 I I dy. 

7r B(x,t) X - Y 

Recall from (15) our notation that u*(y) := u(y, t - IY - xi) for y E B(x, t). 
Since g, h are smooth, v is bounded on R3 x [O, T]. Therefore 

(19) lu(x, t)I < C + I(x, t) 

for 
f, lu*IP 

I(x, t) := I I dy. 
B(x,t) X - Y 

2. Then 

(20) ( 
2 ) 1/2 ( ) 1/2 

I(x, t) < f, lu*I 2 dy f, lu*l2(p-1) dy . 
B(x,t) Ix - YI B(x,t) 

Hardy's inequality (Theorem 7 in §5.8.4) implies 

(21) f, lu* 12 dy < Cf, I Du* 12 + ( u*)2 dy. 
B(x,t) IY - xl 2 B(x,t) t2 

Now 
Du*= Du - VUt, 

for v = 1 ~=:1 • Consequently the energy flux identity (3) in §12.1.2 implies 

(22) f, 1Du*l2 dy = ~ { lutv - Dul2 dS < E(O). 
B(x,t) v 2 Jr(x,t) 
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Recalling next Poincare's inequality (7) in §5.8.1, we see that 

f, lu* - (u*)x,tl 2 dy < Ct2 f, 1Du*l2 dy, 
B(x,t) B(x,t) 

for the average ( u*)x,t := f B(x,t) u* dy. Hence 

(23) ; f, (u*)2 dy <cf, 1Du*l2 dy + Ctl(u*)x,tl 2 -
t B(x,t) B(x,t) 

We now compute that 

(24) 

l(u*)x,tl < ~ { lul dS < ~ (1 lutl dyds + f, IYI dy) 
Jr(x,t) t K(x,t) B(x,t) 

1 

< ~ ( { lutl2 dyds) 
2 

IK(x, t)I~ + CllYllL00 

t j K(x,t) 

c 1 

< - 1 E(0) 2 + CllYllL00 • 

t2 

This estimate, combined with (20)-(23), gives 

(25) ( ) 
1/2 

I(x, t) < C f, lu*l2{p-l)dy 
B(x,t) 

3. Suppose now that 1 < p < 4. Then 2(p - 1) < 6 = 2*, and therefore 
the Sobolev inequalities (§5.6.3) imply 

llu*P-1 llL2 (B(x,t)) < Cllu*ll~-;:~B(x,t)) < C. 

Consequently (19) and (25) yield 

lu(x, t)I < C, 

and we have derived the required estimate on llull£oo(JR3x(O,T))· 

The next case is 4 < p < 5. Then 2(p-1) = 2(p-4) +6 = 2(p-4) + 2*, 
and the foregoing calculations show that 

I(x, t) < C { lu*l2(p-l)dy < Cllullt:i4 • 
( )

1/2 

j B(O,t) 
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Therefore (19) implies 

lu(x, t)I < C + Cllulli~4 < C + ~llullvx>, 

the last inequality valid since 0 < p - 4 < 1. This again provides a bound 
on llullvx>(JR3x(O,T))· D 

We will see in Problem 15 that the proof can be modified to show for the 
critical power p = 5 that there exists a global smooth solution provided the 
energy E(O) is small enough. The next section introduces more advanced 
techniques, to construct a solution even for large energy when p = 5. 

12.4. CRITICAL POWER NONLINEARITY 

We consider now the initial-value problem 

(1) { 
Utt - ~u + u5 = 0 

U = g, Ut = h 

with corresponding energy 

(2) 

in R3 x (0, oo) 

on R3 x { t = O}, 

We continue to suppose g, h E Cgc>(R3 ). Our task is showing that there 
is a smooth solution, even for this critical power p = 5 case for which the 
methods of the previous section fail. 

We will first need more detailed information about the linear wave equa
tion: 

THEOREM 1 (Estimates for wave equation in three dimensions). Let v 
solve the linear initial-value problem 

(3) { 
Vtt - ~v = f in R3 x (0, oo) 

v = g, Vt = h on R3 x { t = 0}. 

For each T > 0 we have the estimate 

sup llv(·, t)llL6(JR3) + llvllL4(0,T;L12(R3)) 
(4) 0$t$T 

< C(llDgllL2(JR3) + llhllL2(JR3) + II/ 11Ll(O,T;L2(JR3))) 

for a constant C = C(T). 
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Proof. 1. Approximating f, g, h by smooth functions if necessary, we may 
assume v is smooth. We then compute for 

that 

1 

a(t) := (L. v~ + 1Dvl2 dx) 2 

2a(t)a(t) = 2 f (vtt - Llv)vt dx lnt3 
= 2 [ fvt dx < 2a(t)ll/(·, t)llL2· lnt3 

Therefore 

sup llDv(·, t)llL2 < C(llDgllL2 + llhllL2 + ll/llL1(0,T;L2))· 
0$t$T 

Since for n = 3 dimensions, 2* = 6, the Sobolev inequalities (§5.6.3) provide 
the stated estimate for sup0$t$T llvll£6· 

2. The proof of the L4(0, T; L 12 ) bound for vis beyond the scope of this 
textbook. See Sogge [So] for details and also Shatah-Struwe [S-S]. D 

Recalling the energy flux calculation appearing §12.1, we introduce the 
following 

NOTATION. Given (xo, T) E 1R3 x (0, oo) and 0 < s < T, write 

1 1 1 ~ <P(s) = <P(s,xo,T) := . to -2 1utv- Dul2 + -6 dS 
V 2 r(xo,to)n{s$t<T} 

for the energy flux through the curved surface r(xo, T) for times betweens 
and T. 

THEOREM 2 (L6-energy flux estimate). If u is a smooth solution of 
Utt - Llu + u5 = 0 in 1R3 x [O, T), we have the estimate 

f, u 6 dx < C¢(s)~ 
B(xo,T-s) 

(5) 

for each point xo E 1R3 and each time 0 < s < T. 

Theorem 2 is important since it implies, as we will later see, that the full 
energy density !(u~ + 1Dul2 ) + ~u6 cannot "concentrate" near (xo, T). The 
proof depends upon a nonlinear variant of the scaling invariance identity 
introduced for the linear wave equation in §8.6. 
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Proof. 1. We may assume xo = 0 and suppose for the time being that 
s = 0. Inspired by Example 4 of §8.6, we multiply the PDE Du+ u5 = 0 by 
the multiplier 

m := ( t - T)ut + x · Du + u. 

After some rewriting, we derive the Morawetz-type identity 

u6 
Pt - divq = --, 

3 
(6) 

for 

( u2 + IDul2 u6) 
(7) p:=(t-T) t 2 +6 +x·DUut+UUt 

and 

( u2 IDul2 u6) 
(8) q:= ((t-T)ut+x·Du+u)Du+ t - 2 -6 x. 

Select a time 0 < T < T. We integrate (6) over the truncated backward 
wave cone K(O, T) n {O < t < T}, ending up with three terms corresponding 
respectively to integrations over the curved side r(o, T) n {O < t < T }, the 
bottom B(O, T) x {t = O} and the top B(O, T - T) x {t = T}. The latter 
term goes to zero as T ___.. T. Thus we discover 

(9) A - B = - - dxdt < 0 1 u6 
K(O,T) 3 -

for 

A := . ~ f p - q · v dS, B := f p( ·, 0) dx, 
v 2 lrco,T) J B(O,T) 

where v := 1 ~ 1 • 

2. We now claim that 

(10) A=.~ f (t-T) Ur-Ut+-lul 
2 

dS+-2
1 { u2 (·,0)dS 

v 2 lrco,T) x J 8B(O,T) 

for Ur := Du · 1 ~ 1 . To confirm this, we first observe that lxl = T - t on 

r(o, T) and then check after a calculation using (7), (8) that 

(11) p - q. v = -lxl(ut - Ur)2 + u(Ut - Ur) on r(o, T). 

We transform the surface integral over the curved surface r(o, T) to an 
integral over the ball B(O, T), by putting 

(12) u*(y) := u(y, T - lyl). 
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Then u; =~·Du*= Ur - Ut, and so (11) implies 

(13) 

A= - [ IYl(u;)2 + u*u; dy 
ln(O,T) 

1 ( u*) 2 1 (u*)2 
= - IYI u; + -1 I dy + I I + u*u; dy. 

B(O,T) Y B(O,T) Y 

Since div ( $r) = l~I in JR3 , we can compute 

-- dy = - (u*)2 div - dy 1 (u*)2 11 ( y ) 
B(O,T) IYI 2 B{O,T) IYI 

= - [ u*u;dy+ ~ f (u*)2dS. 
j B(O,T) j oB(O,T) 

Plugging this identity into (13) and converting back to the original variables 
gives us the formula (10). 

3. Next we assert that 

(14) 1 u6 11 B<-T -dx+- u2(·,0)dS. 
B(O,T) 6 2 oB(O,T) 

To see this, notice first that 

1 (u2+1Dul2 u6 ) B = ( -T) t 2 + ff + (x · Du + u )ut dx. 
B(O,T) 

Now if lxl < T, then 

Tu2 lxl2 ( x u ) 2 l(x· Du+u)utl < _t +- Du· - +-
- 2 2T lxl lxl 

Tur T x 2 

< -2- + 2 Du+ lxl2u 

Consequently 

2 1 u6 Tl B<-T -dx+-
- B(O,T) 6 2 B{O,T) 

x 2 
Du+ lxl2 u - IDul dx 

1 u6 Tl u2 2 = -T -dx+- - +-uurdx. 
B(O,T) 6 2 B{O,T) lxl2 lxl 

Since div ( ~) = 1~2 in JR3 , we calculate as in step 2 that the last integral 

equals ~ fan(o,T) u2 dS. This proves (14). 
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4. Combining (9), (10) and (14), we deduce that 

T { u6 dx < C { (T - t) Ur - Ut + _lul 2 
dS 

J B(O,to) lrco,T) x 

(15) fr 
u2 

< CT</>(O) + c -I I dS 
r(O,T) X 

< CT</>(O) + C { u6 dS { lxl-3/ 2 dS ( ) 
1/3 ( ) 2/3 

lrco,T) lrco,T) 

Since f qo,T) lxl-3/ 2 dS = CT312, we deduce finally that 

{ u6 dx < C</>(0)113 . 
jB(O,T) 

This is the inequality (5) for s = 0, and the general case that 0 < s < T 
follows similarly. D 

We present next the major assertion that our critical power wave equa
tion has a smooth solution existing globally in time: 

THEOREM 3 (Global existence for u5 nonlinearity). Assume that f, g are 
smooth functions with compact support. 

Then there is a unique smooth solution of the initial-value problem ( 1) 
existing for all time. 

Proof. 1. Assume that 0 < T < oo and that u is a smooth, compactly 
supported solution existing on JR3 x [O, T). We will show that 

(16) u E L00 (JR3 x [O, T) ), 

in which case our results from §12.3 imply that u can be smoothly extended 
beyond time T. 

2. We first assert that if we knew 

(17) 

then (16) would hold. To see this, differentiate the PDE Du+u5 = 0 to find 
Dv + 5u4v = 0, for v := Uxk (k = 1, 2, 3). The linear estimate ( 4) provides 
the bound 

sup llDullLa < C + C fr llu4DullL2 dt 
O~t~T lo 
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for 0 < T < T. 

