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ABSTRACT 

A characterization is given of the subdifferential of matrix norms from two classes, 

orthogonally invariant norms and operator (or subordinate) norms. Specific results are 

derived for some special cases. 

1. INTRODUCTION 

Let II* 11 be a norm on the space of m X n real matrices. Then if A is a 
given real m X n matrix, the subdifferential (or set of subgradients) of llA[l is 
defined by 

allAll = (G E R “‘X”:llBll>~~A~~+trace[(B-~)T~],all BEEY~“). (1.1) 

It is well known (and readily established) that G E all All is equivalent to the 
statements 

(i) l[All = trace(GrA), 

(ii) llGII* < 1, 

where 

IIGII* = ,,;yl trace( BTG), 

and )I * II* is the polar or dual norm to II * 11. The roles of a norm and its dual 
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can be interchanged in this definition. This paper is concerned with a 
characterization of the subdifferential of some important matrix norms. As 
well as being of interest for their own sake, results of this kind are of value in 
the provision of optimahty conditions for optimization or approximation 
problems involving norms of matrices. 

For some norms, the structure of the subdifferential follows immediately 
from known results for the vector case. In particular this is true for the norms 
defined by 

because the matrix is being treated as an extended vector in Iw”‘“. Two other 
important classes of matrix norms are considered here: orthogonally invariant 
norms, which are dealt with in the next section, and operator or subordinate 
norms, which are treated in Section 3. The results can easily be generalized 
to complex matrices in CmXn m an obvious way, but attention here will be 
restricted to the real case. It will be assumed in what follows (with no loss of 
generality) that m z n. 

2. ORTHOGONALLY INVARIANT NORMS 

This class consists of norms such that 

IIWAII = IlAll 

for any orthogonal matrices U and V of orders m and n respectively. These 
matrix norms (or in fact the more general unitarily invariant norms) were 
introduced by von Neumann 141, and have subsequently generated much 
interest. Let a given matrix A have the singular value decomposition 

A = UEVT, 

where U and V are orthogonal matrices and Z is an m X n matrix with zeros 
except down the main diagonal, where there are the singular values in 
descending order 



SUBDIFFERENTIAL OF MATRIX NORMS 35 

(see, for example, Golub and Van Loan [2]). All such norms can be defined by 

IL411 = 4(a), (2.1) 

where a=(a,,...,a,)*, and 4 is a symmetric gauge function; such a 
function satisfies the following conditions: 

6) 4(x) > 0, x Z 0, 
(ii) $(ax) = Ial+( 
(iii) 4(x + y) < 4(x> + 4(y), 
(iv) ~(‘IXi,, ‘. .7 E,Xi,) = 4(X), 

where (Y is a scalar, .si = & 1 for all i, and i,,. . .,i, is a permutation of 
1,2,..., n. The relationship between symmetric gauge functions and unitarily 
invariant norms was essentially worked out in [4]; see also Schatten [7], 
Mirsky [3]. The polar r$* of the symmetric gauge function 4 is also a 
symmetric gauge function, and satisfies 

b*(x) = max xTy. 
44,) = 1 

The subdifferential 6’+(x) is th e set of vectors satisfying the analogue of (1.1) 
or equivalently those vectors z E R” such that 

(i) 4(x) = xrz, 
(ii) 4*(z) < 1. 

A familiar class of symmetric gauge functions is given by the I, norms, 
and this leads to 

IIAII = IId,, (2.2) 

the c,, or Schatten p-norms. Well-known special cases are the 1, norm, 
which gives the spectral norm of A, and the I, norm, which gives the 
Frobenius norm. A characterization of the subdifferential of the spectral 
norm is given by Berens and Finzel [l] and Zietak [lo]; the latter paper also 
gives a characterization for the norm defined by the 2, norm on the right 
hand side of (2.2). Similar results are also given by So [8]. These are the 
interesting I, norms, because the subdifferential is not usually a singleton; 
when 1 < p < 03, the normed linear space is strictly convex, and there is a 
unique subdifferential, or equivalently the norm is differentiable. In fact the 
normed space is strictly convex if and only if the symmetric gauge function 4 
is strictly convex (Zivtak [lo]). Here a general result for (2.1) is established 
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which contains the above characterizations as special cases. A key feature of 
the analysis is the following representation of the directional derivative of 
IlAll. The columns of U(V) will be denoted by ui (vi), ordered so that the ith 
column corresponds to a,. 

