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Sparse Representation of a Polytope and Recovery
of Sparse Signals and Low-Rank Matrices

T. Tony Cai and Anru Zhang

Abstract— This paper considers compressed sensing and affine
rank minimization in both noiseless and noisy cases and estab-
lishes sharp restricted isometry conditions for sparse signal
and low-rank matrix recovery. The analysis relies on a key
technical tool, which represents points in a polytope by convex
combinations of sparse vectors. The technique is elementary while
yielding sharp results. It is shown that for any given constant
t > 4/3, in compressed sensing, 8;4 < /(t — 1)/t guarantees the
exact recovery of all k sparse signals in the noiseless case through
the constrained ¢; minimization, and similarly, in affine rank
minimization, §;,”" < /(t — 1)/t ensures the exact reconstruction
of all matrices with rank at most r in the noiseless case via
the constrained nuclear norm minimization. In addition, for

any ¢ > 0, 6;}( < ,/tt;l + € is not sufficient to guarantee

the exact recovery of all k-sparse signals for large k. Similar
results also hold for matrix recovery. In addition, the conditions

5;}( < /(@ —-1)/t and 5;’)4 < /(@ —=1)/t are also shown to

be sufficient, respectively, for stable recovery of approximately
sparse signals and low-rank matrices in the noisy case.

Index Terms— Affine rank minimization, compressed sensing,
constrained £; minimization, low-rank matrix recovery, con-
strained nuclear norm minimization, restricted isometry, sparse
signal recovery.

I. INTRODUCTION

FFICIENT recovery of sparse signals and low-rank matri-

ces has been a very active area of recent research in
applied mathematics, statistics, and machine learning, with
many important applications, ranging from signal processing
[16], [28] to medical imaging [22] to radar systems [3],
[21]. A central goal is to develop fast algorithms that can
recover sparse signals and low-rank matrices from a relatively
small number of linear measurements. Constrained £j-norm
minimization and nuclear norm minimization are among the
most well-known algorithms for the recovery of sparse signals
and low-rank matrices respectively.

In compressed sensing, one observes

y=AB+z, (1

where y € R", A € R"*? with n < p, f € R? is an unknown
sparse signal, and z € R” is a vector of measurement errors.
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The goal is to recover the unknown signal f € R” based on
the measurement matrix A and the observed signal y. The
constrained ¢1 minimization method proposed by Candés and
Tao [11] estimates the signal f§ by

B = argmin{||]|; :
peRP

subject to Af —y € B}, 2)

where B is a set determined by the noise structure. In particu-
lar, B is taken to be {0} in the noiseless case. This constrained
{1 minimization method has now been well studied and it is
understood that the procedure provides an efficient method for
sparse signal recovery.

A closely related problem to compressed sensing is the
affine rank minimization problem (ARMP) (Recht et al. [26]),
which aims to recover an unknown low-rank matrix based on
its affine transformation. In ARMP, one observes

b=M(X)+z, 3)

where M : R™*" — RY is a known linear map, X € R"*"
is an unknown low-rank matrix of interest, and z € RY
is measurement error. The goal is to recover the low-rank
matrix X based on the linear map M and the observation
b € R4. Constrained nuclear norm minimization [26], which is
analogous to £ minimization in compressed sensing, estimates
X by

X, = argmin{|| Bl :
BERmXVl

subject to M(B)—b e B}, (4)

where || B||, is the nuclear norm of B, which is defined as the
sum of all singular values of B.

One of the most widely used frameworks in compressed
sensing is the restrict isometry property (RIP) introduced in
Candés and Tao [11]. A vector f € R? is called s-sparse if
[supp(B)| < s, where supp(f) = {i : fi # 0} is the support
of S.

Definition 1.1: Suppose A € R" P is a measurement
matrix and 1 < s < p is an integer. The restricted isometry
constant (RIC) of order s is defined as the smallest number
5,? such that for all s-sparse vectors f € R?,

(1= dMNIBIZ < IABI3 < (1 + M BI13. Q)

When s is not an integer, we define 5SA as (5"51.

Different conditions on the RIC for sparse signal recov-
ery have been introduced and studied in the literature. For
example, sufficient conditions for the exact recovery in the
noiseless case include dyx < +/2 — 1 in [14], dy < 0.472
in [6], o < 0.497 in [23], 6 < 0.307 in [8], ¢ < 1/3 and
02k < 1/2in [9]. There are also other sufficient conditions that
involve the RIC of different orders, e.g. 5?,( —1—35?,( < 2in[12],
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S +o8 < 1in[10], 63, < 0.5746 jointly with 65, < 1, 64, <
0.7731 jointly with 54, <1 in [30] and &2, < 4/+/41 in [1].

Similar to the RIP for the measurement matrix A in com-
pressed sensing given in Definition 1.1, a restricted isometry
property for a linear map M in ARMP can be given. For
two matrices X and Y in R™*"  define their inner product as
(X,Y) = Zi,j X;;jY;j and the Frobenius norm as || X|[F =

VX X) = /3 X

Definition 1.2: Suppose M : R — RY is a linear map
and 1 <r < min(m, n) is an integer. The restricted isometry
constant (RIC) of order r for M is defined as the smallest
number 5" such that for all matrices X with rank at most r,

(1 =M IX )% < IMOXOI3 < A +3YHIXIE. (©)

When r is not an integer, we define 5,M as 5%‘.

