跳转至

HW1

HW1pdf

1. Exercise 2.10 of Convex Optimization

\[ C=\{ x\in R^n | x^T A x + b^T x + c \le 0\} \]

with \(A\in S^n, \quad b\in R^n, \quad c\in R\).

(a) Show that \(C\) is \(A\succeq 0\) (which means \(A\) is positive semidefinite).

(b) Show that intersection of \(C\) and the hyperplane defined by \(g^T x + h = 0\) ( where \(g \ne 0\) ) is convex if \(A + λgg^T \succeq 0\) for some \(λ ∈ R\). Are the converses of these statements true?

Proof

a. It is sufficient to show that \(f(x) = x^T A x + b^T x + c\) is a convex function (for the epi of a convex function is convex.) i.e.

\[ \frac{f(x_1) + f(x_2)}{2} \ge f(\frac{x_1+x_2}{2}) \]

that is

\[ \begin{align} &x_1^TAx_1 + x_2^TAx_2 \ge \frac{1}{2}(x_1^T+x_2^T)A(x_1 + x_2) \\ &\Leftrightarrow x_1^TAx_1 + x_2^TAx_2 \ge x_1^TAx_2 + x_2^TAx_1 \\ &\Leftrightarrow (x_1-x_2)^TA(x_1 - x_2) \ge 0 \end{align} \]

it is true since \(A\) is positive semidefinite.


b. Let

\[ H = \{ x | g^T x + h = 0 \} \]

for \(x\in H\), \(x\in C\) equavalent to

\[ x^T (A+ λgg^T) x + b^T x + c - λh^2 \le 0 \]

whose solution set defined \(\tilde{C}\),
if \(A + λgg^T \succeq 0\) for some \(λ ∈ R\), then \(\tilde{C}\) is convex.

\[ x \in H \cap C = H \cap \tilde{C} \]

is intersection of two convex sets, so it is convex.

the converses is false. let's consider the case

\[ A = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}, g = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, b=0, h = 0, c = 0 \]

where \(C=R^2\), \(H = \{ (x_1, x_2) | x_2 = 0\}\), \(C \cap H\) is obvious convex, but \(A + λgg^T = \begin{bmatrix} -1 & 0 \\ 0 & -1 + λ \end{bmatrix}\) can never be positive semidefinite.

2. Exercise 2.18 of Convex Optimization

Invertible linear-fractional functions.

\[ f(x) = \frac{Ax+b}{c^Tx+d}, \qquad dom f = \{x | c^Tx+d > 0\} \]

Suppose the matrix

\[ Q=\begin{bmatrix} A & b \\ c^T & d \end{bmatrix} \]

is nonsingular. Show that \(f\) is an invertible linear fractional function.

Solve

let \(y = (Ax+b)/(c^Tx+d)\), then

\[ Q\begin{bmatrix} x \\ 1 \end{bmatrix} = (c^Tx+d)\begin{bmatrix} y \\ 1 \end{bmatrix} \]

since \(Q\) is inversible, and \(c^Tx+d > 0\), we get

\[ Q^{-1}\begin{bmatrix} y \\ 1 \end{bmatrix} = \frac{1}{c^Tx+d} \begin{bmatrix} x \\ 1 \end{bmatrix} \]

Then

\[ x = P(\begin{bmatrix} x \\ 1 \end{bmatrix}) = P(Q^{-1}\begin{bmatrix} y \\ 1 \end{bmatrix}) \]

so \(f\) is bijective.