THEOREM 1. Let A, R be given m x n matrices. Then there is a singular 
value decomposition of A such that 

lim lb + YRII- IIAII = 
y-o+ Y 

d 2~~~ ,$ diu:Rvi. 
1-l 

Proof. Let ai be a distinct singular value of A with 

Av, = uiui. 

If it is assumed that A depends smoothly on a parameter y, then differentiat- 
ing through with respect to y and premultiplying by UT gives 

3_ TaA 
a7 - ui ayvi* 

For multiple singular values, it is necessary to use the classical result of 
Rellich [5] that the eigenvalues of a matrix which is an analytic function of a 
single variable can always be numbered so that they are each analytic 
functions of the variable; the eigenvectors can be similarly defined. Using the 
relationship between eigenvalues and singular values, and eigenvectors and 
singular vectors, it follows that if the singular values of the matrix A + yR, 
where A and R are given m X n matrices, are denoted by a,(r), i = 1,. . . , n. 
Then 

Ui( y) = a, + yupsv, + o(y), i=l ,...,n, (2.3) 

where oi = vi(O), and ui and vi are singular vectors of A corresponding to ai. 
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Now 

IIAII = 4(u) a uTd(y) for any d(r) E WJ(U(Y)) 

=u(y)Td(y)-y 2 di(Y)uTRvi + O(Y) 
i=l 

=IIA+yfiII-7 2 di(Y)uT’vi+o(Y) 
i=l 

AlSO 

II-4 + YRII = 4(4r>) a uWTd for any dEa+(u) 

= [[All + y k diu;Rvi + o(y). 
i=l 

(2.4) 

(2.5) 

From (2.4) and (2.5), it follows that if Y > 0, 

i:d,u:Hvi+o(l)a”A+YRyl-“A”~ &)u:Rvi+o(l). 
i=l i=l 

Letting y + 0 +, the result follows, because (going to a subsequence if 
necessary) d(y) + a E &#~(a) (for example, Rockafellar [S]). n 

Just as the vector u is related to the diagonal elements of the diagonal 
matrix Z, it will be assumed in what follows that there exists the same 
relationship between diagonal matrices and the corresponding lowercase 
letters. The notation conv( 0) will signify, as usual, the convex hull of a set. 

THEOREM 2. Let D denote an m x n diagonal matrix. Then 

811 All = conv( UDV T, A = UCVr, d E @(a)}. (2.6) 
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Proof. Denote the set described inside the braces on the right hand side 
of (2.6) by S(A), and let G E conv{S(A)). Then 

trace( G’A) = trace 

where hi > 0, Cihi = 1, and for each i, di E &$(a>, A = UizViT is a singular 
value decomposition. Thus 

trace(GTA) = trace ~AiV,Z%Uj’Ui DjViT 
i 

= IIAII. 

Further 

IIGII* = ,,;a~~ trace( GTR) 
< 

as above. 

Now for each i, 

((UiDiViT((* = ((Di((* = c$*(di) = 1, 

using the known fact that 

IIAll* =&*(a). 

Thus 

trace( RTUi Div’) < llRll, 

and I(GI(* < 1, showing that G E dIAlI. 
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Now assume that G E a(]A]] but G E convS(A). Then by a well-known 
separation result (see, for example, Watson [9, p. 131) there exists R E [WmX” 
such that 

trace( RTH) < trace( RTG) forall HES(A), 

so that 

max trace( RTH) < max trace( RrG), 
HE S(A) G 6 4All 

or for any singular value decomposition 

d 2; ) ,$r diuTRvi < max trace( RrG) . 
u t- G E di/All 

But the right hand side is just the standard expression for the directional 
derivative of the convex function ]]A]] in the direction R (for example, 
Rockafellar [6]), and so Theorem 1 is contradicted. The proof is completed. 

n 

EXAMPLE 1. Let +(a) = 1]u](,, giving rise to the spectral norm of A. 
Then 

allallm = conv{ ei, i : ai = a,) . 