As in compressed sensing, there are many sufficient conditions
based on the RIC to guarantee the exact recovery of matrices
of rank at most r through the constrained nuclear norm
minimization (4). These include (5‘{\;1 < 42 —11[15], (5?;1 <
0.607, o < 0.558, and o < 0.4721 [24], o' < 0.4931
[29], 5M < 0.307 [29], ;" < 1/3 [9], and (Sé\r/‘ < 1/2 [9].

Among these sufficient RIP conditions, 5,? < 1/3 and
5rM < 1/3 have been verified in [9] to be sharp for both
sparse signal recovery and low-rank matrix recovery problems.
Sharp conditions on the higher order RICs are however still
unknown. As pointed out by Blanchard and Thompson [4],
higher-order RIC conditions can be satisfied by a significantly
larger set of Gaussian random matrices in some settings. It is
therefore of both theoretical and practical interests to obtain
sharp sufficient conditions on the high order RICs.

In this paper, we develop a new elementary technique for
the analysis of the constrained £{-norm minimization and
nuclear norm minimization procedures and establish sharp
RIP conditions on the high order RICs for sparse signal and
low-rank matrix recovery. The analysis is surprisingly simple,
while leads to sharp results. The key technical tool we develop
states an elementary geometric fact: Any point in a polytope
can be represented as a convex combination of sparse vectors.
The following lemma may be of independent interest.

Lemma 1.1 (Sparse Representation of a Polytope): For a
positive number o and a positive integer s, define the polytope
T(a,s) C R? by

T(a,s) ={v €R”: vllec <0, Il < sa}.

For any v € R”, define the set of sparse vectors U(a, s, 0) C
R? by

U(a,s,v) = {u € R” : supp(u)  supp(v), llullo <,

lullt = lloll, lulleo < aj. )

Then v € T(a,s) if and only if v is in the convex hull of
U(a,s,v). In particular, any v € T (a, s) can be expressed as

N
D=1,
i=1

and u; € U(a, s, ).

N
2 ZZL’M[, and0 < 4; <1,

i=1

123

Lemma 1.1 shows that any point v € R? with |0 <
o and |v]l; < sa must lie in a convex polytope whose
extremal points are s-sparse vectors u with |ju|l; = |jv||; and
lulloo < a, and vice versa. This geometric fact turns out to be
a powerful tool in analyzing constrained £{-norm minimization
for compressed sensing and nuclear norm minimization for
ARMP, since it represents a non-sparse vector by the sparse
ones, which provides a bridge between general vectors and
the RIP conditions. A graphical illustration of Lemma 1.1 is
given in Figure 1.

Combining the results developed in Sections II and III, we
establish the following sharp sufficient RIP conditions for the
exact recovery of all k-sparse signals and low-rank matrices
in the noiseless case. We focus here on the exact sparse and
noiseless case; the general approximately sparse (low-rank)
and noisy case is considered in Sections II and III.

Theorem 1.1: Let y = Ap where f € R? is a k-sparse
vector. If

t—1
o <\ @®)
for some t > 4/3, then the {1 norm minimizer ,[;’ of (2) with
B = {0} recovers f exactly.

Similarly, suppose b = M (X) where the matrix X € R™*"
is of rank at most r. If

t—1
oM < — )

for some t > 4/3, then the nuclear norm minimizer X, of (4)
with B = {0} recovers X exactly.

Moreover, it will be shown that for any € > 0, 5;?{ <

% + € is not sufficient to guarantee the exact recovery
of all k-sparse signals for large k. Similar result also holds
for matrix recovery. For the more general approximately
sparse (low-rank) and noisy cases considered in Sections II
and III, it is shown that Conditions (8) and (9) are also
sufficient respectively for stable recovery of (approximately)
k-sparse signals and (approximately) rank-r matrices in the
noisy case. An oracle inequality is also given in the case of
compressed sensing with Gaussian noise under the condition
54 <t =1)/t when t > 4/3.

The rest of the paper is organized as follows. Section II
considers sparse signal recovery and Section III focuses on
low-rank matrix recovery. Discussions on the case t < 4/3
and some related issues are given in Section IV. The proofs
of the key technical result Lemma 1.1 and the main theorems
are contained in Section V.

II. COMPRESSED SENSING

We consider compressed sensing in this section and estab-
lish the s.ufﬁc.:ient.RIP.’ condi.tion (Sﬁc </t — l.) /tin the. noisy
case which implies immediately the results in the noiseless
case given in Theorem 1.1. For v € R”, we denote vmax)
as v with all but the largest k entries in absolute value set to
zero, and v max(k) = 0 — Omax(k)-

Let us consider the signal recovery model (1) in the setting
where the observations contain noise and the signal is not
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Fig. 1.

A graphical illustration of sparse representation of a polytope in one orthant with p = 3 and s = 2. All the points in the colored area can be

expressed as convex combinations of the sparse vectors represented by the three pointed black line segments on the edges.

exactly k-sparse. This is of significant interest for many
applications. Two types of bounded noise settings,

zeB2(e) 2 (z: Izl < &)
and z e BPS(e) £ {z: |Azllee < €},

are of particular interest. The first bounded noise case was
considered for example in [18]. The second case is motivated
by the Dantzig Selector procedure proposed in [13]. Results
on the Gaussian noise case, which is commonly studied in
statistics, follow immediately. For notational convenience, we
write J for 53{.

