跳转至

HW5

HW5pdf

1. proximal operator

\[ \text{Prox}_{f}(b) = \arg\min_{x} f(x) + \frac{1}{2} \|x-b\|_2^2 \]

1.1

Please solve the proximal of \(l_1\) norm \(f (x) = ‖x‖_1 = \sum_{j=1}^n |x_j |\).
Tips: You can solve it by Moreau decomposition and the projection on the \(l_\infty\) ball

In this case ,

\[ \text{Prox}_{f}(b) = \arg\min_{x} ‖x‖_1 + \frac{1}{2} \|x-b\|_2^2 \]

First solution:

Let \(x = \text{Prox}_{f^*}(b) \) .
Since \(f(x)= \|x\|_1\) is a convex function, we have

\[ b-x \in \partial f(x) = \{g : g_i = \begin{cases} \text{sign}(x_i), & \text{if } x_i \neq 0 \\ [-1, 1], & \text{if } x_i = 0 \end{cases} \} \]

So,

\[ x_i = \begin{cases} 0, & \text{if } |b_i| \le 1 \\ \text{sign}(b_i)(|b_i|-1 ), & \text{if } |b_i| > 1 \end{cases} \]

Second solution:

From Moreau decomposition, we have

\[ b = \text{Prox}_{f}(b) + \text{Prox}_{f^*}(b) \]

where \(f^* (x) = \mathbb{I}_{\|x\|_\infty \le 1}\), that is

\[ \text{Prox}_{f}(b) = b - \text{Prox}_{f^*}(b) = b-\mathcal{P}_{\|x\|_\infty \le 1} (b) \]

But it's obvious that

\[ \mathcal{P}_{\|x\|_\infty \le 1} (b) = \tilde{b} \quad \text{ where } \quad \tilde{b}_i = \begin{cases} b_i, & \text{if } |b_i| \le 1 \\ \text{sign}(b_i), & \text{if } |b_i| > 1 \end{cases} \]

So

\[ \begin{align} \text{Prox}_{f}(b)_i &= b_i - \text{Prox}_{f^*}(b)_i = b_i - \mathcal{P}_{\|x\|_\infty \le 1} (b)_i \\ &= b_i - \tilde{b}_i \\ &= b_i - \begin{cases} b_i, & \text{if } |b_i| \le 1 \\ \text{sign}(b_i), & \text{if } |b_i| > 1 \end{cases} \\ &= \begin{cases} 0, & \text{if } |b_i| \le 1 \\ \text{sign}(b_i)(|b_i|-1 ), & \text{if } |b_i| > 1 \end{cases} \end{align} \]

Dual

If we replace the \(\|x\|_1\) with \(\|x\|_\infty\), in this case

\[ \text{Prox}_{f}(b) = \arg\min_{x} ‖x‖_\infty + \frac{1}{2} \|x-b\|_2^2 \]

Let \(x = \text{Prox}_{\|x\|_\infty}(b)\), We have

\[ b-x \in \partial \|x\|_\infty = \begin{cases} \{g \in \text{span}\{ e_{[1]} , ..., e_{[r]} \}: \\ \qquad \qquad x_{[i]}g_{[i]} \ge 0, \quad 1 \le i \le r \\ \qquad \qquad \sum_{i=1}^r \text{sign}(x_{[i]}) g_{[i]} = 1 \}, & x \neq 0 \\ \{g: \sum_{i=1}^n |g_i| \le 1\} & x = 0 \end{cases} \]

If \(\|b\|_1 \le 1\), we take \(x=0\), then \(b\in \partial \|\cdot\|_\infty(0)\).

Otherwise, if \(\|b\|_1 > 1\), For simplicity, we suppose \(b_1 \ge b_2 \ge ... \ge b_n \ge 0\) below! That is \(\sum_{i=1}^n b_i > 1\).

