Homework 2 of Optimization (4th Week)-2024"

Peng Li*

March 16, 2024

Requirement: Please write the answers in English.

Reference Textbook: [1] "Stephen Boyd and Lieven Vandenberghe, "Convex optimization", 2th Edition, 2013.

- [2] 刘浩洋, 户将, 李勇锋, 文再文, 最优化: 建模, 算法与理论, 高等教育出版社, 2020.
- 1. (30 points) (Exercises 3.18, 3.57 of the textbook [1])
- (a) $f(\mathbf{X}) = \operatorname{tr}(\mathbf{X}^{-1})$ is convex on dom $f = \mathbf{S}_{++}^n$.
- (b) $f(\mathbf{X}) = (\det(\mathbf{X}))^{1/n}$ is concave on dom $f = \mathbf{S}_{++}^n$.
- 2. (30 points) (Exercise 2.12 of the textbook [2], Exercises 3.36 of the textbook [1]) Derive the conjugates of the following functions.
 - (a) Max function. $f(\mathbf{x}) = \max_{i=1,\dots,n} x_i$ on \mathbf{R}^n .
 - (b) Sum of largest elements. $f(\mathbf{x}) = \sum_{i=1}^{r} x_{[i]}$ on \mathbf{R}^{n} .
 - (c) Log function of the Matrix: $f(\mathbf{X}) = -\ln \det(\mathbf{X})$;
- 3. (40 points)(Exercise 2.6 of the textbook [2])Compute the gradient of the functions with matrix variables.
 - (a) $f(\mathbf{X}) = \text{Tr}(\mathbf{X}^{T}\mathbf{A}\mathbf{X})$, where $\mathbf{X} \in \mathbb{R}^{m \times n}$, $\mathbf{A} \in \mathbb{R}^{m \times m}$ (may not symmetrix);
- (b) $f(\mathbf{X}) = \ln \det(\mathbf{X})$, where $\mathbf{X} \in \mathbb{R}^{n \times n}$ and domain is $\{\mathbf{X} \mid \det(\mathbf{X}) > 0\}$.

Email:lp@lzu.edu.cn.