Now 

and consequently 

1T 1 
sup llDullL6 < C + C sup 11Dull£6 llulli12 dt < C + 2 sup 11Dull£6, 

o::;t::;r o::;t::;r 0 o::;t::;r 

provided T > 0 is so small that 

{T 1 
lo llulli12 dt < 8 := 20 . 

Since u E L4 (0, T; £ 12 ), we can select T = ~ > 0 such that 

l (k+l)T 

llulli12 dt < 8 
kT 

for k = 1, ... , m - 1. 

We can then iteratively apply the foregoing argument on the time intervals 
[O, T], [T, 2T], ... , [(m - l)T, T), eventually to deduce 

sup 11Dull£6 < C. 
o::;t<T 

Since u has compact support, this implies llull£<X>((O,T)xJR3) < C and so (16) 
is valid. 

3. Next we show for each point xo E JR3 that 

(18) lim { u6 dx = 0. 
s-T J B(xo,T-s) 

Indeed the key estimate ( 5) provided by Theorem 2 asserts 

f u6 dx < C</>(s)~ 
J B(xo,T-s) 

for the energy flux </>(s). But according to Theorem 2 in §12.2, </>(s) 
e(s) - limr-o e(r) for 

Since t ....._. e( t) is nonincreasing, it follows that lims-T </>( s) = 0 and con
sequently that (18) holds. (Notice in this argument that we do not need 
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to know that limr-o e(r) = 0, although the next step shows this is in fact 
true.) 

4. We assert now that (18) implies 

(19) lim { u~ + 1Dul2 dx = 0 
s-T J B(xo,T-s) 

for each point xo. To confirm this, let us first show that ( 18) implies 

(20) u E L4 (0, T; L 12 (B(xo, T - t))). 

To prove this, we first observe that owing to the linear estimate (4), 

(21) llul!L'(s,..-,L12(B(zo,T-t))) < C + C /..,- llu5 llL2(B(zo,T-t)) di, 

for each s < T < T. The interpolation inequality llullL10 < llull~5 llullt~ 
(§B.2) implies 

Consequently, 

J.r llu5 llL2(B(x0,T-t)) dt < sup llull£6(B(x0,T-t)) J.r llullt12(B(xo,T-t)) dt. 
s s$t$T s 

It follows then from (18) and (21) that given any E > 0 we can select a time 
0 < s < T such that 

llull£4(s,r;L12(B(xo,T-t))) < C + Ellullt4(s,r;£12(B(xo,T-t))) 

for all s < T < T. This expression has the form 

with </>( s) = 0. It follows that 

</>(T) < 2C1 (s < T < T) 

provided that Eis sufficiently small. This proves (20). 

But then (20) lets us apply the method of step 2 to v := Uxk (k = 1, 2, 3) 
and v := Ut· This reasoning provides the bound 

sup llDu, UtllL6(B(xo,T-t)) < C, 
05,t<T 
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which in turn gives us (19). 

5. Next we improve slightly on (20): we claim that for each xo E IR3 

there exists 8 = 8 ( xo) > 0 such that 

(22) u E L4 (0, T; L 12 (B(xo, T - t + 8))). 

To prove this, notice first that (18) and (19) together imply that given 
any constant E > 0, we can find 0 < s < T for which 

(23) [ UF + 1Dul2 +u6 dx < E. 
Jn(x0 ,T-s) 

Then 

(24) [ UF + 1Dul2 + u6 dx < 2E J B(xo,T-s+6) 

for some small 8 > 0. Consequently, a standard energy calculation shows 

sup f u6 dx <CE. 
s'.5.t<T J B(xo,T-t+6) 

The techniques introduced above in step 4 then establish (22). 

6. In summary so far: for each point xo, there exists 8 = 8(xo) > 0 such 
that u verifies (22). As u has compact support, we can find finitely many 
points {xk}£'=1 such that sptu(·, T) c LJ~=l B(xk, 8(xk)). It follows that 