Theorem 2.1: Consider the signal recovery model (1) with
lzlla < &. Suppose A2 is the minimizer of (2) with B =
B2(p) = {z : lzlla < n) for some > ¢. If 6 = (5k <
/(& — 1)/t for some t > 4/3, then

. V2(U+96
18 — gl < —28FD 1y
1 -4t/ —1)o
N V20 4+t —1)] —5)5+1 2||B— max(k) Il (10)
(V@ —1)/t=9) Vk
Now consider the signalA recovery model (1) with
|ATzlo < €. Suppose APS is the minimizer of (2)

with B = BPS(y) = {z : |ATz]leo < n} for some # > &. If
0= 5;?{ < 4/t — 1)/t for some ¢ > 4/3, then
2tk
1BPS = Bl € —————(c+ 1)
11—t/ —1)o
N (fz5+ Vi/T=D/1=95 ) 2lB-maxw

11

1(V(t = 1)/t —0) vk (4

Remark 2.1: The result for the noiseless case follows
directly from Theorem 2.1. When S is exactly k-sparse and
there is no noise, by setting # = € = 0 and by noting

B—maxxy = 0, we have ,bA’ = f from (10), where ﬁ is the
minimizer of (2) with B = {0}.

Remark 2.2: It should be noted that Theorems 1.1 and 2.1
also hold for 1 < ¢t < 4/3 with exactly the same proof.
However the bound /(t — 1)/t is not sharp for 1 < ¢ < 4/3.
See Section IV for further discussions. The condition ¢ > 4/3
is crucial for the “sharpness” results given in Theorem 2.2 at
the end of this section.

The signal recovery model (1) with Gaussian noise is of
particular interest in statistics and signal processing. The fol-
lowing results on the i.i.d. Gaussian noise case are immediate
consequences of the above results on the bounded noise cases
using the same argument as that in [5], [6], since the Gaussian
random variables are essentially bounded.

Proposition 2.1: Suppose the error vector z ~ N, (0, 0%1)
in (1). 64 < /(t — 1)/t for some t > 4/3. Let B2 be the
minimizer of (2) with B = {z : ||zll2 < o+/n + 2/nlogn} and
let ﬁADS be the minimizer of (2) with B = {z : |[ATz]le0 <
20 4/Tog p}. Then with probability at least 1 — 1/n,

Vi 0)
||,3€2—,b)||2 Zj:;%é Vn+2 nlogn

+ «/§5+\/f(v (t_l) _6)5+1 2”;87max(k)”1
1(V(t —1)/t =) N ’

and with probability at least 1 — 1//x log p,

DS 4\/_
187° = Bll2 £ ——————— = «/I/T(S o+/klogp
V26 +Vi(J(t = D)t —6)o 2|1 B— max) 11
1T — D]t —9) vk

The oracle inequality approach was introduced by Donoho
and Johnstone [20] in the context of wavelet thresholding
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for signal denoising. It provides an effective way to study
the performance of an estimation procedure by comparing
it to that of an ideal estimator. In the context of com-
pressed sensing, oracle inequalities have been given in [7],
[9], [13], [15] under various settings. Proposition 2.2 below
provides an oracle inequality for compressed sensing with
Gaussian noise under the condition 5;?{ < 4/(t —1)/t when
t>4/3.

Proposition 2.2: Given (1), suppose the error vector z ~
N, (0,621), p is k-sparse. Let ﬁDS be the minimizer of (2)
with B = {z: |ATzllc < 4o /Tog p}. If 4 < /(t = 1)/t for
some t > 4/3, then with probability at least 1 — 1//z log p,

256t
Vi/E=1)53)?

1575~ BIB = log p 3 min(47. %)

(12)

We now turn to show the sharpness of the condition 5;}{ <

J/(t — 1)/t for the exact recovery in the noiseless case and

stable recovery in the noisy case. It should be noted that the
result in the special case r = 2 was shown in [17].

Theorem 2.2: Lett > 4/3. For all ¢ > 0 and k > 5/¢,

there exists a matrix A satisfying dx < % + & and some
k-sparse vector Sy such that

« in the noiseless case, i.e. y = Afp, the £; minimization
method (2) with B = {0} fail to exactly recover the
k-sparse vector fy, i.e. ,bA’ # Po, where ﬁ is the solution
to (2).

« in the noisy case, i.e. y = Apfo + z, for all constraints
B; (may depends on z), the £; minimization method (2)
fails to stably recover the k-sparse vector Sy, i.e. ,bA’ - f
as z — 0, where ﬁ is the solution to (2).

III. AFFINE RANK MINIMIZATION

We consider the affine rank minimization problem (3) in
this section. As mentioned in the introduction, this problem
is closely related to compressed sensing. The close connec-
tions between compressed sensing and ARMP have been
studied in Oymak, et al. [25]. We shall present here the
analogous results on affine rank minimization without detailed
proofs.

For a matrix X € R™*" (without loss of generality, assume
that m < n) with the singular value decomposition X =
Z;":l a,-u,-viT where the singular values a; are in descending
order, we define Xmax(r) = >y aittjv! and X_max(r) =
Dt a,-u,-viT . We should also note that the nuclear norm
Il - |« of a matrix equals the sum of the singular values,
and the spectral norm || - || of a matrix equals its largest
singular value. Their roles are similar to those of £; norm
and ¢, norm in the vector case, respectively. For a linear
operator M : R™ " — R9, its dual operator is denoted by
M*RE — R

Similarly as in compressed sensing, we first consider the
matrix recovery model (3) in the case where the error vector
z is in bounded sets: ||z]l2 < € and |M*(z)|| < e. The

corresponding nuclear norm minimization methods are given

125

by (4) with B = B2(y) and B = BP5(#) respectively, where

B2(n) = {z: lzll2 < n), (13)
BPS(n) = {z - IM* @Il < n). (14)
Proposition 3.1: Consider ARMP (3) with ||z|l2 < ¢. Let
Xﬁz be the minimizer of (4) with B = Bt (n) defined in (13)
for some 5 > €. If (SrM </t — 1)/t with t > 4/3, then
V2(1 4 9) e+
I—Jia=no= "
V204 Vi -D/1=9)5 N 2AX-mullt s
1(/(t —1)/t =) NG
Similarly, consider ARMP (3) with z satisfying || M*(2)| < e.