Now , let's consider the following function of integer \(k\)

\[ S(k) = 1+kb_k - \sum_{i=1}^k b_i \]

Since \(S(1) = 1\) and \(S(n+1) = 1-\sum_{i=1}^n b_i < 0\) , where we assume \(b_{n+1}=0\).
So, there is an integer \(1 \le r \le n\) such that \(S(r) \ge 0 \ge S(r+1)\), which implies

\[ 1+rb_r - \sum_{i=1}^r b_i \ge 0 \ge 1+(r+1)b_{r+1} - \sum_{i=1}^{r+1} b_i = 1 + rb_{r+1} - \sum_{i=1}^{r} b_i \]

That deduce

\[ b_r \ge c \triangleq \frac{\sum_{i=1}^r b_i - 1}{r} \ge b_{r+1} \]

Now, let

\[ x_i = \begin{cases} c &\text{if } 1 \le i \le r \\ b_i & \text{if } r+1 \le i \le n \end{cases} \qquad g_i \triangleq b_i - x_i = \begin{cases} b_i - c \ge 0 &\text{if } 1 \le i \le r \\ 0 & \text{if } r+1 \le i \le n \end{cases} \]

Now, we varify that \(b-x \in \partial \|x\|_\infty\).
\(\|x\|_\infty=c=x_i, 1 \le i \le r\) and for \(i \ge r+1\) , \(x_i \le c\) but \(g_i = 0\).

\[ \sum_{i=1}^r g_i = \sum_{i=1}^r b_i - rc = \sum_{i=1}^r b_i - (\sum_{i=1}^r b_i - 1) = 1 \]

Summarize above all

\[ \text{Prox}_{\|x\|_\infty}(b) = \begin{cases} 0, & \text{if } \|b\|_1 \le 1 \\ x : x_{[i]} = \begin{cases} \text{sign}(b_{[i]}) c, & 1\le i \le r \\ b_{[i]}, & i \ge r+1 \end{cases} & \text{if } \|b\|_1 > 1 \end{cases} \]

where \([i]\) is the decreasing order of \(|b_j|\) and \(r, c\) satisfies

\[ |b_{[r]}| \ge c \triangleq \frac{\sum_{i=1}^r |b_{[i]}| - 1}{r} \ge b_{[r+1]} \]

1.2

Example 8.1 of 最优化:建模、算法与理论

Please compute the proximal operator of \(f (x) = − \sum_{j=1}^n \ln x_j\) .

solution.

\[ \text{Prox}_{f}(b) = \arg\min_{x\succ 0} f(x) + \frac{1}{2} \|x-b\|_2^2 \]

Since \(f(x)= − \sum_{j=1}^n \ln x_j\) is a convex function, let \(x=\text{Prox}_{f^*}(b)\) .

We have

\[ b-x \in \partial f(x) = \{g : g_i = -\frac{1}{x_i} \} \]

That is

\[ b_i = x_i - \frac{1}{x_i} \quad \Leftrightarrow \quad x_i = \frac{b_i+\sqrt{b_i^2+4}}{2} \]

1.3

Exercise 8.4 of 最优化:建模、算法与理论

Please compute the proximal operator of

\[ f (X) = − \ln \det(X) \quad \text{ where } \quad \text{dom}(f ) = S^n_{++} \]

solution.

Since \(f(X)= − \ln \det(X)\) is a convex function, for any \(Y \in S^n\)

\[ \text{Prox}_{f}(Y) = \arg\min_{X \succ 0} − \ln \det(X) + \frac{1}{2} \|X-Y\|_F^2 \]

where 最优化:建模、算法与理论 2.1.2

\[ \|A\|_F = \sqrt{Tr(AA^T)} \quad \Rightarrow \quad \|A\|_F^2 = Tr(AA^T) \]
\[ \begin{align} Tr((A+tV)(A^T+tV^T)) &= Tr(AA^T)+t (Tr(AV^T)+Tr(VA^T))+t^2Tr(VV^T) \\ &= Tr(AA^T)+2t\cdot Tr(A^T V)+t^2 \cdot Tr(VV^T) \end{align} \]

Thus \(\nabla \|A\|_F^2 = 2A\),
So we can get \(\text{Prox}_{f}(Y)\), if

\[ \begin{align} 0 &= \nabla (f(X) + \frac{1}{2} \|X-Y\|_F^2) \\ &= \nabla (− \ln \det(X) + \frac{1}{2} \|X-Y\|_F^2) \\ &= -X^{-T} + X-Y \end{align} \]

We can select the \(X\) such that

\[ Y=X-X^{-1}, \quad X\in S^n_{++} \]

Because , let \(Y = U\Lambda_Y U^T\), where \(\Lambda_Y = \text{diag}(\lambda_1, \dots, \lambda_n)\), and now let

\[ X = U\Lambda_X U^T, \quad \Lambda_X = \text{diag}(\frac{\lambda_i + \sqrt{\lambda_i^2+4}}{2}) \]

That satisfy \(X \succ 0\) and \(Y=X-X^{-1}\).