Then step 2 implies u E L00 (JR3 x [O, T)). As noted in step 1, proving this 
~~~- D 

12.5. NONEXISTENCE OF SOLUTIONS 

We next identify some circumstances under which the semilinear nonlinear 
wave equation Du+ f(u) = 0 does not have a solution existing for all time. 
Our method will be to introduce appropriate integral quantities depending 
on the time variable t, for which we can then derive differential inequalities, 
involving convexity, that lead to contradictions. 
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12.5.1. Nonexistence for negative energy. 

We study first the initial-value problem 

(1) { 
Utt - ~u + f(u) = 0 in Rn x (0, oo) 

u = g, Ut = h on Rn x { t = 0}. 

We always assume that g, h E C~(Rn) and that f(O) = 0. Hence a smooth 
solution, if it exists, will have compact support in space for each time, ac
cording to Theorem 3 in §12.1.2. 

THEOREM 1 (Nonexistence for negative energy). Assume that for some 
constant A > 2 we have the inequality 

(2) zf(z) < AF(z) (z ER). 

Suppose also that the energy is negative: 

(3) E(O) = L. ~(IDgl 2 + h2 ) + F(g)dx < 0. 

Then there cannot exist for all times t > 0 a smooth solution u of (1). 

Therefore the solution constructed in the proof of Theorem 2 in §12.3.2 
cannot in general continue for all time. 

Proof. 1. Define 

Then 

(4) 

I(t) := ~ f u 2 dx. 
2 lntn 

I"= f u; + uuu dx = [ u; + u(~u - f(u)) dx lntn lntn 
= [ u; -1Dul2 - uf(u) dx. lntn 

The integration by parts is justified, since u has compact support in space 
for each time. 

According to the conservation of energy, we have 

E(t) = l. ~(u~ + 1Dul2) + F(u) dx = E(O) 
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for each time t > 0. Add and subtract (2 + 4a)E(O) to (4): 

I" = (2 + 2a) f u; dx + 2a f 1Dul2 dx }Rn }Rn 
+ f (2 + 4a)F(u) - uf(u) dx - (2 + 4a)E(O). }Rn 

Select a> 0 so that 2 + 4a =A, where A is the constant in hypothesis (2). 
Then the last integral term is nonnegative, and hence 

(5) I"> (2 + 2a) { u; dx - AE(O). }Rn 

Since I'= f UUt dx, inequality (5) implies 

(6) (1 + a)(J')2 < (1 +a) (L u2 dx) (Lu~ dx) < 1(111 - {3), 

for (3 := -AE(O) > 0. 

2. Put 
J ·- 1-a .- . 

Then (6) lets us compute 

(7) J" = a(a + l)J-{a+2)(J')2 - aJ-{a+l) I"< -af3J-{a+l) = -af3Jl+l/a. 

This shows that J is a concave function oft. Suppose now that J'(to) < 0 
for some time to > 0. Then the concavity of J implies 

J(t) < J(to) + (t - to)J' (to) (t > 0), 

and this inequality provides the contradiction that J ( t) < 0 for large times 
t. Assume instead that J' > 0 for all t > 0. Then from (7) it follows that 

J" < -af3J1+1fa(o) =: -1. 

We have 7 > 0, since our negative energy hypothesis (3) implies g ~ 0. Thus 

J'(t) < J'(O) -1t < 0 

for large t, and we again reach a contradiction. 0 



12.5. NONEXISTENCE OF SOLUTIONS 689 

12.5.2. Nonexistence for small initial data. 

Satisfying the negative energy hypothesis (3) in the previous subsection 
requires that g not be too small. Remarkably, certain semilinear wave equa
tions do not possess solutions existing for all times t > 0, even for certain 
arbitrarily small and smooth initial data g, h. 

As an example, consider this initial-value problem in three space dimen
s10ns: 

(8) {
Utt - ~u- lulP = 0 in R3 x (O,oo) 

u = g, Ut = h on R3 x { t = 0}. 

Take any smooth initial data with 

(9) r g dx > 0, r h dx > 0 
JJR3 JJR3 

and spt g, spt h C B(O, R). We will deduce from these conditions alone that 
there is no solution, provided the exponent p > 1 is small enough. 

THEOREM 2 (Nonexistence for small data). Assume that 

1<p<1 + v'2. 

Then under the above conditions on g and h, the initial-value problem (8) 
does not have a smooth solution u existing for all times t > 0. 

This statement should be contrasted with the global existence of smooth 
solutions of Ou+ lulP-1u = 0 in R3 x (0, oo) shown in §12.3 and §12.4 for 
1 < p < 5. 

Proof. 1. We assume to the contrary that u is in fact a solution and derive 
a contradiction. Since the initial data have support within B(O, R), Theorem 
3 from §12.1.2 implies that u(·, t) is supported within the ball B(O, R + t). 

Put 

I(t) = { udx. 
JJR3 

Then 

I"= r Utt dx = r lulP dx. 
JJR3 JJR3 

Since u(·, t) vanishes outside the ball B(O, R + t), we have 

I= r u dx < ( r lulP dx) l/p IB(O, R + t)ll-l/p; 
j B(O,R+t) jJR3 
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and therefore 

(10) I" > cJP(l + t)-3(p-l) 

for a constant c > 0. 

2. We next introduce the solution v of the linear wave equation 

(11) { 
Vtt - ~v = 0 in 1R3 x (O,oo) 

v = g, Vt = h on 1R3 x { t = 0}. 

According to the retarded potential formula ( 44) in §2.4.2, we have 

1 1 lulP(y, t - IY - xi) 
u(x, t) = v(x, t) + -4 I I dy > v(x, t). 

7r B(x,t) Y - X 

Now (11) and (9) imply 

for constants c1, c2 > 0. Furthermore, since we are working in n = 3 space 
dimensions, Huygens' principle tells us that v has support within the annular 
region A:= B(O, t + R) - B(O, t - R), which has volume IAI < C(l + t)2 . 

Hence 

It follows that 

c1+1:2t= Lvdx<Ludx 
< c (L31u1P dx) •IP (1 + t)2<•-•1P>. 

I" = { lulP dx > c(l + t)2-P 
JJR3 

for some constant c > 0. Since J(O), I'(O) > 0, we deduce that 

(12) I> c(l + t)4-P. 

3. Let c > 0 and as follows combine (10) and (12): 

I"> cJl+e JP-1-e(l + t)-3(p-1) 

> c/l+e(l + t)(4-p)(p-1-e)(l + t)-3(p-1) 

= cJl+e(l + t)-µ 
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for µ := (p - 1 )2 + c-( 4 - p). Since 1 < p < 1 + J2, we can fix c- > 0 so small 
that 

(13) 0 < µ < 2. 

Since I'> 0, 

and thus 

Consequently 

Now (12) implies J 2+e(t)(l + t)-µ > 2J2+e(O) for large enough times, 
say, t >to. Therefore we can deduce from (14) that 

provided t > to. Then 

(J-gf2)' = -~1-~-1 I'< - ~ (1 + t)-µf2 • 

Integrating, we see that 

0 < J-g/2(t) < 1-ef2 (t ) - - . C£ 1.t ds 
- - O 2 to (1 + s )µ/2 

This is a contradiction, since µ < 2 according to ( 13) and so the integral on 
the right diverges as t ___.. oo. D 

12.6. PROBLEMS 

The following problem set includes questions on both linear and nonlinear 
wave equations, as well as the related nonlinear Schrodinger equation. All 
given functions are assumed smooth, unless otherwise stated. 

1. Assume u has compact support in space and solves the quasilinear 
wave equation 

n 

Utt - L(Lpi(Du))xi = 0 in Rn x (0, oo). 
i=l 
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Determine the appropriate energy E(t) and show E = 0. 

2. Let u solve the Klein-Gordon equation 

{ Utt - ~u + m 2u = 0 in R.n x (0, oo) 
u = g, Ut = h on R.n x { t = O}. 

(a) Show that the energy 

(t > 0) 

is constant in time. 

(b) Modify the proof in §4.3.1 showing asymptotic equipartition of 
energy for the wave equation to prove that 

lim [ IDul2 + m 2u2 dx = E(O). 
t-+oo }Rn 

3. Suppose u solves the initial value problem ( *) from Problem 2 for the 
Klein-Gordon equation. Write x = (x, Xn+1) for x E R.n and define 

u(x, t) := u(x, t) cos(mxn+1). 

(a) Show that u solves the wave equation Du= 0 in e.n+l x (0, oo). 

(b) Derive a formula for the solution of the initial-value problem for 
the Klein-Gordon equation when n = 1. (This is a variant of 
the method of descent, introduced in §2.4.1.) 

4. Assume u solves 

Utt - ~u + dut = 0 in R.n x (0, oo), 

which for d > 0 is a damped wave equation. Find a simple exponential 
term that, when multiplied by u, gives a solution v of 

Vtt - ~V + CV = 0 

for a constant c < 0. (This is the opposite of the sign for the Klein
Gordon equation.) 

5. Check that for each given y E R.n, y =f:. 0, the function u = ei(x·y-ut) 

solves the Klein-Gordon equation 

Utt - ~u + m 2u = 0 
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6. 

7. 

1 
provided u = (lyl 2 + m2)2. The phase velocity of this plane wave 
solution is l~I > 1. Why does this not contradict the assertions in 
§12.1 that the speed of propagation for solutions is less than or equal 
to one? 

Suppose 

{ 
Utt - ~u = 0 in 1R3 x (0, oo) 

u = g, Ut = h on 1R3 x { t = O}, 

where g, h have compact support. Show there exists a constant C such 
that 

lu(x, t)I < C/t (x E 1R3 , t > 0). 

(Hint: Use the representation formula for the solution from §2.4.1.) 

Let u solve 
{ 

Utt - ~ U = 0 in JR 2 X ( 0, 00) 

u = g, Ut = h on 1R2 x { t = 0}, 

where g, h have compact support. Show that 

lu(x, t)I < C/t~ (x E 1R2 , t > 0) 

for some constant C. 

8. Suppose ue solves the linear wave equation in n = 2 space dimensions, 
with the initial conditions uf = h = 0 and 

g g { e -g (r~1)~J~r) if 1 < r < 3 
u =g := 

0 otherwise, 

where r = lxl. Show that although Igel< 1, we have 

max I ue I ___.. oo 
IR2 x[0,4] 

as E ___.. 0. 

(Hint: Use (26) in §2.4.1 to compute ue(O, t) fort> 3.) 

9. (Kelvin transform for wave equation) The hyperbolic Kelvin transform 
JC u = u of a function u : Rn x JR ___.. JR is 

_ _ - _ 2 L2 n-1 ( X t ) 1 
u(x,t) := u(x,t)llxl -t I 2 = u I 12 2 , I 12 2 n-1' 

x - t x - t I lxl2 _ t2 l-2 

provided lxl2 =/:- t2, where 

x - t 
x= t=---

lxl2 - t2' lxl2 - t2. 
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Show that if Du= 0, then Du= 0. 

(Compare with Problem 11 in Chapter 2.) 

10. Assume that u and v solve the system 

{ 
(u - v)t = 2a sin (utv) 

(*) 
(u + v)x = ~sin (u2v) 

where a =I 0. Show that both w := u and w := v solve the sine-Gordon 
equation in the form . 

Wxt = SlnW. 

Why is this equivalent to the PDE Dw = sin w? 

11. (Continuation) Alternatively, given a solution v of the sine-Gordon 
equation, we can try to solve the system ( *) to build a second solution 
u. This procedure is called a Backlund transformation. 

Start with the trivial solution v _ 0, and use the Backlund transfor
mation to compute for each choice of the parameter a another solution 
u. (Hint: First show u must have the form f (at + x /a). Also show 
that (tan(u/4))t =a tan(u/4).) 

12. Prove the Sobolev-type inequality (6) in §12.2.2. 

(Hints: If u E Hk and {3 is a multiindex with lf31 < k, we have 
the estimate llD.BullLP < CllullHk, where p satisfies (a) p = oo if 
! - k + lm < O· (b) 2 < p < oo if ! - k + lm = O· and (c) ! = ! - k-1.BI 