Let XP5 be the minimizer of (4) with M = BP5(yj) defined
in (14), then

IX2 - XllF <

V2tr

DS
X" = XlF < m@‘f‘ 1)

(V2 VIVEDT =95 N 20X masin

1(V(t—1)/t = 0) NG '

In the special noiseless case where z = 0, it can be seen
from either of these two inequalities above that all matrices
X with rank at most r can be exactly recovered provided that
oM < /(t = 1)/1, for some 1 > 4/3.

The following result shows that the condition (5,/;" <
/(& —1)/f with t > 4/3 is sharp. These results together
establish the optimal bound on 5,0/1 (t = 4/3) for the exact
recovery in the noiseless case.

Proposition 3.2: Suppose t > 4/3. For all ¢ > 0 and r >
5/¢, there exists a linear map M with 5{)’1 <Jt-=1/t+e¢
and some matrix Xg of rank at most r such that

(16)

« in the noiseless case, i.e. b = M(Xg), the nuclear norm
minimization method (4) with B = {0} fails to exactly
recover Xo, i.e. Xy # Xo, where X, is the solution to
4).

« in the noisy case, i.e. b = M(Xg) + z, for all constraints
B, (may depends on z), the nuclear norm minimization
method (4) fails to stably recover Xy, i.e. X, - Xo as
z — 0, where X, is the solution to (4) with B = B,.

IV. DISCUSSION

We shall focus the discussions in this section exclusively on
compressed sensing as the results on affine rank minimization
is analogous. In Section II, we have established the sharp RIP
condition on the high-order RICs,

t—1
5;?{< — forsometZ%,
t

for the recovery of k-sparse signals in compressed sensing. In
addition, it is known from [9] that 5,? < 1/3 is also a sharp
RIP condition. For a general ¢+ > 0, denote the sharp bound
for 5;}{ as 04(¢). Then

S:(1)=1/3 and 6,(t) =/t — /1, t>4/3.

A natural question is: What is the value of d,(¢) for t < 4/3
and t # 1? That is, what is the sharp bound for 5;}( when
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Fig. 2. Plot of 4 as a function of ¢. The dotted line is t = 4/3.

t <4/3 and r # 1?7 We have the following partial answer to
the question

Proposition 4.1: Let y = A where f € R? is k-sparse.
Suppose 0 <t < 1 and tk > 0 to be an integer

e When tk is even and (Sﬁc < 4tTt’ the £; minimization (2)

with B = {0} recovers S exactly.
. A J12=1/k2
e When tk is odd and 5[]( < m, the f]

minimization (2) with B = {0} recovers f exactly.

In addition, the following result shows that J,(f) < 4th for
all 0 <t < 4/3. In particular, when ¢ = 1, the upper bound
t/(4 —t) coincides with the true sharp bound 1/3.

Proposition 4.2: For 0 <t < 4/3, ¢ > 0 and any integer
k> 1, 5{2 < 4#4 + ¢ is not suffient for the exact recovery.
Specifically, there exists a matrix A with 5;?{ = 4%[ and a k-

sparse vector fp such that ,bA’ # fo, where ﬁ is the minimizer
of (2) with B = {0}.

Propositions 4.1 and 4.2 together show that d, () = 444 when
tk is even and 0 < ¢t < 1. We are not able to provide a
complete answer for d,(t) when 0 < ¢t < 4/3. We conjecture
that d,(t) = 7 for all 0 < ¢ < 4/3. The following figure
plots d.(7) as a function of ¢ based on this conjecture for the
interval (0, 4/3).

Our results show that exact recovery of k-sparse signals in
the noiseless case is guaranteed if 5{2 < /(t — 1)/t for some
t > 4/3. It is then natural to ask the question: Among all
these RIP conditions (3{}( < 04(t), which one is easiest to be
satisfied? There is no general answer to this question as no
condition is strictly weaker or stronger than the others. It is
however interesting to consider special random measurement
matrices A = (A;j)uxp Where

1 p.1/2

Aij ~N(,1/n), Aij ~ I _/f//_f/z z.ﬁ.lfz’
3/n w.p.1/6
or Ay ~ 1 0 w.p.1/2 .
—/3/n w.p.1/6

Baraniuk et al [2] provides a bound on RICs for a set of
random matrices from concentration of measure. For these
random measurement matrices, Theorem 5.2 of [2] shows that
for positive integer m <n and 0 < 4 < 1,

12 m
ip) exp (—n(/lz/l6 - ,13/48)) . an

POA<i)>1-2 (
m

600

500

400

“e 300

200

100

Fig. 3. Plot of ny as a function of ¢.