Let A = UCVr be any singular value decomposition, and let the multiplicity 
of or be t, with 

u=[u : (1) : p], v = [v(l) i v(2)] ) 

where U(l) and V’(l) have t columns. Then 

A = u 

1 
(J(l)V(l)T + @2)~:(29,7(2)T , say. 

Any element of the set 8]]A]] can be written as 

(2.7) 
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where pi z 0, Cipi = 1, and for each i, A = UizVi’ is a singular value 
decomposition, di E 6’llallm. The superscripts have the same meaning as in 
(2.7). Expressing Vi”’ and Vi(‘) in terms of U(r) and V(l), it follows that 

G = C~iU(l)XiDI1)XTV(l)T, 

where each Xi is a t X t orthogonal matrix. Thus 

where H > 0, that is, H is a symmetric positive semidefinite t X t matrix. In 
addition, trace H = 1. Thus given any singular value decomposition of A, the 
subdifferential is defined by 

allAll = (U”‘HV (‘jr for all H E RtX’, H > 0, trace H = 1). 

EXAMPLE 2. Let &‘a)= Ikrlll. F or g iven A let there be s zero singular 
values, and let A = U CVr be any singular value decomposition with the 
matrices partitioned so that 

v=[v : (1) : (,7(2) 1, v = [VW i VW] , (2.8) 

with U(l) and V(l) having n - s columns. (Notice that this is not the same 
partitioning as in Example 1.) Recall that 

Let G E allAll. Then 

G = c h&J, DjyT, 

where hi > 0, Zihi = 1, and for each i, di ~allall~, and A = U,J%V,’ are 
singular value decompositions. Thus 

G = U(l)V(l)T + ~AiUi(2)Wi~(2)T, 

where Wi is an (m - n + s>X s diagonal matrix with diagonal elements < 1 
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in modulus, and the partitioning is consistent with (2.8). Therefore 

G = @)V(‘)r + &@2)Y,W,Z;V(2)T, 

41 

where the matrices Yi and Zi are orthogonal matrices of dimension m - n + s 
and s respectively, and so 

where is - n 
given matrix, then 

G = @l)V(i)r + I_,7(“)777(2)r 

+ S)X s. If a,( .) denotes the largest singular value of a 

Thus given any singular value decomposition of A, a characterization of the 
subdifferential in this case is given by 

JllAll = {U V (l) cljT + U@)T$‘(2)T for all T E l@m-“+s)xs, a,(T) Q 1). 

3. OPERATOR NORMS 

Let 1). IIA and (I* IIs be norms on Iw” and Iw” respectively. Then a norm on 
m x n matrices may be defined by 

llAll= max IIAxlL. (3.1) llxlls = 1 

The required subdifferential characterization can be established by argu- 
ments similar to those of the previous section. It is convenient to define the 
set of vector pairs 

@(A)={vEIW”,w~IW m : Me = 1, Av = IIAllu, IMA = 1, w E ddl~}. 

(3.2) 
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Clearly, this set contains vectors v where the norm is attained in the 
expression (3.1). 

THEOREM 3. 

lim 11-A + YRII- IlAll = max wTRv. 
y+o+ Y (v,w) E Q(A) 

Proof. We have 

llAll= max IIAxIIA 
II&J = 1 

a IbWr) [IA, 
(3.3) 

> w(Y)~Av(Y) forany (v(y),w(~))~@(A+~fi) 

= IIA + yRll- YW(Y)~RV(Y). 

Also 

IIA + YRII a II( A + yR)vIIA 

> w’( A -t yR)v for any (w,v) E Q(A) 

= []A11+ ywrRv. (3.4) 

From (3.3) and (3.4) it follows that if y > 0, 

wTRv < 
IIA + YRII- IlAll 

G 4YlTRV(Y). 
Y 

Now define, for all y, u(y) by 

(A + yR)v(y) = IIA + yRlb(y). 