2 n n ' - 2 n n ' p 2 n 

if~ - ~ + ~ > 0. Assume that the multiindices lf31I, ... , lf3rl satisfy 
(a) above, lf3r+1I, ... , lf3sl satisfy (b), and lf3s+1I, ... , lf3ml satisfy (c). 
Estimate llD.81 u1 · · · D.8mumlli2-) 

13. A smooth function u : R.n x [O, oo) --. R.m, u = ( u1, ... , um), is called a 
wave map into the unit sphere sm-l = 8B(O, 1) c R.m provided that 
everywhere in R.n x [O, oo), lul = 1 and Utt - Llu is perpendicular to 
sm-l at u. 

Show that therefore u solves the system of PDE 

Utt - Llu = (1Dul 2 - lutl 2)u. 

14. Prove that if u is a wave map into the unit sphere, with compact 
support in space, we have conservation of energy: 

dd f lutl 2 +1Dul2 dx = 0. 
t }Rn 

15. (Small energy for p = 5) Adapt the proof of Theorem 3 in §12.3.3 to 
show the existence of a smooth solution of 

{ 
Utt - Llu + u5 = 0 in R.3 x (0, oo) 

u = g, Ut = h on R.3 x {t = O}, 
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provided the energy E(O) is sufficiently small. 

(Hint: Modify estimate (24) in §12.3.3 by introducing the L6-norm of 
g.) 

Many techniques developed for semilinear wave equations have counter
parts for nonlinear Schrodinger (NLS) equations, to which we devote the 

. . . 
rema1mng exercises. 

16. Let u be a complex-valued solution of the nonlinear Schrodinger equa
tion 

iut + ~u = /(lul2)u in R.n x (0, oo). 

Here I : R. ~ R.. Demonstrate that if e E e.n' then 

w(x, t) := e~<2e·x-lel 2t>u(x - et, t) 
also solves the NLS equation. This shows the Galilean invariance of 
solutions. 

17. Assume u solves the nonlinear Schrodinger equation ( *) from Problem 
16 and decays rapidly, along with its derivatives, as lxl ~ oo. Derive 
these identities: 

dd J. lul2 dx = 0 (conservation of mass), 
t Rn 

dd f 1Dul2 + F(lul2) dx = 0 (conservation of energy), 
t }Rn 

where F' = J, and 

- x=O d J. uDu - uDu d 
dt Rn 2i 

(conservation of momentum). 

Remember that lul2 = uu. 

18. (Continuation) 

(a) Under the hypotheses of the previous problem, derive the iden-
tity 

dd22 !. lxl2 lul2 dx 
t Rn 

=sf. 1Dul2 dx + 4nf. /(lul2)lul2 - F(lul2) dx. 
Rn Rn 

(b) Use (a) to show that there does not exist a solution of the cubic
NLS equation 

iut + ~u + lul2u = 0 in R.n x (0, oo) 
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existing for all times t > 0, if 

E(O) =kn IDu(·, 0)1 2 - lu(·~O)l4 dx < 0 

and n > 2. (R. Glassey, J.Math.Physics 18 (1977), 1794-1797) 
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APPENDIX A: NOTATION 

A.1. Notation for matrices. 

(i) We write A = ((aij)) to mean A is an m x n matrix with (i,j)th 
entry aij· (Sometimes, as in §8.1.4, it will be convenient to use 
superscripts to denote rows.) 

A diagonal matrix is denoted diag(d1, ... , dn)· 

(ii) Mmxn =space of realm x n matrices. 

sn = space of real, symmetric n x n matrices. 

(iii) tr A = trace of the matrix A. 

(iv) det A= determinant of the matrix A. 

(v) cof A= cofactor matrix of A (see §8.1.4). 

(vi) AT= transpose of the matrix A. 

(vii) If A= ((aij)) and B = ((bij)) are m x n matrices, then 

m n 

A: B = LLaijbij, 
i=l j=l 

-697 
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and 

(viii) If A E sn and, as below, x = (x1, ... 'Xn) E lRn, the corresponding 
quadratic form is x ·Ax = :E?,j=l aijXiXj. 

(ix) If A, BE sn, we write 

to mean that A - Bis nonnegative definite. In particular, we write 

if x ·Ax> Olxl 2 for all x E lRn. 

(x) We sometimes will write yA to mean AT y, for A E Mmxn and y E 
lRm. 

A.2. Geometric notation. 

(i) lRn = n-dimensional real Euclidean space, JR= JR1. 

sn-l = aB(O, 1) = (n - 1)-dimensional unit sphere in lRn. 

(ii) ei = (0, ... , 0, 1, ... , 0) = ith standard coordinate vector. 

(iii) A typical point in lRn is x = (x1, ... , Xn)· 

We will also, depending upon the context, regard x as a row or 
column vector. 

(iv) JR+. = {x = (xi, ... , Xn) E lRn I Xn > O} =open upper half-space. 

lR+ = { x E JR I x > 0}. 

(v) A point in JRn+l will often be denoted as (x, t) = (x1, ... , Xn, t), and 
we usually interpret t = Xn+l = time. 
A point x E lRn will sometimes be written x = (x', Xn) for x' 
(xi, ... , Xn-1) E lRn-l. 

(vi) U, V, and W usually denote open subsets of lRn. We write 

Vccu 

if V c V c U and Vis compact, and say Vis compactly contained 
in U. 

(vii) au = boundary of u' (J = u u au = closure of u. 
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(viii) Ur= U x (0, T]. 

(ix) rr =Ur - Ur= parabolic boundary of Ur. 

(x) B(x, r) = {y E Rn I Ix - YI < r} = closed ball in Rn with center x 
and radius r > 0. 

(xi) B 0 (x, r) = open ball with center x, radius r > 0. 

(xii) C(x, t; r) = {y E Rn, s E R I Ix - YI < r, t - r 2 < s < t} = closed 
cylinder with top center (x, t), radius r > 0, height r 2 . 

(xiii) a(n) = volume of unit ball B(O, 1) in Rn= r(;:i)" 
na(n) =surface area of unit sphere 8B(O, 1) in Rn. 

(xiv) If a= (ai, ... , an) and b = (b1, ... , bn) belong to Rn, 

(xv) en= n-dimensional complex space; c =complex plane. 

If z E C, we write Re(z) for the real part of z and Im(z) for the 
imaginary part. 

A.3. Notation for functions. 

(i) If u : U ~ R, we write 

u(x) = u(x1, ... , Xn) (x EU). 

We say u is smooth provided u is infinitely differentiable. 

(ii) If u, v are two functions, we write 

to mean that u is identically equal to v; that is, the functions u, v 
agree for all values of their arguments. We use the notation 

u:=v 

to define u as equaling v. 

The support of a function u is denoted 

sptu. 
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(iii) u+ = max(u, 0), u- = - min(u, 0), u = u+ - u-, lul = u+ + u-. 

The sign function is 

sgn(x) = { ~ 
-1 

if x > 0 

if x = 0 

if x < 0. 

(iv) If u : U ___.. Rm, we write 

u(x) = (u1(x), ... , um(x)) (x E U). 

The function uk is the kth cnmponent of u, k = 1, ... , m. 

( v) If ~ is a smooth ( n - 1 )-dimensional surface in Rn, we write 

hfdS 

for the integral of f over ~' with respect to ( n - 1 )-dimensional 
surface measure. If C is a curve in Rn, we denote by 

fctdl 
the integral off over C with respect to arclength. 

(vi) Averages: 

f f dy := ( \ n f f dy = average off over the ball B(x, r) 
B(x,r) a n r j B(x,r) 

and 

f f dS := 1 { f dS 
8B(x,r) na(n)rn-l JaB(x,r) 

= average off over the sphere 8B(x, r). 

More generally, 

f E f dµ := µ(~) L f dµ = average of f over set E, 

provided µ( E) > 0. 

{
1 ifxEE 

(vii) XE(x) = . d XE is the indicator function of E. 
0 If x 'FE; 

(viii) A function u : U ___.. R is called Lipschitz cnntinuous if 

lu(x) - u(y)I < Clx - YI 
for some constant C and all x, y EU. We write 

Lip[u) := sup lu(x) - u(y)I _ 
x,yeU Ix -yl 

x-:f:y 

(ix) The convolution of the functions/, g is denoted 

I* g. 
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Notation for derivatives. Assume u : U ---+ JR, x E U. 

(i) g~ (x) = limh-+O u(x+heh)-u(x), provided this limit exists. 

(ii) We usually write Uxi for g~. 

(1"1"1") s· ·1 l a2u aau t 
Ifill ar y, 8xi8Xj = UxiXj' 8xi8X;8Xk = UxiXjXk' e C. 

(iv) Multiindex Notation: 

(v) 

(vi) 

(a) A vector of the form a= (a1, ... , an), where each component ai 
is a nonnegative integer, is called a multiindex of order 

!al = a1 + · · · +an. 

(b) Given a multiindex a, define 

alalu(x) 
Dau(x) := 8 ai 8 an = 8~{ ... a<;;:u. 

X1 · · • Xn 

( c) If k is a nonnegative integer, 

Dku(x) := {Dau(x) I !al= k}, 

the set of all partial derivatives of order k. Assigning some ordering 
to the various partial derivatives, we can also regard Dku( x) as a 
point in lRnk. 

(d) IDkul = (L:1al=k 1Dau12) 1/2. 

(e) Special Cases: If k = 1, we regard the elements of Du as being 
arranged in a vector: 

Du : = ( Ux1 , ... , Uxn ) = gradient vector. 

Therefore Du E Rn. We will sometimes also write 
x 

Ur:= 1;f ·Du 

for the radial derivative of u. 

If k = 2, we regard the elements of D 2u as being arranged in a 
matrix: 

D2u ·= ( Ux1x1 ·. ·. · Ux1xn ) 

. UxnXI · · ~ UxnXn nxn 

Hessian matrix. 

Therefore D 2u E sn, the space of real symmetric n x n matrices. 

Llu = L~=l Uxixi = tr(D2u) = Laplacian of u. 

We sometimes employ a subscript attached to the symbols D, D2 , 

etc. to denote the variables being differentiated. For example if 
u = u(x,y) (x E lRn, y E lRm), then Dxu = (ux1, ... ,Uxn), Dyu = 
(uyu ... 'Uym)· 
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Function spaces. 
(i) C(U) = { u: U __. R. I u continuous}. 

C(U) = { u E C(U) I u is uniformly continuous on bounded subsets 
of U}. 

ck ( U) = { u : u __. R. I u is k-times continuously differentiable}. 

Ck(U) = {u E Ck(U) I no:u is uniformly continuous on bounded 
subsets of U, for all lal < k }. 

Thus if u E Ck(U), then no:u continuously extends to U for each 
multiindex a, lal < k. 

(ii) C00 (U) = { u: u __. R. I u is infinitely differentiable} = nk::o Ck(U) 
C00 (U)= nk::o Ck(U). 

(iii) Cc(U), C~(U), etc. denote these functions in C(U), Ck(U), etc. with 
compact support. 

(iv) D'(U) = { u : U __. R. I u is Lebesgue measurable, llullLP(U) < oo }, 
where 

1 

llullLP(U) := (L lulP dx) ii (1 < p < 00 ). 

L 00 (U) = { u : U __. R. I u is Lebesgue measurable, llullv)()(U) < oo }, 
where 

llullv)()(U) := ess supu lul. 
Lfoc(U) = {u: U __. R. I u E D'(V) for each V CCU}. 
(See also §D.l.) 

(v) llDullLP(U) = lllDulllLP(U)· 
llD2ullLP(U) = II ID2ul llLP(U). 

(vi) Wk•P(U), Hk(U), etc. (k = 0, 1, 2, ... , 1 < p < oo) denote Sobolev 
spaces: see Chapter 5. 

(vii) ck,f3(U), ck,f3(U) (k = 0, ... '0 < (3 < 1) denote Holder spaces: see 
Chapter 5. 

(viii) Functions of x and t. It is occasionally useful to introduce spaces 
of functions with differing smoothness in the x- and t-variables, al
though there is no standard notation for such spaces. We will for 
this book write 

C~(UT) = {u: UT__. R. I u, Dxu, D';u, Ut E C(UT)}. 

In particular, if u E Cl(UT ), then u, Dxu, etc. are continuous up to 
the top U x { t = T}. 



APPENDIX A: NOTATION 

A.4. Vector-valued functions. 

(i) If now m > 1 and u : U --+ Rm, u = ( u1, ... , um), we define 

Do:u = (Do:u1, ... , Do:um) for each multiindex a. 

Then 

and 