2

Please solve the following low-rank matrix recovery problem via Proximal Gradient descent

\[ \min_{X∈R^{n_1 ×n_2}} λ‖X‖_∗ + \frac{1}{2} ‖\mathcal{A}(X) − b‖_2^2 \]

where \(b = \mathcal{A}(X_0) = (〈A_j, X_0〉)_{j=1}^m\) with \(A_j ∈ R^{n_1×n_2}\) with \(m = \mathcal{O}((n_1 + n_2)r)\), and \(‖ · ‖_∗\) is the nuclear norm.

最优化:建模、算法与理论 8.1.3 2

solution.

We want to solve the problem

\[ \min_{X∈R^{n_1 ×n_2}} f(x) + h(x) \]

where

\[ f(x) = \frac{1}{2} ‖\mathcal{A}(X) − b‖_2^2 \qquad h(x) =λ\|X\|_* \]

Let the \(X=U\Sigma V^T\) is the SVD of \(X\), then

\[ \|X\|_* = Tr(\sqrt{XX^T}) = \sum_{i=1}^r \sigma_i\]

We have

\[ \nabla f(x) = \mathcal{A}^*(\mathcal{A}(X) − b) = \sum_{j=1}^m (Tr(A_j^TX) − b_j)A_j \]

So, the proximal gradient descent is

\[ \begin{align} Y^k &= X^k - t_k \nabla f(X^k) \\ &=X^k - t_k \sum_{j=1}^m (Tr(A_j^TX^k) − b_j)A_j \\ X^{k+1} &= \text{Prox}_{t_k h}(Y^k) \\ &= \arg\min_{X∈R^{n_1 ×n_2}} t_k \lambda\|X\|_* + \frac{1}{2} ‖X - Y^k ‖_F^2 \\ \end{align} \]

where SVT

\[ \text{Prox}_{t_k h}(Y) = \text{SVT}(Y, t_k\lambda) = U (D - t_k \lambda I)^+ V^T, \quad Y = U D V^T \]

3

Given the convex problem \(\min_x ‖x‖_1\), s.t. \(‖A^∗(Ax − b)‖_∞ ≤ ε\), where \(A^∗ ∈ R^{n×m}\) is the transpose of the matrix \(A ∈ R^{m×n}\) with \(m < n\). Please design an solving algorithm based on dual algorithm. You should give the iterated scheme in detail.

solution.

refer Foucart A Mathematical Introduction to Compressive Sensing 15.2

Let \(f(x) = \|x\|_1, h(x) = \mathbb{I}_{\|x\|_\infty \le \epsilon}\), then the problem is

\[ \begin{gather*} \min f(x) + h(y) \\ \text{s.t.} \quad y = A^∗(Ax − b) \\ \end{gather*} \]

The Lagrange dual function is

\[ \begin{align} L(x,y,\nu) &= f(x) + h(y) + \text{Re}(\nu^*(A^∗(Ax − b)-y)) \\ &= \left( f(x)+ \langle A^*A\nu, x \rangle \right) - \langle A\nu, b \rangle + \left( h(y) - \langle \nu, y \rangle \right) \\ \end{align} \]

Then

\[ \begin{align} g(\nu) &= \min_{x,y} L(x,y,\nu) \\ &= \min_{x,y} \left( f(x)+ \langle A^*A\nu, x \rangle \right) - \langle A\nu, b \rangle + \left( h(y) - \langle \nu, y \rangle \right) \\ &= - f^*(-A^*A\nu) - h^*(\nu) - \langle \nu, A^* b \rangle \\ &= -\mathbb{I}_{\|A^*A\nu\|_\infty \le 1} - \epsilon \|\nu\|_1 - \langle \nu, A^* b \rangle \\ \end{align} \]

Now, ower Lagrange dual problem is

\[ \begin{align} \max_{\|A^*Az\|_\infty \le 1} - \epsilon \|z\|_1 - \langle z, A^* b \rangle \\ \end{align} \]

So, using Poximal Gradient Descent, we have the scheme

\[ \begin{align} y^{k+1} &= \epsilon \nabla\|z^k\|_1 + A^* b \\ z^{k+1} &= \text{Prox}_{f^*(-A^*Az)} (z^k - t_k y^{k+1}) \\ &= \mathcal{P}_{ \|A^*Az\|_\infty \le 1} (z^k - t_k y^{k+1}) \\ \end{align} \]