Schur complement Matrix Analysis 0.8.5
1 . For \(A\) invertible,

\[ Q = \begin{bmatrix} A & b \\ c^T & d \end{bmatrix} = \begin{bmatrix} I & \\ c^TA^{-1} & 1 \end{bmatrix} \begin{bmatrix} A & \\ & d-c^TA^{-1}b \end{bmatrix} \begin{bmatrix} I & A^{-1}b \\ & 1 \end{bmatrix} \]
\[ Q^{-1} = \begin{bmatrix} I & -A^{-1}b \\ & 1 \end{bmatrix} \begin{bmatrix} A^{-1} & \\ & (d-c^TA^{-1}b)^{-1} \end{bmatrix} \begin{bmatrix} I & \\ -c^TA^{-1} & 1 \end{bmatrix} \\ = \begin{bmatrix} A^{-1} + A^{-1}b (d-c^TA^{-1}b)^{-1} c^TA^{-1} & -A^{-1}b (d-c^TA^{-1}b)^{-1} \\ -(d-c^TA^{-1}b)^{-1} c^TA^{-1} & (d-c^TA^{-1}b)^{-1} \end{bmatrix} \]

so,

\[ x = \frac{(A^{-1} (d-c^TA^{-1}b) + A^{-1}b c^TA^{-1})y - A^{-1}b }{-c^TA^{-1}y + 1} \]
\[ dom f^{-1} = \{ y | (d-c^TA^{-1}b)(-c^TA^{-1}y + 1) > 0 \} \]

2 . If \(d \ne 0\), similarly, we get

\[ Q = \begin{bmatrix} A & b \\ c^T & d \end{bmatrix} = \begin{bmatrix} I & bd^{-1} \\ & 1 \end{bmatrix} \begin{bmatrix} A-bd^{-1}c^T & \\ & d \end{bmatrix} \begin{bmatrix} I & \\ d^{-1}c^T & 1 \end{bmatrix} \]
\[ Q^{-1} = \begin{bmatrix} I & \\ -d^{-1}c^T & 1 \end{bmatrix} \begin{bmatrix} (A-bd^{-1}c^T)^{-1} & \\ & d^{-1} \end{bmatrix} \begin{bmatrix} I & -bd^{-1} \\ & 1 \end{bmatrix} \\ = \begin{bmatrix} (A-bd^{-1}c^T)^{-1} & -(A-bd^{-1}c^T)^{-1}bd^{-1} \\ -d^{-1}c^T(A-bd^{-1}c^T)^{-1} & d^{-1}+d^{-1}c^T(A-bd^{-1}c^T)^{-1}bd^{-1} \end{bmatrix} \]

So,

\[ x = \frac{d(dA-bc^T)^{-1}y - (dA-bc^T)^{-1}b}{-c^T(dA-bc^T)^{-1}y + d^{-1}+d^{-1}c^T(dA-bc^T)^{-1}b} \]
\[ dom f^{-1} = \{ y | -c^T(dA-bc^T)^{-1}y + d^{-1}+d^{-1}c^T(dA-bc^T)^{-1}b > 0 \} \]

3 . If \(A\) is not invertable and \(d = 0\), (啊!我要疯了,哪里有这个定理啊,我快算死了!)
Since

\[ Q = \begin{bmatrix} A & b \\ c^T & 0 \end{bmatrix} \]

is nonsingular, we have

  • \(rank(A) = n-1\), the kernel space denoted \(\lambda v\),
  • \(rank([A \quad b] = n)\)
  • \(c^Tv\ne 0\),
  • \(b \ne 0\).

Then we conclude \(A + bc^T\) is invertible!
Otherwise, there is some vector \(u\) s.t. \(Au + bc^Tu = 0\), but we have \(rank([A \quad b]) > rank(A) = n-1\), we deduce \(Au = 0\) and \(bc^Tu = 0\). so we get \(u = \lambda v\), and then \(0 = \lambda bc^Tv \Rightarrow \lambda = 0\)
Now, we can get

\[ Q = \begin{bmatrix} A & b \\ c^T & 0 \end{bmatrix} = \begin{bmatrix} A+bc^T & b \\ c^T & 0 \end{bmatrix} \begin{bmatrix} I & 0 \\ -c^T & 1 \end{bmatrix} \]

denote \(\tilde{A} = A + bc^T\),

\[ Q^{-1} = \\ \begin{bmatrix} I & 0 \\ c^T & 1 \end{bmatrix} \begin{bmatrix} \tilde{A}^{-1} - \tilde{A}^{-1}b (c^T\tilde{A}^{-1}b)^{-1} c^T\tilde{A}^{-1} & -\tilde{A}^{-1}b (c^T\tilde{A}^{-1}b)^{-1} \\ (c^T\tilde{A}^{-1}b)^{-1} c^T\tilde{A}^{-1} & -(c^T\tilde{A}^{-1}b)^{-1} \end{bmatrix} \]