as before. 

(ii) In the special case k = 1, we write 

ul ) Xn 

u~ mxn 

gradient matrix. 

(iii) If m = n, we have 
n 

divu :=tr( Du)= L u~i = divergence of u. 
i=l 

703 

(iv) The spaces C(U; Rm), LP(U; Rm), etc. consist of those functions u: 
U --+ Rm, u = (u1, ... , um), with ui E C(U), .LP(U), etc. (i = 
1, ... , m). 

Remark on sub- and superscripts. As illustrated above, we will adhere 
to the convention of setting in boldface mappings which take values in Rm 
form> 1 (or else in Banach or Hilbert spaces). The component functions of 
such mappings will be given superscripts. On the other hand, a typical point 
x E Rn is not boldface and has components with subscripts, x = (x1, ... , xn)· 

Matrix-valued mappings will also be set in boldface, and their compo
nent functions written with either superscripts or a mixture of sub- and 
superscripts, depending upon the context. 

A.5. Notation for estimates. 

Constants. We employ the letter C to denote any constant that can be 
explicitly computed in terms of known quantities. The exact value denoted 
by C may therefore change from line to line in a given computation. The 
big advantage is that our calculations will be simpler looking, since we con
tinually absorb "extraneous" factors into the term C. 
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DEFINITIONS. (i) (Big-oh notation.) We write 

f = O(g) as x --+ xo, 

provided there exists a constant C such that 

l/(x)I < Clg(x)I 

for all x sufficiently close to xo. 

(ii) (Little-oh notation.) We write 

provided 

f = o(g) as x --+ xo, 

lim l/(x)I = 0. 
x-xo lg(x)I 

APPENDICES 

Remark. The expression "O(g)" (or "o(g)") is not by itself defined. There 
must always be an accompanying limit, for example "as x --+ xo" above, 
although this limit is often implicit. 

A.6. Some comments about notation. 

The foregoing notation is largely standard within the PDE literature, 
with a few significant exceptions: 

(i) We employ the symbol "Du", and not "Vu", to denote the gradient 
of the function u. The reason is that "D2u" then naturally denotes the 
Hessian matrix of u, whereas "V'2u" would be confused with the Laplacian. 
The multiindex notation also looks better with the letter D. 

(ii) Most books and papers on partial differential equations denote by 
"0" the open subset of Rn within which a given PDE holds. 

As indicated above, we will instead mostly use the symbol "U" for such 
a region. The advantages are several. First of all, since a typical solution is 
denoted u, it makes sense to denote its domain by U and not to switch to 
a Greek letter. Furthermore, once we call a given open set U, the letters V 
and W are then available for subregions. 

Lastly, it is important to save n as the standard symbol for a probability 
space. Many important partial differential equations have probabilistic rep
resentation formulas (cf. Freidlin [Fd)), and although such are beyond the 
scope of this book, it seems wise to avoid the possibility of future notational 
confusion. 
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APPENDIX B: INEQUALITIES 

B.1. Convex functions. 

Definition. A function f : Rn ___.. R is called convex provided 

(1) f(rx + (1- r)y) < rf(x) + (1- r)f(y) 

for all x, y E Rn and each 0 < r < 1. 

THEOREM 1 (Supporting hyperplanes). Suppose f : Rn ___.. R is convex. 
Then for each x E Rn there exists r E Rn such that the inequality 

(2) f(y) > f(x) + r · (y - x) 

holds for all y E Rn. 

The mapping y ~ f ( x) + r · (y - x) determines the supporting hyperplane 
to f at x. Inequality (2) says the graph of f lies above each supporting 
hyperplane. If f is differentiable at x, r = D f ( x). 

If f is C2 ' then f is convex if and only if D2 f > 0. The C2 function f 
is uniformly convex if D 2 f >OJ for some constant 0 > 0: this means 

n 

L fxiXj (x){i{j > 01e12 (x, e E Rn). 
i,j=l 

THEOREM 2 (Jensen's inequality). Assume f: Rm___.. R is convex and 
U C Rn is open, bounded. Let u : U ___.. Rm be summable. Then 

(3) f (Ju udx) < J /(u) dx. 

Remember from §A.3 the notation f uU dx = ibi f u u dx = average of u 
over U. 

Proof. Since f is convex, for each p E Rm there exists r E Rm such that 

f ( q) > f (p) + r · ( q - p) for all q E Rm. 

Let p = fuudy, q = u(x): 

f ( u(x)) > f (f u u dy) + r · ( u(x) - f u u dy) . 
Integrate with respect to x over U. D 

We discuss convex functions more fully in §3.3.2 and §9.6.1. 
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B.2. Useful inequalities. 

Following is a collection of elementary, but fundamental, inequalities. 
These estimates are continually employed throughout the text and should 
be memorized. 

a. Cauchy's inequality. 

a2 b2 
(4) ab< 2 + 2 (a, b E JR). 

Proof. 0 < (a-b) 2 = a2 -2ab+ b2 . D 

b. Cauchy's inequality with e. 

(5) 
b2 

ab < Ea2 + 4f. (a, b > 0, E > 0). 

Proof. Write 

ab= ((2•)1/2a) ( (2•~1/2) 
and apply Cauchy's inequality. 

c. Young's inequality. Let 1 < p, q < oo, ~ + ~ = 1. Then 

aP bq 
(6) ab< - + - (a, b > 0). 

- p q 

Proof. The mapping x r--+ ex is convex, and consequently 

b _ loga+logb _ ! logaP+! logbq < 1 logaP + 1 logbq _ aP + bq a - e - eP q -e -e - - -. 
- p q p q 

d. Young's inequality with e. 

(7) ab< EaP + C(E)bq (a, b > 0, E > 0) 

for C( E) = ( Ep )-q/pq-1. 

D 

D 

Proof. Write ab = ( ( Ep )11Pa) ( (Ep~l/p) and apply Young's inequality. D 

e. Holder's inequality. Assume 1 < p, q < oo, 
u E V'(U), v E Lq(U), we have 

( 8) fu luv I dx < llull L•(U) II v II L•(U) · 

! + ! = 1. Then if p q 
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Proof. By homogeneity, we may assume llullLP = llvllLq = 1. Then Young's 
inequality implies for 1 < p, q < oo that 

[ luvl dx < ! [ lulP dx + ! [ lvlq dx = 1 = llullLPllvllLq· lu P lu q lu 
D 

f. Minkowski's inequality. Assume 1 < p < oo and u, v E V'(U). Then 

(9) llu + vllLP(U) < llullLP(U) + llvllLP(U)· 

Proof. 

llu + vll1•(U) = fu lu + vlP dx < fu lu + v1v-1 (1ul + lvl) dx 

< (fuiu+vlPdx) ~ ( (fu lulPdx rp + (fu lvlPdx rp) 
D 

Remark. Similar proofs establish the discrete versions of Holder's and 
Minkowski's inequalities: 

1 1 

{ IL:~=l akbkl .< (L:~=l laklP) Ji (L:~=l lbklq) <i, 
(10) 1 1 1 

(L:~=l lak +bk IP) p < (L:~=l laklP) p + (L:~=l lbklP) p, 

for a= (a1, ... , an), b = (b1, ... , bn) E Rn and 1 < p < oo, ~ + ~ = 1. 

g. General Holder inequality. Let 1 < PI, ... , Pm < oo, with ; 1 + ; 2 + 
· · · + ...!..._ = 1, and assume Uk E V'k (U) for k = 1, ... , m. Then 

Pm 

(11) 

Proof. Induction, using HOlder's inequality. D 

h. Interpolation inequality for V'-norms. Assume 1 < s < r < t < oo 
and 

! = ~ + (1- 0). 
r s t 

Suppose also u E L8 (U) n Lt(U). Then u E Lr(U), and 

(12) llullLr(U) < llull~s(U) llulll-;-(~)" 
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Proof. We compute 

fu lul' dx = fu lu19rlul(l-9)r dx 
Br (1-8)r 

< (fu lulor;. dx) • (fu lul(l-9)r(1.!•l• dx) ' 
We have invoked Holder's inequality, which applies since 0; + (i-,,o)r = 1. 

D 

i. Cauchy-Schwarz inequality. 

(13) 

Proof. Let E > 0 and note 

0 <Ix± EYl2 = lxl2 ± 2Ex. y + E2IYl2. 

Consequently 
1 2 f 2 

±x · y < 2E lxl + 2 IYI · 

Minimize the right-hand side by setting E = 1:1, provided y =/:- 0. D 

Remark. Likewise, if A is a symmetric, nonnegative n x n matrix, 

(14) 

j. Gronwall's inequality (differential form). 

(i) Let TJ(·) be a nonnegative, absolutely continuous function on [O, T], 
which satisfies for a.e. t the differential inequality 

(15) TJ1 ( t) < ¢( t)TJ( t) + 'lf;( t)' 

where ¢(t) and 'lf;(t) are nonnegative, summable functions on [O, T). Then 

(16) 71(t) < ef~ <I>(•) ds [ 71(0) + l ,P( s) ds] 

for all 0 < t < T. 

(ii) In particular, if 

r/ < ¢TJ on [O, T) and TJ(O) = 0, 

then 
17 = 0 on [O, T). 
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Proof. From (15) we see 

for a.e. 0 < s < T. Consequently for each 0 < t < T, we have 

t ft s ft 
TJ(t)e-fo <f>(r)dr < rJ(O) +lo e-fo <f>(r)dr'ljJ(s) ds < rJ(O) +lo 1/J(s) ds. 

This implies inequality (16). D 

k. Gronwall's inequality (integral form). 

(i) Let e(t) be a nonnegative, summable function on (0, T] which satisfies 
for a.e. t the integral inequality 

(17) €(t) < C1 l €(s) ds + C2 

for constants Ci, C2 > 0. Then 

(18) 

for a.e. 0 < t < T. 

(ii) In particular, if 

€(t) < C1 l €(s) ds 

for a.e. 0 < t < T, then 

e(t) = 0 a.e. 

Proof. Let TJ(t) :=I~ e(s) ds; then 7]1 < C17] + C2 a.e. in (0, T]. According 
to the differential form of Gronwall's inequality above 

Then (17) implies 

D 
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u 

1 
'\ (xO) au 

'Y 

Rn-1 I 
The boundary of U 

APPENDIX C: CALCULUS 

C.1. Boundaries. 

Let UC IRn be open and bounded, k E {1, 2, ... }. 

DEFINITION. We say the boundary au is Ck if for each point x0 Eau 
there exist r > 0 and a Ck function 'Y : IRn-I ~ IR such that-upon relabeling 
and reorienting the coordinates axes if necessary-we have 

UnB(x0,r) = {x E B(x0,r) I Xn > 'Y(xi, ... ,Xn-1)}. 

Likewise, au is C00 if au is Ck for k = 1, 2, ... , and au is analytic if the 
mapping 'Y is analytic. 

DEFINITIONS. (i) If au is C1, then along au is defined the outward 
pointing unit normal vector field 

The unit normal at any point XO E aU is v(x0 ) = V =(vi, ... , Vn)· 

(ii) Let u E C1(U). We call 

au 
- := v ·Du av 
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yD 

~ ~ ~---
d . t: 'I' y-coordinat:es x-coor ina es 

Straightening out the boundary 

the (outward) normal derivative of u. 

Straightening the boundary. We will frequently need to change coordi
nates near a point of au so as to "flatten out" the boundary. To be more 
specific, fix x0 Eau, and chooser,')', etc. as above. Define then 

{ Yi =Xi =: -t>i(x) 

Yn = Xn - 'Y(Xi, ... , Xn-1) =: -Pn(x ), 

(i=l, ... ,n-1) 

and write 
y = +(x). 

Similarly, we set 

{ xi =Yi =: wi(y) 

Xn = Yn + 'Y(Yi, ... 'Yn-1) =: wn(y), 

(i=l, ... ,n-1) 

and write 
x = w(y). 

Then+= w-1, and the mapping x ~ +(x) = y "straightens out 8U" near 
x0 . Observe also that <let D+ = <let Dw = 1. 

C.2. Gauss-Green Theorem. 