Then letting y -+ 0+ along a subsequence if necessary, it follows that 

V(Y) + v, IIVIIB = 1, 

w(y) -+ w, Ildl*A = 1, 

U(Y) -+ 6 lla4 = 1. 
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Further 

AV = IIAllii, 

and since w(y>ru(y) = I\u(-y>llA, it follows that, taking limits, 

w E allull*. 

Thus (W,V> E @(A), and the result follows. 

THEOREM 4. 

~3IlAl( = conv{wvT:(v,w) E Q(A)}. 

Proof. Let S(A) be the set described in braces on the right hand side, 
and let G E conv S(A). Now 

trace( GTA) = trace 

where Ai >, 0, Cih, = 1, and for each i, (vi,wi) E @(A). Thus 

trace(GrA) = xAillA&v’ui 

= IIAII. 

Also 

IIGII* = ,,R;laxl trace( GrR) 
< 

= ,,ngcl & A,w,'Rv, (as above) 
1 

using the fact that for all i, 

w,%, < Illill. 
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Now let G E ~911 All, but assume that G @ conv S(A). Then, as in Theorem 
2, there exists R such that 

trace[ Rr(wvr - G)] < 0 for all(w,v) E @(A), 

so that 

wrRv < trace( RrG) for all (w,v) E @(A), 

and therefore 

max 
(v,w) E @(A) 

wrRv < max trace( RTG) , 
G E 4All 

The fact that the right hand side is just the directional derivative of IIAll in 
the direction R leads to a contradiction of Theorem 3, and the result is 
proved. W 

EXAMPLE 3. The most common operator norm is the one with both 
vector norms 1, norms. This is just the spectral norm, and corresponds to the 
I, case treated in Example 1 of the previous section, but the recovery of the 
subdifferential will be repeated from the operator norm point of view. Here 

6’llAll= conv{uvT: llullz = It& = 1, Av = IIAllu). 

It is readily seen that any element of the subdifferential has the form 

where hi > 0, Cihi = 1, and ui and vi are any left and right singular vectors 
of A corresponding to cri. Th e f orm established in Example 1 follows in a 
straightforward manner. 

REFERENCES 

1 H. Berens and M. Finzel, A continuous selection of the metric projection in 

matrix spaces, in Numerical Methods of Approximation Theory, Vol. 8 (L. Collatz, 

G. Meinardus, and G. Numberger, Eds.) ISNM 81, Birkhkser-Verlag, 1987, pp. 

21-29. 



SUBDIFFERENTIAL OF MATRIX NORMS 45 

2 

3 

4 

5 

6 
7 

8 

9 

10 

G. H. Colub and C. F. Van Loan, Matrix Computations, 2nd ed., Johns Hopkins 
U.P., Baltimore, 1989. 
L. Mirsky, Symmetric gauge functions and unitarily invariant norms, Quutt. J. 
Math. oxfwd Ser. (2) 11:50-59 (1960). 
J. von Neumann, Some matrix inequalities and metrization of metric spaces, 

Tomsk Univ. Rev. 1:286-300 (1937). 
F. Rellich, Perturbation Theory of Eigenvalue Problems, Gordon and Breach, 
New York, 1969. 
R. T. Rockafellar, Convex Analysis, Princeton U.P., Princeton, 1970. 
R. Schatten, Norm ideals of Completely Continuous Operators, Springer-VerIag, 
Berlin, 1960. 
W. So, Facial structures of Schatten p-norms, Linear and M&linear Algebra 
27:207-212 (1990). 
G. A, Watson, Approximation Theory and Numerical Methods, Wiley, Ghichester, 
1980. 
K. Zietak, On the characterization of the extremal points of the unit sphere of 
matrices, Linear Algebra Apple. 106:57-75 (1988). 

Received 1 October 1990; final munuxript accepted 1 May 1991 


