Homework 3 (4th Week)-2023"

Peng Li*

March 31, 2024

Requirement: Please write the answers in English.

Reference Textbook: [1] "Stephen Boyd and Lieven Vandenberghe, "Convex optimization", 2th Edition, 2013.

[2] 刘浩洋, 户将, 李勇锋, 文再文, 最优化: 建模, 算法与理论, 高等教育出版社, 2020.

1. (30 points) (Exercise 4.24 of the textbook [1]) Complex ℓ_{1-}, ℓ_2- and ℓ_{∞} -norm approximation. Consider the problem

minimize
$$\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_p$$
,

where $\mathbf{A} \in \mathbf{C}^{m \times n}$, $\mathbf{b} \in \mathbf{C}^{m}$, and the variable is $\mathbf{x} \in \mathbf{C}^{n}$. The complex ℓ_{p} -norm is defined by

$$\|\mathbf{y}\|_p = \left(\sum_{i=1}^m |y_i|^p\right)^{1/p}$$

for $p \ge 1$, and $\|\mathbf{y}\|_{\infty} = \max_{i=1,\dots,m} |y_i|$. For p = 1, 2, and ∞ , express the complex ℓ_p -norm approximation problem as a QCQP or SOCP with real variables and data.

2.(30 points) (Exercise 5.30 of the textbook [1]) Derive the KKT conditions for the problem

$$\begin{array}{ll} \text{minimize} & \operatorname{tr}(\mathbf{X}) - \log \det \mathbf{X} \\ \text{subject to} & \mathbf{Xs} = \mathbf{y}, \end{array}$$

with variable $\mathbf{X} \in \mathbf{S}^n$ and domain \mathbf{S}_{++}^n . Here $\mathbf{y} \in \mathbf{R}^n$ and $\mathbf{s} \in \mathbf{R}^n$ are given, with $\mathbf{s}^T \mathbf{y} = 1$. Verify that the optimal solution is given by

$$\mathbf{X}^{\star} = \mathbf{I} + \mathbf{y}\mathbf{y}^T - \frac{1}{\mathbf{s}^T\mathbf{s}}\mathbf{s}\mathbf{s}^T.$$

3. (40 points)Given $\mathbf{A} \in \mathbb{R}^{m \times n}$ with m < n and $\mathbf{b} \in \mathbb{R}^m$. Please give the dual problems of the following convex optimizations.

- (i) $\min_{\mathbf{x}\in\mathbb{R}^n} \|\mathbf{x}\|_1$, s. t. $\|\mathbf{A}^{\top}(\mathbf{A}\mathbf{x}-\mathbf{b})\|_{\infty} \leq \varepsilon$
- (ii) $\min_{\mathbf{x}\in\mathbb{R}^n}\lambda\|\mathbf{x}\|_1+\|\mathbf{A}^{\top}(\mathbf{A}\mathbf{x}-\mathbf{b})\|_{\infty}$
- (iii) $\min_{\mathbf{x}\in\mathbb{R}^n} \lambda \|\mathbf{x}\|_1 + \frac{1}{2} \|\mathbf{A}^{\top}(\mathbf{A}\mathbf{x}-\mathbf{b})\|_{\infty}^2$

Email:lp@lzu.edu.cn.