In this section we assume U is a bounded, open subset of Rn and 8U is 
c1. 

THEOREM 1 (Gauss-Green Theorem). 

(i) Suppose u E C1(U). Then 

(1) r Uxi dx = r uvi dS ( i = 1, ... ' n). 
lu lau 
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(ii) We have 

(2) f divudx = f u · vdS 
lu lau 

for each vector field u E C 1 ( [J; lRn). 

Assertion (ii), also called the Divergence Theorem, follows from (i) ap
plied to each component of u = (u1, ... , un). 

THEOREM 2 (Integration by parts formula). Let u, v E C 1(U). Then 

(3) { Uxi v dx = - { uvxi dx + { uvvi dS ( i = 1, ... , n). 
lu lu lau 

Proof. Apply Theorem l(i) to uv. 

THEOREM 3 (Green's formulas). Let u, v E C2 (U). Then 

(i) f u Llu dx = fau ~ dS, 

(ii) fu Dv · Dudx = - fu ullv dx + fau ~udS, 

(iii) fu ullv - vlludx = fau u~ - v~ dS. 

Proof. Using (3), with Uxi in place of u and v = 1, we see 

{ Uxixi dx = { Uxi vi dS. 
lu lau 

Sum i = 1, ... , n to establish (i). 

D 

To derive (ii), we employ (3) with Vxi replacing v. Write (ii) with u and 
v interchanged and then subtract, to obtain (iii). D 

C.3. Polar coordinates, coarea formula. 

Next we convert n-dimensional integrals into integrals over spheres. 

THEOREM 4 (Polar coordinates). 

(i) Let f : lRn-. JR be continuous and summable. Then 

!. f dx = f 00 
( f f ds) dr 

JRn Jo lan(x0 ,r) 

for each point xo E lRn. 

(ii) In particular 

.!!_ ( { I dx) = { I dS 
dr J B(xo,r) J 8B(xo,r) 

for each r > 0. 

Theorem 4 is a special case of the following theorem. 
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THEOREM 5 (Coarea formula). Let u: R.n ___.. R. be Lipschitz continuous 
and assume that for a. e. r E R. the level set 

{x E R.n I u(x) = r} 
is a smooth, ( n - 1 )-dimensional hyper surf ace in e.n. Suppose also f : e.n ___.. 
R. is continuous and summable. Then 

f f I Dul dx = j 00 
( f f ds) dr. 

}Rn -oo J{u=r} 

Theorem 4 follows from Theorem 5 if we take u( x) = Ix - xo I- See 
[E-G, Chapter 3] for more on the coarea formula. The word "coarea" is 
pronounced, and sometimes spelled, "co-area" . 

C.4. Moving regions. 

Consider a family of smooth, bounded regions U ( T) C R.n that depend 
smoothly upon the parameter T E R.. Write v for the velocity of the moving 
boundary au ( T) and V for the outward pointing unit normal. 

THEOREM 6 (Differentiation formula for moving regions). If f = f(x, T) 
is a smooth function, then 

dd f f dx = { f v · v dS + { fr dx. 
T lu(r) lau(r) lu(r) 

C.5. Convolution and smoothing. 

We next introduce tools that will allow us to build smooth approxima
tions to given functions. 

NOTATION. If U c e.n is open and f > 0, we write 

u€ := {x Eu I dist(x, au)> E}. 

DEFINITIONS. (i) Define TJ E C00 (R.n) by 

{ 
Cexp ( 1 1J_1 ) if lxl < 1 

TJ(x) := x 

0 if lxl > 1, 
the constant C > 0 selected so that f Rn TJ dx = 1. 

(ii) For each f > 0, set 

We call T/ the standard mollifier. The functions 'r/€ are C00 and satisfy 

f 'r/€ dx = 1, spt(17€) c B(O, E). 
}Rn 
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DEFINITION. If f : U ___.. IR is locally integrable, define its mollification 

That is, 

JE(x) = f rJE(x - y)J(y) dy = f, rJE(y)J(x - y) dy 
lu B(O,E) 

THEOREM 7 (Properties of mollifiers). 
(i) jE E C00 (UE). 

(ii) JE ___.. f a. e. as E ___.. 0. 

(iii) If f E C(U), then JE ___.. f uniformly on compact subsets of U. 

(iv) If 1 < p < oo and J E Lf0 c(U), then JE ___.. f in Lf0 c(U). 

Proof. 1. Fix x E UE, i E {1, ... , n }, and h so small that x + hei E UE. 
Then 

r( x + he~) - r ( x) = ,: L ! [ 11 ( x + h:; - y) _ 11 ( x ~ y)] 1 (y) dy 

= ,: i ! [ 1j ( x + h; - y) - 1j ( x ~ y)] f (y) dy 

for some open set V cc U. As 

uniformly on V, the partial derivative J;i (x) exists and equals 

L 11 •• ,,.(x - y)f(y) dy. 

A similar argument shows that D 0 JE(x) exists, and 

D" r(x) = L D"17,(x - y)J(y) dy (x EU,), 

for each multiindex a. This proves (i). 

2. According to Lebesgue's Differentiation Theorem (§E.4), 

(4) lim f IJ(y) - /(x)I dy = 0 
r-o B(x,r) 



APPENDIX C: CALCULUS 

for a.e. x EU. Fix such a point x. Then 

l/E(x) - /(x)I = [ T/E(x - y)[f(y) - f(x)] dy 
J B(x,E) 

< : [ T/ (x - y) lf(y) - /(x)I dy 
t Jn(x,E) t 

<cf lf(y) -f(x)ldy ~ 0 as t ~ 0, 
B(x,E) 

by (4). Assertion (ii) follows. 
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3. Assume now f E C(U). Given V cc U, we choose V cc W cc U 
and note that f is uniformly continuous on W. Thus the limit ( 4) holds 
uniformly for x E V. Consequently the calculation above implies /E ~ f 
uniformly on V. 

4. Next, assume 1 < p < oo and f E Lf0 c(U). Choose an open set 
V cc U and, as above, an open set W so that V cc W cc U. We claim 
that for sufficiently small t > 0 

(5) 

To see this, we note that if 1 < p < oo and x EV, 

l/E(x)I = [ T/E(x - y)f(y) dy 
Jn(x,E) 

< { T/:-1/P(x - Y)TJ!IP(x - y)l/(y)I dy 
Jn(x,E) 

< ( [ T/E(x - y) dy) l-l/p ( [ T/E(x - y)lf(y)IPdy) l/p. 

J B(x,E) J B(x,E) 

Since f n(x,E) T/E(x - y) dy = 1, this inequality implies 

{ l/E(x)IP dx < { ( { T/E(x - y)lf(y)IP dy) dx 
lv lv J B(x,E) 

< { lf(y)IP ( { T/E(x - y) dx) dy = { lf(y)IP dy, 
lw J B(y,E) lw 

provided t > 0 is sufficiently small. This is ( 5). 

5. Now fix V CC W CCU, 8 > 0, and choose g E C(W) so that 

II/ - BllLP(W) < 8. 
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Then 

llf' - fllLP(V) < llf' - gc:llLP(V} + llgc: - gllLP(V) +Ilg - fllLP(V) 

< 211/ - gllLP(W) + llgc: - gllLP(V) by (5) 

< 28 + llgc: - gllLP(V) · 

Since gc:--? g uniformly on V, we have limsupc:-o 11/c: - fllLP(V) < 28. D 

C.6. Inverse Function Theorem. 

Let U c R.n be an open set and suppose f U --? R.n is C1, f = 
(/1, ... , Jn). Assume xo E U, zo = f(xo). 

Remember from §A.4 that we write 

J1n) 
gradient matrix of f. 

r:n nxn 

DEFINITION. 

I I 8(/ 1, . . . , Jn) 
Jf = Jacobian off= detDf = 

8(xi, .. . , Xn) · 

f 

R" R" 

THEOREM 8 (Inverse Function Theorem). Assume f E C 1(U; R.n) and 

Jf(xo) #- 0. 

Then there exist an open set V C U, with x0 E V, and an open set W C R.n, 
with zo E W, such that 

( i) the mapping 
f:V--?W 

is one-to-one and onto and 
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(ii) the inverse function 

f-l: W ~ V 

. ci is . 

(iii) If f E Ck, then r-1 E Ck (k = 2, ... ). 

w 

Rn Rn 

C.7. Implicit Function Theorem. 

Let n, m be positive integers. We write a typical point in JRn+m as 

(x, y) = (xi, ... , Xn, Yi,···, Ym) 

for x E :!Rn, y E :!Rm. 
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Let U C Rn+m be an open set and suppose f : U ~ ]Rm is C 1, f = 
(f 1 , ••• , fm). Assume (xo, Yo) E U, zo = f(xo, Yo). 

NOTATION. 

( 111 J1n f~l 1:~ ) 
Df = 

1::. !~ 1;: J;:: mx{n+m) 

= (Dxf, Dyf) = gradient matrix off. 

Rn+m 
---- f 



718 APPENDICES 

DEFINITION. 

THEOREM 9 (Implicit Function Theorem). Assume f E C 1(U;Rm) and 

Jyf(xo, Yo) f:- 0. 

Then there exists an open set V C U, with (xo, Yo) E V, an open set W c 
Rn' with Xo E w' and a C 1 mapping g : w --+ Rm such that 

(i) g(xo) =Yo, 

(ii) f(x, g(x)) = zo (x E W), 

and 

(iii) if (x, y) E V and f(x, y) = zo, then y = g(x). 
(iv) If f E Ck, then g E Ck (k = 2, ... ). 

The function g is implicitly defined near xo by the equation f(x, y) = zo. 

Rn+m --------f 
~ 

C.8. Uniform convergence. 

We record here the Arzela-Ascoli compactness criterion for uniform con
vergence: 

Suppose that {fk}b1 is a sequence of real-valued functions defined on 
Rn, such that 

lfk(x)I < M (k = 1, ... , x E Rn) 

for some constant Mand that the functions {fk}k-._1 are uniformly equicon
tinuous, meaning that for each e > 0, there exists 8 > 0 such that lx-yl < 8 
implies lfk(x) - fk(Y)I < e, for x, y E Rn, k = 1, .... 

Then there exists a subsequence {fk; }j 1 C {fk}r 1 and a continuous 
function f, such that 

f k; --+ f uniformly on compact subsets of Rn. 
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APPENDIX D: FUNCTIONAL ANALYSIS 

D.1. Banach spaces. 

Let X denote a real linear space. 

DEFINITION. A mapping II II : X--+ [O, oo) is called a norm if 
(i) llu +vii < llull + llvll for all u, v EX, 

(ii) 11..Xull = 1-Xlllull for all u EX, A ER, 
(iii) llull = 0 if and only if u = 0. 

Inequality (i) is the triangle inequality. 

Hereafter we assume X is a normed linear space. 
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DEFINITION. We say a sequence {uk}k-1 C X converges to u E X, 
written 

Uk--+ u, 

if 
lim lluk - ull = 0. 

k-oo 

DEFINITIONS. (i) A sequence { uk}k::1 C X is called a Cauchy sequence 
provided for each E > 0 there exists N > 0 such that 

lluk - uzll < E for all k, l > N. 

(ii) X is complete if each Cauchy sequence in X converges; that is, when
ever { uk}k-._1 is a Cauchy sequence, there exists u E X such that { uk}k° 1 

converges to u. 

(iii) A Banach space X is a complete, normed linear space. 

DEFINITION. We say X is separable if X contains a countable dense 
subset. 

Examples. (i) V spaces. Assume U is an open subset of Rn and 1 < p < 
oo. If f: U--+ R is measurable, we define 

11/llLP u := { (f u I/IP dx) 1/p ~f 1 < P < oo 
( ) ess supu If I if p = oo. 

We define V ( U) to be the linear space of all measurable functions f : 
U--+ R for which 11/llLP(U) < oo. Then V(U) is a Banach space, provided 
we identify two functions which agree a.e. 

(ii) HOider spaces. See §5.1. 

(iii) Sobolev spaces. See §5.2. D 
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D.2. Hilbert spaces. 

Let H be a real linear space. 

DEFINITION. A mapping ( , ) : H x H ~JR is called an inner product 
if 

(i) (u, v) = (v, u) for all u, v EH, 
(ii) the mapping u 1-+ (u, v) is linear for each v EH, 

(iii) (u, u) > 0 for all u E H, 
(iv) (u, u) = 0 if and only if u = 0. 

DEFINITION. If ( , ) is an inner product, the associated norm is 

(1) llull := (u, u)1/ 2 (u EH). 

The Cauchy-Schwarz inequality states 

(2) l(u,v)I < llullllvll (u,v EH). 
This inequality is proved as in §B.2. Using (2), we easily verify (1) defines 
a norm on H. 

DEFINITION. A Hilbert space H is a Banach space endowed with an 
inner product which generates the norm. 

Examples. a. The space L2(U) is a Hilbert space, with 

(J,g) = L fgdx. 