Hence, for r > 4/3,
P& </t —1)/1)
>1—2exp (tk (log(12e/m) + log(p/k))
. (t -1 (- 1)3/2))
16t 4813/2 '
For 0 <t < 4/3, using the conjectured value d,(¢) = ﬁ, we
have

P4 <t/ —1)

1 2exp (tk(log(12(4 — 1)e/ %) +log(p/ k)
12 3

- (16(4 )2 48— t)3) )

It is easy to see when p, k, and p/k — oo, the lower bound
of n to ensure (3{}( <t/(4—1t)or 5;?{ < 4/t — 1)/t to hold in
high probability is n > klog(p/k)n*(t), where

12 3 .

e )t/ (16(4—:)2 - 48(4—1)3) t<4/3;
n= =1 (r=1)%2

t/(lﬁt TR )’ t24/3.

For the plot of n*(¢), see Figure 1. n*(¢) has minimum 83.2
when t = 1.85. Moreover, among integer ¢, t = 2 can also
provide a near-optimal minimum: n*(2) = 83.7.

We should note that the above analysis is based on the bound
given in (17) which itself can be possibly improved.

V. PROOFS

We shall first establish the technical result, Lemma 1.1, and
then prove the main results.

Proof of Lemma 1.1: First, suppose v € T(a,s). We can
prove v is in the convex hull of U(a, s, ») by induction. If »
is s-sparse, v itself is in U(a, s, v).

Suppose the statement is true for all (/ — 1)-sparse vectors v
(I—1 > s). Then for any [-sparse vector v such that |[o|| < a,
loll1 < sa, without loss of generality we assume that v is not
(I — 1)-sparse (otherwise the result holds by assumption of
[l — 1). Hence we can express v as v = Zé:l aje;, where
e;’s are different unit vectors with one entry of &1 and other
entries of zeros; a; > ap > --- > a; > 0. Since Zé:l a;, =
lolli < sa, so

1eDé{l§j51—1:aj+aj+1+---+alf(l—j)a},
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which means D is not empty. Take the largest element in D
as j, which implies

ajt+ajp1+-+a < (- ja,
ajr1+aj2+---+a > (1 —j—1a. (18)
(It is noteworthy that even if the largest j in D is [ — 1, (18)
still holds). Define
1
bwéZlij.l_aw, J<w<l, (19)
I—=j
which satisfies Z cap = (1 — ) ; bi. By (18), for all
j<w< l,
I
i=it1@4i  1—j—1
bw > bj _ Zl—j—l—? l . J —a;j
I—j L=
1 .
> Zi:j+1 ail— (l._ Jj—Da -0
—J

In addition, we define

vwaa,e,—}—(Zb) Z e; € R?,

i=j i=j,iZw
bw

]
Zi:j bi

then 0 < Ay < 1, Xh_idw =
supp(vy) C supp(v). We also have

J— ! Jj—1 I
lowll =D ai+ A=) D bu=D ai+ > ai=
i=1 w=j i=1 i=j
1
,aj—l,zbi}
i=j

i=j ai

A
j«u) =

, J=<w<l,

(20)

1
19 Zw:] /lwvw = 0,

o,
[owlloo = max{ay, ...

< max{a,

The last inequality is due to the first part of (18). Finally, note
that v,, is (I — 1)-sparse, we can use the induction assumption
to find {u;, e R, 4, , e R:1<i <Ny, j <w <I}such
that

U is s-sparse, supp(u;,) < supp(v;) € supp(v),

<a;

luiwls = llvillh = llollt,  Nuiwlleo <

In addition, v; = ZINZ“’] Aiwliw, SO D Zw = ZN‘“
AwAiwli,w, Which proves the result for /.

The proof of the other part of the lemma is easier. When v
is in the convex hull of U(a, s, v), then we have

N
ol = 11D Aittilloo < Zz latilloo <
i=1 i=1
N N
ol = 11D Al < Zz-nuiul
i=1 i=1

N
< D dillullolluilloo < sa,
i=1

which finished the proof of the lemma. (]
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Proof of Theorem 1.1: First, we assume that ¢k is an integer.
By the well-known Null Space Property (Theorem 1 in [27]),
we only need to check for all & € N(A) \ {0}, lhmaxoll1 <
11— max(k)ll1. Suppose there exists & € N'(A) \ {0}, such that
1max(y 1 = 17— maxkyll1- Set a = ”hmax(k)”l/k We divide
h_ max(k) into two parts, h_ maxk) = D + @, where

R = h max) * il s 1> /G~ 1))

2
WP = hemax(®) * Lillh mengo ]2/ (- 1)
Then A 0lly < - maxqo)lli < ak. Denote Isupp(h )] =

1h]lo = m. Since all non-zero entries of A1) have magnitude
larger than /(¢ — 1), we have

ak = RV
= > YOIz D> a/t—1)=ma/t-1).
iesupp(h() iesupp(h)

Namely m < k(t — 1). In addition we have
1Ry = ||h7max(k)||1 — 1R
< ka—— k@@ —1)—m) - —
o
t—1

172

IA

21

We now apply Lemma 1.1 with s = k(t — 1) — m. Then h®
can be expressed as a convex combination of sparse vectors:
h® = ZlN:l Aiuj, where u; is (k(t — 1) — m)-sparse and

a
il = 1B, Nuilloo < T
supp(u;) < supp(h®). (22)
Hence,
luillz < Vlluillolluiloo < Vi = 1) = miuilloo
< Vk(t = Dluillos < vVk/@t = Da. (23)

Now we suppose u > 0,c¢ > 0 are to be determined. Denote
Bi = hmax(k) + hD + pu;, then

N
Z AiBj—cBi = hmax(k)+h(1) + :“h(z) — cpi
j=l1
= (1= =) (hmaxy +h'"V) —cuui+uh. (24)

Since hmax(k), h, u; are k-, m-, (k(t — 1) — m)-sparse
respectively, Bi = hmax) + DY + pu;, Z] 1 AjBj — cBi —

= (1 — p — c)(hmax) + Ry — cuu; are all tk-sparse
Vectors

We can check the following identity in ¢, norm,

N N
D AIAQ 2B — i3
i=l1 j=1

+1=20) D LAIAG - BPI3

1<i<j<N

N
> ail =) IlABi5.