(啊,我实在是不想写了,领会意思吧!我都不知道这有什么用。)

3. convex hull/Sparse Representation of a Polytope

reference: Sparse representation of a polytope and recovery of sparse signals and low-rank matrices

Please give the Sparse Representation of a Polytope \(A = \{x ∈ R^n : ‖x‖_∞ ≤ θ, ‖x‖_1 ≤ sθ\}\).

For any \(v ∈ R^n\), define the set of sparse vectors \(U (\theta, s, v) ⊂ R^n\) by

\[ U (\theta, s, v) = \{ u \in R^n : supp(u) \subset supp(v) \quad \|u\|_0 \le s, \|u\|_1 = \|v\|_1, \|u\|_{\infty} ≤ \theta \} \]

Any \(v\in A\) can be represented as

\[ v = \sum_{i=1}^N \lambda_i u_i, \quad with \quad 0\le\lambda_i\le 1, \quad \sum_{i=1}^N \lambda_i = 1, \quad u_i \in U(\theta, s, v) \]

Solve

In the paper, the main idea of the proof is to fix some components of \(v\) and then view the left components as a vector \(\tilde{v}\) that analogous to the origin problem in lower dimension. And use the technique of decomposition of vector to the edge of the intersection of cube and hyperplane to decrease at least one dimension. The requests of \(j\) is found just to make sure that the decomposition of \(\tilde{v}\) satisfies the condition of \(U(\theta, s, \tilde{v})\).


But here, we give a another expression, and deduce a little stronger conclusion.
Without loss of generality, we can assume that \(\theta=1\), and just consider the case \(v \succeq 0\).
For some \(v\in A, \|v\|_1 = t\), we define

\[ P(t) = \{ (a_i)_{i=1}^n \in U(1, s, v) : at\\, most\\, one\\, element \notin \{ 0, 1 \}\} \]

Indeed, \(P(t)\) is the extrime points of \(conv\\,U(1, s, v)\).
And points in \(P(k,t)\) is obviously \(\lceil t\rceil\)-sparse vectors.

e.g. For some \(v, \|v\|= 1.5\) convU \(P(1, 0.5) = \{ [1, 1/2, 0], [1, 0, 1/2], [0, 1, 1/2], [1/2, 1, 0], [1/2, 0, 1], [0, 1/2, 1] \}\), just like the graph in the paper.

We claim that \(v\) can be expressed by \(P(k,t)\).

Consider \(v=[a_1, ... , a_n], v\in A\), if \(v\notin P(t)\), then it has two components, WLOG, noted \(a_1, a_2 \notin \{0, 1\}\).

  • If \(a_1+a_2 \le 1\), then
\[ v = \lambda_1u_1 + \lambda_2u_2, \]

where \(\lambda_1 = \frac{a_1}{a_1+a_2}, \lambda_2=\frac{a_2}{a_1+a_2}\)
and \(u_1 = [a_1+a_2, 0, a_3, ..., a_n], u_2 = [0, a_1+a_2, a_3, ..., a_n]\).

  • If \(1< a_1+a_2 < 2\), then
\[ v = \lambda_1u_1 + \lambda_2u_2, \]

where \(\lambda_1 = \frac{1-a_1}{2-a_1+a_2}, \lambda_2=\frac{1-a_2}{2-a_1+a_2}\)
and \(u_1 = [a_1+a_2-1, 1, a_3, ..., a_n], u_2 = [1, a_1+a_2-1, a_3, ..., a_n]\). sparsedecom
It's obvious that \(\lambda_1+\lambda_2 = 1\) and \(\|u\|_i=t, i=1, 2\). And the number of components of \(u_1, u_2\) that not in \(\{0, 1\}\) is less than \(v\).
So, by induction, we can conclude that \(v\) can be expressed by \(P(t)\).