b. The Sobolev space H 1(U) is a Hilbert space, with 

(J,g)= Lfg+Df·Dgdx. 

DEFINITIONS. (i) Two elements u, v EH are orthogonal if (u, v) = 0. 

(ii) A countable basis { wk}~1 c H is called orthonormal if 

{ (wk, wi) _ 0 (k,~ = 1, ... ; k # l) 
llwkll - 1 (k - 1, ... ). 

If u E H and {Wk} k--1 C H is an orthonormal basis, we can write 
00 

u = L(u,wk)wk, 
k=l 

the series converging in H. In addition 
00 

llull 2 = L(u,wk)2 • 

k=l 
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DEFINITION. If Sis a subspace of H, 81- = {u EH I (u, v) = 0 for all 
v E S} is the subspace orthogonal to S. 

D.3. Bounded linear operators. 

a. Linear operators on Banach spaces. 

Let X and Y be real Banach spaces. 

DEFINITIONS. (i) A mapping A: X-+ Y is a linear operator provided 

A[.Xu + µv] = .XAu +µAv 

for all u, v E X, .X, µ E IR. 

(ii) The range of A is R(A) := { v E Y I v = Au for some u E X} and 
the null space of A is N(A) := {u EX I Au= O}. 

DEFINITION. A linear opemtor A: X-+ Y is bounded if 

llAll := sup{llAullY I llullx < 1} < oo. 

It is easy to check that a bounded linear operator A : X -+ Y is contin
uous. 

DEFINITION. A linear opemtor A: X-+ Y is called closed if whenever 
Uk-+ u in X and Auk--+ v in Y, then 

Au=v. 

THEOREM 1 (Closed Graph Theorem). Let A : X -+ Y be a closed, 
linear operator. Then A is bounded. 

DEFINITIONS. Let A : X -+ X be a bounded linear operator. 
(i) The resolvent set of A is 

p(A) = { TJ E IR I (A - TJl) is one-to-one and onto}. 

(ii) The spectrum of A is 

u(A) =IR - p(A). 

If TJ E p(A), the Closed Graph Theorem then implies that the inverse 
(A - TJl)- 1 : X -+ X is a bounded linear operator. 



722 APPENDICES 

DEFINITIONS. (i) We say 'fJ E u(A) is an eigenvalue of A provided 

N(A - TJI) # {O}. 

We write up(A) to denote the collection of eigenvalues of A; up(A) is the 
point spectrum. 

(ii) If 'fJ is an eigenvalue and w =F 0 satisfies 

Aw= TJW, 

we say w is an associated eigenvector. 

DEFINITIONS. (i) A bounded linear operator u* : X ~ R. is called a 
bounded linear functional on X. 

(ii) We write X* to denote the collection of all bounded linear functionals 
on X; X* is the dual space of X. 

DEFINITIONS. (i) If u E X, u* E X* we write 

(u*, u) 

to denote the real number u* ( u). The symbol ( , ) denotes the pairing of X* 
andX. 

(ii) We define 

llu* II := sup{ (u*, u) I llull < 1 }. 

(iii) A Banach space is reflexive if (X*)* = X. More precisely, this 
means that for each u** E (X*)*, there exists u EX such that 

(u**, u*) = (u*, u) for all u* EX*. 

b. Linear operators on Hilbert spaces. 

Now let H be a real Hilbert space, with inner product ( , ). 

THEOREM 2 (Riesz Representation Theorem). H* can be canonically 
identified with H; more precisely, for each u* E H* there exists a unique 
element u E H such that 

( u *, v) = ( u, v) for all v E H. 

The mapping u* ~ u is a linear isomorphism of H* onto H. 
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DEFINITIONS. (i) If A : H -+ H is a bounded, linear opemtor, its 
adjoint A* : H -+ H satisfies 

(Au,v) = (u,A*v) 

for all u, v E H. 

(ii) A is symmetric if A* =A. 

D.4. Weak convergence. 

Let X denote a real Banach space. 

DEFINITION. We say a sequence {uk}~1 C X converges weakly to 
u E X, written 

if 
(u*, uk) -+ (u*, u) 

for each bounded linear functional u* E X*. 

It is easy to check that if Uk -+ u, then Uk ~ u. It is also true that any 
weakly convergent sequence is bounded. In addition, if Uk ~ u, then 

llull < lim inf lluk 11-
k-oo 

THEOREM 3 (Weak compactness). Let X be a reflexive Banach space 
and suppose the sequence {Uk} ~1 C X is bounded. Then there exists a 
subsequence {Uk; }~1 C { uk}~1 and u E X such that 

In other words, bounded sequences in a reflexive Banach space are 
weakly precompact. In particular, a bounded sequence in a Hilbert space 
contains a weakly convergent subsequence. 

Mazur's Theorem asserts that a convex, closed subset of X is weakly 
closed. 

IMPORTANT EXAMPLE. We will most often employ weak conver
gence ideas in the following context. Take UC Rn to be open, and assume 
1 < p < oo. Then 

the dual space of X = V(U) is X* = Lq(U), 
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where ~ + ~ = 1, 1 < q < ~- More precisely, each bounded linear functional 
on V(U) can be represented as f ~ fu gf dx for some g E Lq(U). Therefore 

fk -l. f weakly in IJ'(U) 

means 

(3) fu gfk dx--+ fu gf dx ask--+ oo, for all g E Lq(U). 

Now the identification of Lq(U) as the dual of V(U) shows that 

IJ'(U) is reflexive if 1 < p < oo. 

In particular Theorem 3 then assures us that from a bounded sequence in 
V(U) (1 < p < oo) we can extract a weakly convergent subsequence, that 
is, a sequence satisfying (3). This is an important compactness assertion, 
but note very carefully: the convergence (3) does not imply that fk -+ f 
pointwise or almost everywhere. It may very well be, for example, that the 
functions {/k}~1 oscillate more and more rapidly ask-+ oo. (See Problem 
1 in Chapter 8 and also Problem 2 in Chapter 9.) D 

D.5. Compact operators, Fredholm theory. 

Let X and Y be real Banach spaces. 

DEFINITION. A bounded linear opemtor 

K:X-+Y 

is called compact provided for each bounded sequence {Uk} k--1 C X, the 
sequence { K Uk} k--1 is precompact in Y; that is, there exists a subsequence 
{Uk; } j 1 such that { K Uk; } j:-1 converges in Y. 

Now let H denote a real Hilbert space, with inner product ( , ). It is 
easy to see that if a linear operator K : H -+ H is compact and Uk -l. u, 
then Kuk-+ Ku. 

THEOREM 4 (Compactness of adjoints). If K : H -+ H is compact, so 
is K*: H-+ H. 

Proof. Let {uk}~1 be a bounded sequence in H and extract a weakly 
convergent subsequence Uk; -l. u in H. We will prove K*uk; -+ K*u. 
Indeed, 

llK*uk; - K*ull 2 = (K*uk; - K*u, K*[uk; - u]) 

= (KK*uk; - KK*u,uk; - u). 

Now since K* is linear, K*uk; -l. K*u, and so K K*uk; -+ K K*u. Thus 
K*uk; -+ K*u. D 
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THEOREM 5 (Fredholm alternative). Let K : H -+ H be a compact 
linear operator. Then 

(i) N(I - K) is finite dimensional, 
(ii) R(I - K) is closed, 

(iii) R(I - K) = N(I - K*)1-, 
(iv) N(I - K) = {O} if and only if R(I - K) = H, 

and 
(v) dimN(J - K) = dimN(J - K*). 

Proof. 1. If dimN(J - K) = +oo, we can find an infinite orthonormal set 
{uk}k° 1 c N(I - K). Then 

K Uk = Uk (k = 1, ... ). 

Now lluk-uzll 2 = llukll2 -2(uk, uz)+lluzll2 = 2 if k f:. l, and so llKuk-Kuzll = 
v'2 fork f:. l. This however contradicts the compactness of K, as {Kuk}k-1 

would then contain no convergent subsequence. Assertion (i) is proved. 

2. We next claim there exists a constant 1 > 0 such that 

(4) llu - Kull > 1llull for all u E N(J - K)1-. 

Indeed, if not, there would exist for k = 1, ... elements Uk E N(J - K)1-
with llukll = 1 and lluk - Kuk II < i· Consequently 

(5) 

But since {uk}k--1 is bounded, there exists a weakly convergent subsequence 
Uk; ~ u. By compactness Kuk;-+ Ku, and then (5) implies Uk; -+Ku= u. 
We therefore have u E N(J - K) and so 

(Uk; , U) = 0 (j = 1, ... ) . 

Let kj -+ oo to derive a contradiction. 

3. Next let { Vk}k° 1 C R(I - K), Vk -+ v. We can find Uk E N(J - K)1-
solving Uk - Kuk= Vk. Using (4), we deduce 

Thus Uk-+ u and u - Ku= v. This proves (ii). 

4. Assertion (iii) is now a consequence of (ii) and the general fact that 

R(A) = N(A*)1- for each bounded linear operator A: H-+ H. 
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5. To verify (iv), let us suppose, to start with, that N(I - K) = {O}, 
but H 1 =(I - K)(H) ~ H. According to (ii), H 1 is a closed subspace of H. 
Furthermore H2 = (I -K)(H1) ~ Hi, since I -K is one-to-one. Similarly if 
we write Hk = (I -K)k(H) (k = 1, ... ), we see that Hk is a closed subspace 
of H, H k+ 1 ~ H k ( k = 1, ... ) . 

Choose Uk E Hk with llukll = 1, Uk E Hf-+1· Then Kuk - Kut = 
-(uk-Kuk)+(ut-Kut)+(uk-Ut)- Now if k > l, Hk+l ~ Hk C Ht+1 ~Ht. 
Thus Uk - Kuk, Ut - Kut, Uk E Ht+l· Since Ut E Hi~-1 , llutll = 1, we deduce 
llKuk - Kutil > 1 (k, l = 1, ... ). But this is impossible since K is compact. 

6. Now conversely assume R(I - K) = H. Then owing to (iii), we 
see that N(I - K*) = {0}. Since K* is compact, we may utilize step 5 to 
conclude R(I - K*) = H. But then N(I - K) = R(I - K*)J_ = {O}. This 
conclusion and step 5 complete the proof of assertion (iv). 

7. Next we assert 

dim N(I - K) > dim R(I - K)J_. 

To prove this, suppose instead dimN(J -K) < dimR(J -K)J_. Then there 
exists a bounded linear mapping A: N(J - K) ~ R(I - K)J_ which is one
to-one, but not onto. Extend A to a linear mapping A: H ~ R(I -K)J_ by 
setting Au = 0 for u E N(J - K)J_. Now A has a finite-dimensional range 
and so A and thus K + A are compact. Furthermore N (I - ( K + A)) = 

{0}. Indeed, if Ku+ Au= u, then u - Ku =Au E R(I - K)J_. Hence 
u - Ku = Au = 0. Thus u E N (I - K) and so in fact u = 0, since A is 
one-to-one on N(I - K). Now apply assertion (iv) to k = K + A. We 
conclude R(I - (K +A)) = H. But this is impossible: if v E R(I - K)J_, 
but v '/: R(A), the equation 

u-(Ku+Au) = v 

has no solution. 

8. Since R(I - K*)J_ = N(I - K), we deduce from step 7 that 

dim N(I - K*) > dim R(I - K*)J_ 

= dimN(J - K). 

The opposite inequality comes from interchanging the roles of K and K*. 
This establishes ( v). D 

Remark. Theorem 5 asserts in particular either 

(a) { 
for each f EH, the equation u - Ku= f 
has a unique solution 
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or else 

({3) { 
the homogeneous equation u - Ku = 0 

has solutions u =f:. 0. 

This dichotomy is the Fredholm alternative. In addition, should ({3) obtain, 
the space of solutions of the homogeneous problem is finite dimensional, and 
the nonhomogeneous equation 

( 1) u-Ku= f 

has a solution if and only if f E N (I - K*) J_. 

Now we investigate the spectrum of a compact linear operator. 

THEOREM 6 (Spectrum of a compact operator). Assume dimH = oo 
and K : H -+ H is compact. Then 

(i) 0 E a(K), 
(ii) a(K) - {O} = ap(K) - {O}, 

and 
(iii) { a(K) - {O} is finite, or else 