= (25)

i=1
Since Ah = 0 and (24), we have A(z] VAiBj —cfi) =
A1 = i = ) hmaxy + V) — cuup). Set ¢ = 1/2,
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i =~t(t —1)—(t — 1), let the left hand side of (25) minus
the right hand side, we get

0< 1+

N

>0 (= = Py + A1 + i)
i=1

—(1 - )
N

D200 = & (Ihmasity + H V13 + i 13)

i=1
J 1 1
= ;zi[(a +oG — = (1= 53) - Z)

1
Mhmaxto + A1 + 30k a2 il

N

> dillhmaxy +h V13
i=1

IA

2 A 1 1 2
'[(u _ﬂ)+5zk(§_ﬂ+(1+2(t_l))ﬂ )}

= hmaxy +h D13 - [5;; ((2r 1) 2tm)
- ((Zt )i =1) =26 — 1))] <0.

We used the fact that
4 <Vt —D/t,
luillz < vk/(t — Da
< ”hmax(k)”Z <
Vit =1)
above. This is a contradiction.

When ¢k is not an integer, note ¢ = [tk]/k, then ' > t,
'k is an integer,

r—1 t'k—1
5/ :6 \/ \/ ’
t'k tk < 7 < 7k

which can be deduced to the former case. Hence we finished
the proof. U

Proof of Theorem 2.1: We first prove the inequality on ﬁAQ
(10). Again, we assume that tk is an integer at first. Suppose
h = ﬁ€2 — f, we shall use a widely known result (see, e.g.,
(51, [12], [13], [19D),

A

I Amax ey +hD1l2
V=1

||h—max(k) Ih < ||hmax(k) I+ 2”,8— max(k)”l-
Besides,
IARNL < lly — ABl2 + IIAB = ylo < & + 1.

Define a = (|max)ll1 + 28— maxxll1)/ k. Similarly as the
proof of Theorem 1.1, we divide h_ pax) into two parts,
h_ max(k) = D + 1 ® | where

(26)

R = h (k) * i1 gy ()15 /(1))
h® = B max) * L{il1h_ maxy ()] <at/ (—1))-

Then AV < 17— maxwlli < ak. Denote |supp(h))| =
1AMl = m. Since all non-zero entries of A1) have magnitude
larger than o /(t — 1), we have

iesupp(h )

a/(t —1) =ma/(t —1).

ak > [RV]], = 1D @)

)

iesupp(h(M)

Namely m < k(tr — 1). Hence, (21) still holds. Besides,
IAmax ey +hDllo = k +m < tk, we have

(A(hmaxy + B V), AR)
< 1 AGhmaxey + ) 1211 ARl

< VT4 0l hmaxy +h D ll2 (e + 7). 27)
Again by (21), we apply Lemma 1.1 by setting

s = k(t — 1) — m, we can express h® as a weighted
mean: h® = vazl Aiuj, where u; is (k(t — 1) — m)-sparse
and (22) still holds. Hence,

luilla < /luillolluilloo
< Vk(t — 1) — mlluillso
< Vk(t = Duilloo < Vk/(t = Da.

Now we suppose 1 > u > 0,c > 0 are to be determined.
Denote f; = hmaxx) + A 4 u;, then we still have (24).
Similarly to the proof of Theorem 1.1, since hmax), AW, u;
are k-, m-, (k(t — 1) — m)-sparse vectors, respectively, we
know fi = hmax(y + AV + pui, 300085 — efi — uh =
(1 —u —c)(hmax) + hMY — cpu; are all tk sparse vectors.
Suppose x = [|Amaxk) + h(l)llz, P = 2”5_"‘%)”1, then

luilla < Vk/(t = Da

”hmax(k) lI2 2||;87max(k)”1
J@E=1) VEk@ —1)
 Mhmaxy 80Nz 208 maxio
- Vi—1 V(@@ —T1)
P

=<

x +
r—1
We still use the 7 identity (25). Setc = 1/2, u = /t(t — 1)—

(t — 1) and take the difference of the left- and right-hand sides
of (25), we get

N
0= > 2if A(Grmarcty + D + h®)

i=1

1 0 > Sy o2
3 Chmay + 00 + ) || = 3" S 14p13

i=1
N 1 L 2
= Z’li HA ((5 - ,u)(hmax(k) + h(l)) - E”i + :“h)
i=1

N
—lezlllA,b’illz
1=

2
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1 2
((5 - ,u)(hmax(k) + h(l)) - %uz)

2

(2)) ,ﬂAh>

+2 < ((_ - ,u)(hmax(k) + h(l))

N

+ul AR =D
i=1
N 1 u
= Z/Ii ' A ((5 - ,u)(hmax(k) + h(l)) - Euz)
i=1
/1.
(1 = ) (Al + 1), AB) = D" 1B,

Zl”A,Biﬂz

2

2

=

Now since f;, (2 1) (Mmax (k) —i—h(l)) - ﬁul are all tk-sparse
vectors, we apply the definition of 94 .. and also (27) to get

