跳转至

线性多步法 Linear Multistep Methods

Finite Difference Methods 5.9, Chapter 6

考虑 IVP

\[ u'(t) = f(u(t), t) \]

分别对两边用有限差分替代

\[ \frac{\sum_{j=0}^r \alpha_j U^{n+j}}{k} = \sum_{j=0}^r \beta_j f(U^{n+j}, t_{n+j}) \]

就得到了 \(r\) 步 LMM 公式

\[ \sum_{j=0}^r \alpha_j U^{n+j} = k\sum_{j=0}^r \beta_j f(U^{n+j}, t_{n+j}) \]

\(U^{n+r}\) 由前面的 \(n-1\)\( U^{n+r-1}, U^{n+r-2}, \cdots, U^{n} \)\(f\) 在这些点处的值按等式获得。

相容性 (consistency)

计算原方程有限差分近似的局部截断误差,想要满足相容性,必须满足

\[ \sum_{j=0}^r \alpha_j = 0 \quad \text{and} \quad \sum_{j=0}^r j\alpha_j = \sum_{j=0}^r \beta_j \]

当然我们可以粗糙的的理解:\(\dfrac{U^{n+j}-U^{n}}{h}\) 近似看成 \(ju'\)

特征多项式 (Characteristic Polynomials)

\[ \rho(\zeta)=\sum_{j=0}^r \alpha_j \zeta^{j} \quad \text{and} \quad \sigma(\zeta)=\sum_{j=0}^r \beta_j \zeta^{j} \]

那么相容性条件就等价于

\[ \rho(1) = 0 \quad \text{and} \quad \rho'(1) = \sigma(1)\]