a(K) - {O} is a sequence tending to 0. 

Proof. 1. Assume 0 '/: a( K). Then K : H -+ H is bijective and so 
I = K o K-1, being the composition of a compact and a bounded linear 
operator, is compact. This is impossible, since dim H = oo. 

2. Assume T/ E a(K), T/. =f:. 0. Then if N(K - rJl) = {O}, the Fredholm 
alternative would imply R( K - rJl) = H. But then TJ E p( K), a contradic
tion. 

3. Suppose now { T/k }/~0 1 is a sequence of distinct elements of a( K) - { 0} 
and T/k-+ T/· We will show TJ = 0. 

Indeed, since T/k E ap(K), there exists Wk =f:. 0 such that Kwk = TJkWk. 
Let H k denote the subspace of H spanned by { wi, ... , Wk}. Then H k ~ 
Hk+l for each k = 1, 2, ... , since the {Wk}/;° 1 are linearly independent. 

Observe also (K - TJkl)Hk C Hk-1 (k = 2, ... ). Choose now for k = 

1, ... an element Uk E Hk, with Uk E Hf-_1 and llukll = 1. Now if k > l, 
Hi-1 ~ Hi C Hk-1 ~ Hk. Thus 

Kuk Kui 
-----

T/k T/l 

since Kuk - TJkUk, Kui - TJtUt, ui E Hk-1· If T/k -+ TJ =f:. 0, we obtain a 
contradiction to the compactness of K. D 
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D.6. Symmetric operators. 

Now let S: H--+ H be linear, bounded, symmetric, and write 

m := inf (Su, u), M := sup (Su, u). 
uEH uEH 
llull=l llull=l 

LEMMA (Bounds on spectrum). We have 
(i) a(S) C [m, M], and 

(ii) m, ME a(S). 

Proof. 1. Let 'f/ > M. Then 

('fJu - Su, u) > ('fJ - M)llull 2 (u EH). 

Hence the Lax-Milgram Theorem (§6.2.1) asserts 'f/l - Sis one-to-one and 
onto, and thus 'f/ E p(S). Similarly 'f/ E p(S) if 'f/ < m. This proves (i). 

2. We will prove M E a(S). Since the pairing [u, v) := (Mu - Su, v) 
is symmetric, with [u, u) > 0 for all u E H, the Cauchy-Schwarz inequality 
implies 

l(Mu-Su,v)I < (Mu-Su,u) 112(Mv-Sv,v) 112 

for all u, v E H. In particular 

(6) llMu - Bull < C(Mu - Su, u)1l 2 (u EH) 

for some constant C. 

Now let { uk}k:::1 CH satisfy llukll = 1 (k = 1, ... ) and (Suk, uk) --+ M. 
Then (6) implies llMuk - Suk II --+ 0. Now if ME p(S), then 

Uk= (MI - s)-1(Muk - Suk)--+ 0, 

a contradiction. Thus ME a(S), and likewise m E a(S). D 

THEOREM 7 (Eigenvectors of a compact, symmetric operator). Let H 
be a separable Hilbert space, and suppose S : H --+ H is a compact and 
symmetric operator. Then there exists a countable orthonormal basis of H 
consisting of eigenvectors of S. 

Proof. 1. Let { 'f/k} comprise the sequence of distinct eigenvalues of S, 
excepting 0. Set 'f/o = 0. Write Ho = N(S), Hk = N(S - 'f/kl) (k = 1, ... ). 
Then 0 <dim Ho < oo, and 0 < dimHk < oo, according to the Fredholm 
alternative. 
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2. Let u E Hk, v E Hl fork=/; l. Then Su= TJkU, Sv = TJlV and so 

TJk(u, v) = (Su, v) = (u, Sv) = T/l(u, v). 

As T/k =I TJl, we deduce (u, v) = 0. Consequently we see the subspaces Hk 
and Hl are orthogonal. 

3. Now let H be the smallest subspace of H containing Ho, Hi, .... Thus 
iI = {l::~o akuk I m E {O, ... }, uk E Hk, ak E IR}. We next demonstrate 
iI is dense in H. Clearly S ( H) C iI. Furthermore S ( iI J...) C iI J...: indeed if 
u E fIJ... and v E iI, then (Su,v) = (u,Sv) = 0. 

Now the operator S = Sliij_ is compact and symmetric. In addition 
u(S) = {O}, since any nonzero eigenvalue of S would be an eigenvalue of S 
as well. According to the lemma then, (Su, u) = 0 for all u E fIJ.... But if 

- J... u,v EH , 

2(Su, v) = (S(u + v), u + v) - (Su, u) - (Sv, v) = 0. 

Hence S = 0. Consequently fIJ... c N(S) c if, and so fIJ... = {O}. Thus H 
is dense in H. 

4. Choose an orthonormal basis for each subspace Hk (k = 0, ... ), 
noting that since His separable, Ho has a countable orthonormal basis. We 
obtain thereby an orthonormal basis of eigenvectors. D 

Most of these proofs are from Brezis [BRl]. See also Gilbarg-Trudinger 
[G-T, Chapter 5], Lax [Lx2], Reed-Simon [R-Sl] and Yosida [Y]. 

APPENDIX E: MEASURE THEORY 

This appendix provides a quick outline of some fundamentals of measure 
theory. 

E.1. Lebesgue measure. 

Lebesgue measure provides a way of describing the "size" or "volume" 
of certain subsets of IRn. 

DEFINITION. A collection M of subsets of Rn is called a a-algebra if 

(i) 0, IRn E M, 
(ii) A EM implies IRn - A EM, 

and 

(iii) if {Ak}k:.1 c M, then U~1 Ak, n~1 Ak EM. 
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THEOREM 1 (Existence of Lebesgue measure and Lebesgue measurable 
sets). There exist a a-algebra M of subsets of "JR.n and a mapping 

I I : M --+ [O, +oo] 

with the following properties: 

(i) Every open subset of Rn and thus every closed subset of "JR.n belong to 
M. 

(1) 

(ii) If Bis a ball in Rn, then IBI equals then-dimensional volume of B. 

(iii) If {Ak}k::1 c M and the sets {Ak}k::1 are pairwise disjoint, then 

00 00 

LJ Ak = L IAkl ("countable additivity"). 
k=l k=l 

(iv) If AC B, where BE M and IBI = 0, then A EM and IAI = 0. 

The sets in M are called Lebesgue measurable sets and I· I is n-dimensional 
Lebesgue measure. 

Remarks. (i) From (ii) and (iii), we see that IAI equals the volume of any 
set A with piecewise smooth boundary. 

(ii) We deduce from (1) that 

(2) 101=0 
and 

00 00 

(3) LJ Ak < L I Ak I ("countable subadditivity") 
k=l k=l 

for any countable collection of measurable sets { Ak} k:::1. 

NOTATION. If some property holds everywhere on Rn, except for a mea
surable set with Lebesgue measure zero, we say the property holds almost 
everywhere, abbreviated "a.e.". 

E.2. Measurable functions and integration. 

DEFINITION. Let f: Rn--+ "JR.. We say f is a measurable function if 

f- 1(U) EM 

for each open subset UC "JR.. 

Note in particular that if f is continuous, then f is measurable. The 
sum and product of two measurable functions are measurable. In addition 
if {fk}k:::o are measurable functions, then so are limsup fk and liminf fk· 
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THEOREM 2 (Egoroff's Theorem). Let {fk}~1 , f be measurable func
tions, and assume 

f k ___.. f a. e. on A, 

where Ac R.n is measurable, IAI < oo. Then for each c > 0 there exists a 
measurable subset E c A such that 

(i) IA- El<€ 
and 

(i~) f k ___.. f uniformly on E. 

Now if f is a nonnegative, measurable function, it is possible, by an 
approximation of f with simple functions, to define the Lebesgue integral 

Cf. §E.5 below. This agrees with the usual integral if f is continuous or 
Riemann integrable. If f is measurable, but not necessarily nonnegative, we 
define 

provided at least one of the terms on the right-hand side is finite. In this 
case we say f is integrable. 

DEFINITION. A measurable function f is summable if 

[ lfldx < oo. lntn 

Note carefully our terminology: a measurable function is integrable if 
it has an integral (which may equal +oo or -oo) and is summable if this 
integral is finite. 

DEFINITION. If the real-valued function f is measurable, we define the 
essential supremum off to be 

ess sup f :=inf{µ ER. I l{f >µ}I= O}. 

E.3. Convergence theorems for integrals. 

The Lebesgue theory of integration is especially useful since it provides 
the following powerful convergence theorems. 
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THEOREM 3 (Fatou's Lemma). Assume the functions {/k}~1 are non
negative and measurable. Then 

[ liminf fk dx < liminf [ fk dx. 
}Rn k-+oo k-+oo }Rn 

THEOREM 4 (Monotone Convergence Theorem). Assume the functions 
{/k}~1 are measurable, with 

Then 

THEOREM 5 (Dominated Convergence Theorem). Assume the functions 
{/k}~1 are integrable and 

f k ___.. f a. e. 

Suppose also 
I/kl < g a.e., 

for some summable function g. Then 

E.4. Differentiation. 

An important fact is that a summable function is "approximately con
tinuous" at almost every point. 

THEOREM 6 (Lebesgue's Differentiation Theorem). Let f : R.n ___.. R. be 
locally summable. 

(i) Then for a.e. point xo E R.n, 

f f dx ___.. f (xo) as r ___.. 0. 
B(xo,r) 

(ii) In fact, for a. e. point xo E R.n, 

(4) f lf(x) - /(xo)I dx ___.. 0 as r ___.. 0. 
B(xo,r) 

A point xo at which ( 4) holds is called a Lebesgue point of f. 
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Remark. More generally, if f E Lf0c(IRn) for some 1 < p < oo, then for a.e. 
point xo E IRn we have 

f lf(x) - f(xo)IP dx __. 0 as r __. 0. 
B(xo,r) 

E.5. Banach space-valued functions. 

We extend the notions of measurability, integrability, etc. to mappings 

f: [O, T] __. X 

where T > 0 and X is a real Banach space, with norm II II· 
DEFINITIONS. (i) A function s : [O, T] __. X is called simple if it has 
the form 

m 

(5) s(t) = LxEi(t)ui (0 < t < T), 
i=l 

where each Ei is a Lebesgue measurable subset of [O, T] and Ui E X (i = 
l, ... ,m). 

(ii) A function f: [O, T] __. X is strongly measurable if there exist simple 
functions sk : [O, T] __. X such that 

sk(t) __. f(t) for a.e. 0 < t < T. 

(iii) A function f : [O, T) __. X is weakly measurable if for each u* E X*, 
the mapping t 1-+ (u*, f(t)) is Lebesgue measurable. 

DEFINITION. We say f: [O, T] __. X is almost separably valued if there 
exists a subset N c [O, T), with INI = 0, such that the set {f(t) I t E 

[O, T) - N} is separable. 

THEOREM 7 (Pettis). The mapping f : [O, T) __. X is strongly measurable 
if and only if f is weakly measurable and almost separably valued. 

DEFINITIONS. (i) If s(t) = 2::1 XEi (t)ui is simple, we define 

(6) 
T m 1 s(t) dt := L IE;lu;. 

0 i=l 

(ii) We say the strongly measurable function f: [O, T] __. X is summable 
if there exists a sequence {sk}~1 of simple functions such that 

(7) 1T llsk(t) - f{t)ll dt --+ 0 as k --+ oo. 
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(iii) If f is summable, we define 

(8) {T f(t) dt = lim {T Sk(t) dt. 
lo k-+oo lo 

THEOREM 8 (Bochner). A strongly measurable function f: [O, T) --+ X 
is summable if and only if tr--+ llf(t)ll is summable. In this case 

·r T 

fo r(t) dt < fo 11r(t)ll dt, 

and 

for each u* E X*. 

Good books for measure theory are Folland [F2) and DiBenedetto [DB2). 
See Yosida [Y, Chapter V, Sections 4-5] for proofs of Theorems 7, 8. 
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