N 2
1
0<(l+ 5)2% ((5 — 1) hmaxey + RV N3 + %nuin%)
1=
(1 = VT + Sl hmaxky + h V2 (e + 1)

N
A.
~(1 =02 % (Mmanto + A1 + 2il3)
i=1

S (0+0G-w*-a-9-3)
P 2 4
sy + 5]+ S0
+u(l = V140 Hhmax(k) +h® H2 (e + 1)
[(ﬂ — ) +5(— —ut 1+ o L 1))ﬂ2)}x2
+ |:ﬂ(1 — WVT+6+n)+ 5”_2Ti| x + il

20t — 1)

N ((2;-1)—2\/@)(\/7 5)x

| ou’P Su?P?
|: -1+ (s+71)+ — i|x -1
2 t—1 )
t—l[ t( T_é)x
SP?
+ (\/t(t "D+ 0)(e + 1) +5P) X+ T] (28)

which is an second-order inequality for x. By solving this
inequality we get

x < i (\/t(t DA+ o)+ 1) +5P)
+[ (\/t(t DA+ )+ 1) +5P)2

+20 (St — )1 — 5)5102]1/2] . (2;@/(; /- 5))71
- Vit — 1) (1 +0)
Tt =1/t —=0)

+25+\/2t(«/7(t—1) —5)5
2t (/@ — 1)/t — )

(e+mn)
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Finally, note that [|h—max@li < lmaxlli + Pk, by
Lemma 5.3 in [9], we obtain [[A_max@)ll2 < Amax@)ll2 + P,
SO

1tz = v/ Wrmaxo 13 + 1 maxcio 12

< Vlimas I3 + (maxco 12 + PY?

</ 2lAmax I3 + P
<V2x+P

V2t (t — 1)(1 +9)
T N

+(ﬁ5+ SIS =DJi—0)o N 1) 2018 maxy Il

1/ = D)/t —0) N
V20 +9) C+n)
1= i/t =1)o 7
(fawrwir—l) —5)5+1)2||ﬂmax<k>n1

1V =1]i —9) Vi

which finished the proof.
When tk is not an integer, again we define ¢t =

thent/>tand5f}k:5ﬁ( < J=b < ”1

t

[tk1/k,

. We can prove

the result by working on J7,
For the inequality on ,bA’ DS (11), the proof is similar. Define
h = PS5 — B. We have the following inequalities

IAT Ahlloo < I1AT(AB — ¥)lloo
+IAT(y — AB)lloo < 1 + &,
(A(hmaxey + 1Y), Ah) = (hmaxy + 1D, AT Ah)
< maxey + h PVl (e + 1)
< Vik(e + D) hmaxyno 12, (29)

instead of (26) and (27). We can prove (11) basically the same
as the proof above except that we use (29) instead of (27) when
we go from the third term to the fourth term in (28). O

Proof of Proposition 2.1: By a small extension of

Lemma 5.1 in [5], we have ||z]l2 < o+/n 4+ 24/nlogn with
probability at least 1 —1/n; AT z]loo < o(/2(1 + ) logp <

20 4/log p with probability at least 1 — 1/+/z log p. Then the
Proposition is immediately implied by Theorem 2.1. d

Proof of Proposition 2.2: The proof of Proposition (2.2) is
similar to that of Theorem 4.1 in [9] and Theorem 2.7 in [15].

First, as in the proof of Proposition 2.1, we have
AT z]l00 < 4/2 with probability at least 1/W In the
rest proof, we will prove (12) in the event that AT z||oo < 4/2.
Define

2 /12 2

K& B =7rI¢lo+ A8 = ACll, y = 3= 207 log p.
Letﬁ = argming K (¢, §). Since K(ﬁ p) < K(B, B), we have
y118llo < 7 1IBllo, which means j is k-sparse.

Now we introduce the following lemma which can be
regarded as an extension of Lemma 4.1 in [9].

Lemma 5.1: Suppose A € R"*P_ k > 2 is an integer, s > 1
is real and sk is integer. Then we have (55Ak < (2s — 1)5;{4.
Similarly, suppose M : R™*" — RY is a linear map, r > 2
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is an integer, s > 1 is real and sr is integer. Then we have
M < @25 — DM
We omit the proof here as the proof of Lemma 4.1 in [9] can
still apply to this lemma.
By Lemma 5.1, we can see when 1 < ¢ < 2,

2k < (2r ] 1)5“,(] 4/t — 1)5”( <t/ -1 5

When ¢ > 2, 5A < 5{}(, which means

52k Vit —1) 5”(,

(30)
whenever r > 4/3.
Next, we have

I8 — B3 < IAB — ABII3

1—5§‘k

1 n 2
i W~ AIE

With a small edition on Lemma 5.4 in [9] and Lemma 3.5 in
[15], we have

IAT (v — AB)lloo < AT (v — AB)lloo + IATA(B — Pl < A

Since _ﬁ_ is k-sparse, we can apply Theorem 2.1 by plugging
S by f and get

V2t Bllo

I8 =B = — ==
Hence,
1A — BI3 < 218 — BI3 +218 — AI3
1611 lloA> 2 A,
YV E Bl e Vo R
128¢ _
== via—nage P
Suppose ' = >"F_| B 1{p,>pu}» Where u = 1+(5A Then
p
KB, < KB, B) <y D lusi-u + IAB — ABI3
i=1
p p
<y D g + A+ D Lpi<w il
i=1 i=1
p
< > min(y, (1+ )14
i=1

P
< 2logp > min(a?, |4i]*)
i=1
Therefore, we have proved (12) in the event that ||AT 7] <
A/2. (]
Proof of Theorem 2.2: For any ¢ > 0 and k > 5/¢, suppose

p >2tk,m' = ((t — 1) ++/t(t — 1))k, m is the largest integer
strictly smaller than m’. Then m < m’ and m’ —m < 1. Since
t > 4/3, we have m’ > k. Define

1 k
Br=,/k+ mk2 {,-

m
—_—

k k
TR /,0,...’0)€RP’
m

then [|f1]l2 = 1. We define linear map A : R? — RP”, such
that for all g € R?,

ap= 14/ =L - .

Now for all [zk]-sparse vector 3,

nwﬁ=0+w%1yﬁwmﬁmfw—Mﬁmo
(Lhﬂ )me—|mﬁn)

Since f is [tk]-sparse, by Cauchy-Schwarz Inequality,

0<| ﬁlaﬁ s
= ”;8”2 ”;81 §upp(,8)||2 2 k( " k)
m'= + k([tk] —
< IBIZNAY max o 13 = A1 - ———
+ mk
m'> + k(¢ — D+k 1 )
- m?2 +m'k 1— k(m’ —m) ”'8”2
m2+m'k
_om? k21— 1) m’2+k2(t— 1) +k 1 5
= Tk mr G =1 = kA1
/2+m’k
=2V —1(Vi - vr->a+—> Wh
@WU—I—%FJﬂ(I mmz

(2\/t(t - —-20c—-1)+ ) 18113

We used the fact that m’ >k, 0 <m’ —m < 1 and
m? 4+ k21— 1)
m? +m'k
_ (=D +iG=D) +1-1
((t—1)+ V1= 1))2 +(t—D+ /1@ =1))
B t—-D(—1+r+2/tG =1 +1)

ViE=1) (Vi + /@ = D)’
2Vt —1
S Virvicio oV H(vi-visT)

above. Hence,

(HWﬁEE)WﬁEHMﬂg
(y_/__ (r+/__) )Mﬁ
(1_/:;j )Wh,

which implies = <Jt -1/t +e.

Now we consider

k
e e
ﬁ0:(19 '71907""0)ERP9
ko
— k

k
Y0 = (O,”'aoaﬁ,"' ’?90”” ’0)
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Note that Af; = 0, so Afy =
and [lyollr < llBolh-
« In the noiseless case, i.e. y = Afp, the £; minimization
method (2) fails to exactly recover fy through y since
y = Ayo, but [lyolli < llBoll1-
o In the noisy case, i.e. y = Afy + z, assume that £
minimization method (2) can stably recover fo with
constraint B;. Suppose ﬁz is the solution of ¢; minimiza-
tion, then hmzﬁo B. = Po. Note that y — A(,[)’Z bo +
y0) =y — Aﬁz € B;, by the definition of ,[)’Z, we have
8. = Bo+ volli = Bl Let z — 0, it contradicts that
lyoll1 < llPoll1- Therefore, £; minimization method (2)
fails to stably recover fy. 0
Proof of Proposition 4.1: We use the technical tools devel-
oped in Cai and Zhang [10] to prove this result. We begin by
introducing another important concept in the RIP framework
- restricted orthogonal constants (ROC) proposed in [11].

Definition 5.1: Suppose A € R"™P, define the restricted
orthogonal constants (ROC) of order ki, kp as the smallest
non-negative number ‘91?1, k, Such that

(A1, AB) < 04 1, A1 1211212,

for all ki-sparse vector 1 € R? and k»-sparse vector 5, € R”
with disjoint supports.
Based on Theorem 2.5 in [10]

2k —
5[/( +

Avyo. Besides, fo is k-sparse

ek,k <1 31)

is a sufficient condition for exact recovery of all k-sparse
vectors. By Lemma 3.1 in [10], Htk = 25 when ¢k is even,;

— 2tk 5A /. when rk is odd. Hence
(tk)2—1

2k — tk 4 —
5;2 + Tetk,tk

2k — tk
Tetk,tk =

etk,tk =

5tk» tk is even;

4k — 2tk

+ J—
V(th)? —1
The proposition is implied by the inequalities above and (31).
O
Proof of Proposition 4.2: The idea of the proof is quite
similar to Theorem 3.2 by Cai and Zhang [9]. Define

I+ 94, tk is odd.

A:RP - RP

B ﬁ(ﬁ—(/fﬁ))’)-

Now for all non-zero [tk]-sparse vector f € RP,

4
1ABI3 = ;=B = (B 7)1, B = B, 7)7)

4
- E(||/3||% — (B ).

We can immediately see [|AB]5 < (1 + /(4 — 1)||B]l3. On
the other hand by Cauchy-Schwarz’s inequality,

B, 1) =By - Lisupp(py))*
k
SIBBC Y. s < IBIE
iesupp(f)

131
For k > 1/¢, we have
4 k
1ABIB = (1 - L ])Ilﬁllz
= (= o —eDIBB > (= 7 — BB,

Therefore, we must have 54 = 5[ka <t/(4—1)+e.
Finally, we define

k
—_——
ﬁo:(l,'”,l,O,«“,O),
k k
, —_—~— ———
ﬁO:(Oﬂ"'ﬂ()»_l»"'»_1;09""0)'

Then fo, 5, are both k-sparse, and y = Afy = Ap). There’s
no way to recover both Sy, f; only from (y, A). g
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